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1. Introduction

T he fuzzy sets were introduced for the first time by Zadeh in [1]. Hundreds of examples have been
supplied where the nature of uncertainty in the behavior of given system processes is fuzzy rather than

stochastic nature. Recently, many authors showed interest in the study of the theoretical framework of fuzzy
initial value problems. Chang and Zadeh [2] introduced the concept of fuzzy derivative. Dubosi and Prade [3]
presented the extension principle. The differential and integral calculus for fuzzy-set-valued functions, shortly
fuzzy-valued functions was developed in resent work, see [4–9].

It is known that phenomena of nature or physical systems can be modeled using partial differential
equations (PDEs) such as wave equations, heat equations, Poisson’s equation and so on. Hence, studies of
PDEs become one of the main topics of modern mathematical analysis and attracted much attention. Many
authors developed different methods for solving different kinds of PDEs, see [10–17].

The differential transform method (DTM) was introduced by Zhou [18] and he applied it to solve initial
value problems for electric circuit analysis. The DTM is based on Taylor,s series expansion and can be applied
to solve both linear and nonlinear ordinary differential equations as well as PDEs. Keskin and Oturanc [19]
proposed the RDTM, defining a set of transformation rules to overcome the complicated complex calculations
of traditional DTM. Recently some researchers used RDTM for solving different equations, see [20–26].

This paper is structured as follows: In Section 2, we call some definition on a fuzzy number, fuzzy-valued
function and strongly generalized Hukuhara differentiability. In Section 3, Taylor’s formula, one-dimensional
DTM, and two-and three-dimensional RDTM is introduced. In Section 4, we provide some examples to show
the efficiency and simplicity of RDTM. Finally, Section 5 consists of some brief conclusions.

2. Basic concepts

The fuzzy set ũ ∈ E1 is called a fuzzy number if ũ is a normal, convex fuzzy set, upper semi-continuous
and suppu = {x ∈ R|u(x) > 0} is compact. Here A denotes the closure of A. We use E1 to denote the fuzzy
number space [27,28].

For ũ, ṽ ∈ E1, k ∈ R, the addition and scalar multiplication are defined by

[ũ + ṽ]r = [ũ]r + [ṽ]r,

[kũ]r = k[ũ]r,
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respectively, where [ũ]r = {x : u(x) ≥ r} = [ur, ur] for any r ∈ [0, 1].
We use the Hausdorff distance between fuzzy numbers [28] D : E1 × E1 → [0,+∞) defined by

D(ũ + ṽ) = sup
r∈[0,1]

d([ũ]r[ṽ]r)

= sup
r∈[0,1]

max{|ur − vr|, |ur − vr|},

where d is the Hausdorff metric. D(ũ, ṽ) is called the distance between ũ and ṽ.

Definition 1. [29,30] Let ũ be a fuzzy number defined in F(R). The r-level set of ũ, for any r ∈ [0, 1] denoted
by ũr is a crisp set that contains all elements in R, such that the membership value of ũ is greater or equal to r,
that is

ũr = {x ∈ R|ũ(x) ≥ r}.

Whenever we represent the fuzzy number with r-level set, we mean that it is closed and bounded and it
is denoted by [ur, ur], where they represent the lower and upper bound r-level set of a fuzzy number.

The researchers [31,32] defined the parametrical representation of the fuzzy numbers as in the following
definition:

Definition 2. [33] A fuzzy number ũ in parametric form is a pair [ur, ur] of functions ur and ur for any r ∈ [0, 1],
which satisfies the following requirements

• ur is a bounded non-decreasing left continuous function in (0,1];
• ur is a bounded non-increasing left continuous function in (0,1];
• ur ≤ ur.

Some researchers classified the fuzzy numbers into several types of the fuzzy membership function and
the triangular fuzzy membership function or also often referred to as triangular fuzzy number is the most
widely used membership function.

In order to avoid the inconvenience, in the whole paper, the fuzzy numbers and fuzzy-valued functions
are represented with a tilde sign at the top, while the real-value function and interval-valued functions are
written directly.

Definition 3. [34] A fuzzy valued function f̃ of two variable is a rule that assigns to each ordered pair of real
numbers, (x, t), in a set D, a unique fuzzy number denoted by f̃ (x, t). The set D is the domain of f̃ and its
range is the set of values taken by f̃ , i.e., { f̃ (x, t)|(x, t) ∈ D}.

The parametric representation of the fuzzy valued function f : D → E1 is expressed by f̃ (x, t; r) =

[ f (x, t; r), f (x, t; r)], for all (x, t) ∈ D and α ∈ [0, 1].

Definition 4. [34,35] A fuzzy valued function f : D → E1 is said to be fuzzy continuous at (x0, t0) ∈ D if
lim(x,t)→(x0,t0)

f̃ (x, t) = f (x0, t0). We say that f̃ is fuzzy continuous on D if f̃ is fuzzy continuous at every point
(x0, t0) in D.

Definition 5. [36,37] The generalized Hukuhara difference of two fuzzy numbers ũ, ṽ ∈ E1 is defined as
follows:

ũ	gH ṽ = w̃⇔
{

(i) ũ = ṽ⊕ w̃, or

(ii) ṽ = ũ⊕ (−w̃).
(1)

In terms of the r−levels, we get [ũ 	gH ṽ] = [min{ur − vr, ur − vr}, max{ur − vr, ur − vr}] and if the
H-difference exists, then ũ	 ṽ = ũ	gH ṽ; the conditions for existence of w̃ = ũ	gH ṽ ∈ E1 are

Case (i) wr = ur − vr and wr = ur − vr, ∀r ∈ [0, 1], with wr increasing, wr decreasing, wr ≤ wr. (2)

Case (ii) wr = ur − vr and wr = ur − vr, ∀r ∈ [0, 1], with wr increasing, wr decreasing, wr ≤ wr. (3)
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It is easy to show that (i) and (ii) are both valid if and only if w̃ is a crisp number. In this case, it is possible
that the gH-difference of two fuzzy numbers does not exist. To address this shortcoming, a new difference of
fuzzy numbers was presented in [37].

Definition 6. [38] Let ũ(x, t) : D → E1 and (x0, t) ∈ D. We say that ũ is strongly generalized Hukuhara
differentiable on (x0, t) (gH-differentiable for short) if there exists an element ∂ũ

∂x |(x0,t) ∈ E1 such that

(i) for all h > 0 sufficiently small, ∃ ũ(x0 + h, t) 	gH ũ(x0, t), ũ(x0, t) 	gH ũ(x0 − h, t) and the limits (in the
metric D)

lim
h→0+

ũ(x0 + h, t)	gH ũ(x0, t)
h

= lim
h→0+

=
ũ(x0, t)	gH ũ(x0 − h, t)

h
=

∂ũ
∂x gH

∣∣∣∣
(x0,t)

,

or
(ii) for all h > 0 sufficiently small, ∃ ũ(x0, t)	gH ũ(x0 + h, t), ũ(x0 − h, t)	gH ũ(x0, t) and the limits

lim
h→0+

ũ(x0, t)	gH ũ(x0 + h, t)
−h

= lim
h→0+

ũ(x0 − h, t)	gH ũ(x0, t)
−h

=
∂ũ
∂x gH

∣∣∣∣
(x0,t)

,

or
(iii) for all h > 0 sufficiently small, ∃ ũ(x0 + h, t)	gH ũ(x0, t), ũ(x0 − h, t)	gH ũ(x0, t) and the limits

lim
h→0+

ũ(x0 + h, t)	gH ũ(x0, t)
h

= lim
h→0+

ũ(x0 − h, t)	gH ũ(x0, t)
−h

=
∂ũ
∂x gH

∣∣∣∣
(x0,t)

,

or

(iv) for all h > 0 sufficiently small, ∃ ũ(x0, t)	gH ũ(x0 + h, t), ũ(x0, t)	gH ũ(x0 − h, t) and the limits

lim
h→0+

ũ(x0, t)	gH ũ(x0 + h, t)
−h

= lim
h→0+

ũ(x0, t)	gH ũ(x0 − h, t)
h

=
∂ũ
∂x gH

∣∣∣∣
(x0,t)

.

Lemma 1. [39] Let ũ(x, t) : D → E1. Then the following statements hold:

(a) If ũ(x, t) is (i)-partial differentiable for x (i.e., ũ is partial differentiable for x under the meaning of Definition 5
(i), similarly to t), then [

∂ũ
∂x

]
r
=

[
∂u(x, t)(r)

∂x
,

∂ū(x, t)(r)
∂x

]
, (4)

(b) If ũ(x, t) is (ii)-partial differentiable for x (i.e., ũ is partial differentiable for x under the meaning of Definition 5
(ii), similarly to t), then [

∂ũ
∂x

]
r
=

[
∂ū(x, t)(r)

∂x
,

∂u(x, t)(r)
∂x

]
. (5)

Remark 1. For ũ(x, t) : D → E1, the following results hold:[
∂2ũ
∂x2

]
r
=

[
∂2u(x, t)(r)

∂x2 ,
∂2ū(x, t)(r)

∂x2

]
, (6)

if (i, i), (ii, ii)- ∂2ũ
∂x2 exist, and [

∂2ũ
∂x2

]
r
=

[
∂2ū(x, t)(r)

∂x2 ,
∂2u(x, t)(r)

∂x2

]
, (7)

if (i, ii), (ii, i)- ∂2ũ
∂t2 exist.
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3. Analysis of the method

In this section, we shall give some definitions and theorems of the Taylor series, one-dimensional DTM,
and two-and three-dimensional RDTM.

Definition 7. [40] A Taylor series for the polynomial of degree n is defined as

Fn(x) =
n

∑
j=0

1
j!
( f j(c))(x− c)j. (8)

Theorem 1. If the function f (x) has (n + 1) derivatives on an interval (c − r, c + r) for some r > 0, and
limn→∞ Rn(x) = 0, for all x ∈ (c − r, c + r), where Rn(x) is the error between Fn(x) and the polynomial function
f (x) then the Taylor series expanded about x = c converges to f (x). Thus

f (x) =
n

∑
j=0

1
j!
( f j(c))(x− c)j, for all, x ∈ (c− r, c + r). (9)

3.1. Differential transform method

We consider the following one-dimensional DTM:

Definition 8. [26] The differential transform F(j) of the function f (x) for jth order derivative is defined as

F(j) =
1
j!

(
dj f (x)

dxj

)
x=x0

. (10)

Definition 9. [26] The inverse differential transform of F(j) is defined as

f (x) =
∞

∑
j=0

(x− x0)
jF(j). (11)

The Equation (9) is the Taylor series expansion of f (x) at x = x0. From Equations (10) and (11), the
following basic operations of DTM can be deduced

• If f (x) = y1(x)± y2(x), then F(j) = Y1(j)±Y2(j).
• If f (x) = ay1(x), then F(j) = aY1(j), where a is a constant.
• If f (x) = dy1(x)

dx then F(j) = (j + 1)Y1(j + 1).
• If f (x) = d2y1(x)

dx2 then F(j) = (j + 1)(j + 2)Y1(j + 2).
• If f (x) = dny1(x)

dxn , then F(j) = (j+1)!
j! Y1(j + 1).

• If f (x) = y1(x)y2(x), then F(x) = ∑
j
i=0 Y1(i)Y2(j− i).

• If f (x) = xn, then F(j) = µ(j− n) where µ(j− n) =

{
1, j = n,

0, j 6= n.
• If f (x) = (1 + x)n then F(j) = n(n−1)......(n−j+1)

j! .

• If f (x) = eax, then F(j) = aj

j! , where a is a constants.

• If f (x) = sin(ωx + α), then F(j) = ω j

j! sin( jπ
2 + α), where ω and α are constants.

• If f (x) = cos(ωx + α), then F(j) = ω j

j! cos( jπ
2 + α), where ω and α are constants.

3.2. Reduced differential transform method

We consider the following two-dimensional RDTM:

Definition 10. [41] If the function w(x, t) is analytical and differentiable continuously with respect to time t
and space x in the domain of interest, then we get

Wj(x) =
1
j!

[
∂jw(x, t)

∂xj

]
t=0

, (12)
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where the t-dimensional spectrum function Wj(x) is the transformed function of w(x, t). Here the lower
case function w(x, t) represents the original function while the upper case Wj(x) stands for the transformed
function.

Definition 11. [41] The inverse differential transform of Wj(x) is defined as

w(x, t) =
∞

∑
j=0

Wj(x)tj. (13)

Thus combining (12) and (13), we can express the solution as

w(x, t) =
∞

∑
j=0

(
1
j!

[
∂jw(x, t)

∂xj

]
t=0

)
tj. (14)

The basic concept of RDTM mainly comes from the power series expansion. For two-dimensional function

• w(x, t) then Wj(x) = 1
j!

[
∂j

∂xj u(x, t)
]

t=0
.

• u(x, t) = w(x, t)± v(x, y), then Uj(x) = Wj(x)±Vj(x).
• u(x, t) = αw(x, t), then Uj(x) = αWj(x), where α a is constant.

• u(x, t) = xmtn, then Uj(x) = xmδ(j− n), where δ(j− n) =

{
1 for j = n,

0 for j 6= n.
• u(x, t) = xmtnw(x, t), then Uj(x) = xmWj−n(x).
• u(x, t) = w(x, t)v(x, t), then Uj(x) = ∑

j
r=0 Wr(x)Vj−r(x) = ∑

j
r=0 Vr(x)Wj−r(x).

• u(x, t) = ∂r

∂tr w(x, t), then Uj(x) = (j+r)!
j! Wj+r(x).

• u(x, t) = ∂
∂x w(x, t), then Uj(x) = ∂

∂x Wj(x).
• u(x, t) = ∂2

∂x2 w(x, t), then Uj(x) = ∂2

∂x2 Wj(x).

For three-dimensional function

• w(x, y, t) then Wj(x, y) = 1
j!

[
∂j

∂xj u(x, y, t)
]

t=0
.

• u(x, y, t) = w(x, y, t)± v(x, y, t) then Uj(x, y) = Wj(x, y)±Vj(x, y).
• u(x, y, t) = λw(x, y, t) then Uj(x, y) = λWj(x, y), where λ a is constant.

• u(x, y, t) = xmyntp then Uj(x) = xmynδ(j− p), where δ(j− p) =

{
1 for j = p,

0 for j 6= p.
• u(x, y, t) = xmyntpw(x, y, t) then Uj(x, y) = xmynWj−p(x, y).
• u(x, y, t) = w(x, y, t)v(x, y, t) then Uj(x, y) = ∑

j
r=0 Wr(x, y)Vj−r(x, y) = ∑

j
r=0 Vr(x, y)Wj−r(x, y).

• u(x, y, t) = ∂r

∂tr w(x, y, t) then Uj(x, y) = (j+r)!
j! Wj+1(x, y).

• u(x, y, t) = ∂
∂x w(x, y, t) then Uj(x, y) = ∂

∂x Wj(x, y).
• u(x, y, t) = ∂2

∂x2 w(x, y, t) then Uj(x, y) = ∂2

∂x2 Wj(x, y).
• u(x, y, t) = ∂2

∂y2 w(x, y, t) then Uj(x, y) = ∂2

∂y2 Wj(x, y).

4. Examples

In this section, we demonstrate how RDTM can be easily applied to obtain the exact solutions of the fuzzy
partial differential equations.

Example 1. Consider the following one-dimensional initial value problem describing fuzzy heat-like
equations

∂ũ
∂t

= (x2 ⊕ 5)� ∂2ũ
∂x2 , 0 < x < 1, t > 0, (15)

subject to the initial condition
ũ(x, 0) = [rn, (2− r)n]� (x2 + x), (16)
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where (n = 1, 2, 3, . . .). Now

k̃(s) =


s, s ∈ [0, 1],

2− s s ∈ (1, 2],

0 s /∈ [0, 2],

(17)

[k̃n](r) = rn and [k̃n](α) = (2− r)n. The parametric form of (15) is

∂u
∂t

= (x2 + 5)
∂2u
∂x2 , 0 < x < 1, t > 0, (18)

∂u
∂t

= (x2 + 5)
∂2u
∂x2 , 0 < x < 1, t > 0, (19)

for r ∈ [0, 1], where u stands for u(x, t; r), and u stands for u(x, t; r). Applying the RDTM on Equations (18)
and (19), we get the recurrence relation as{

(j + 1)U j+1(x, t; r) = (x2 + 5) ∂2

∂x2 U j(x; r),

(j + 1)U j+1(x, t; r) = (x2 + 5) ∂2

∂x2 U j(x; r),
(20)

where Ũj(x; r) = [U j(x; r), U j(x; r)] is the transform function. From the initial condition (16), we get

U0(x; r) = rn(x2 + x), (21)

U0(x; r) = (2− r)n(x2 + x). (22)

Substituting Ũ0(x; r) = [U0(x; r), U0(x; r)] into the recurrence relation (20), we get the following Ũj(x; r) values
successively

U1(x; r) = 2(x2 + 5)rn

U2(x; r) =
22(x2 + 5)rn

2!

U3(x; r) =
23(x2 + 5)rn

3!

U4(x; r) =
24(x2 + 5)rn

4!
...


and

U1(x; r) = 2(x2 + 5)(2− r)n

U2(x; r) =
22(x2 + 5)(2− r)n

2!

U3(x; r) =
23(x2 + 5)(2− r)n

3!

U4(x; r) =
24(x2 + 5)(2− r)n

4!
...


The inverse differential transform of Ũj(x; r) is obtained from the relations

u(x, t; r) =
∞

∑
j=0

U j(x; r)tj,

u(x, t; r) =
∞

∑
j=0

U j(x; r)tj,
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and the exact solution is

ũ(x, t; r) = [rn, (2− r)n]�
(
(x2 + 5)e2t + x− 5

)
, 0 ≤ r ≤ 1.

Example 2. Consider the following two-dimensional initial value problem describing fuzzy heat-like
equations

∂ũ
∂t

=
1
2

(
x2 � ∂2ũ

∂x2 ⊕ y2 � ∂2ũ
∂y2

)
, 0 < x, y < 1, t > 0, (23)

subject to the initial condition

ũ(x, y, 0) = [(0.2 + 0.2r)n, (0.6− 0.2r)n]⊕ (x2 + y2), (24)

where (n = 1, 2, 3, . . .). Now

k̃(s) =


5(s− 0.2), s ∈ [0.2, 0.4],

5(0.6− s), s ∈ (0.4, 0.6],

0 s /∈ [0.2, 0.6],

(25)

[k̃n](r) = (0.2 + 0.2r)n and [k̃n](α) = (0.6− 0.2r)n. The parametric form of (23) is

∂u
∂t

=
1
2

(
x2 ∂2u

∂x2 + y2 ∂2u
∂y2

)
, 0 < x < 1, t > 0, (26)

∂u
∂t

=
1
2

(
x2 ∂2u

∂x2 + y2 ∂2u
∂y2

)
, 0 < x < 1, t > 0, (27)

for r ∈ [0, 1], where u stands for u(x, t)(r) and u stands for u(x, t)(r), . Applying the RDTM on Equations (26)
and (27), we get the recurrence relation as(j + 1)U j+1(x, y; r) = 1

2

(
x2 ∂2

∂x2 U j(x, y; r) + y2 ∂2

∂y2 U j(x, y; r)
)

,

(j + 1)U j+1(x, y; r) = 1
2

(
x2 ∂2

∂x2 U j(x, y; r) + y2 ∂2

∂y2 U j(x, y; r)
)

,
(28)

where Ũj(x, y; r) is the transform function. From the initial condition (24), we get

U0(x, y; r) = (0.2 + 0.2r)n + (x2 + y2),

U0(x, y; r) = (0.6− 0.2r)n + (x2 + y2).

Substituting Ũ0(x, y; r) into the recurrence relation (28), we get the following Ũj(x, y; r) values successively

U1(x, y; r) = (0.2 + 0.2r)n + (x2 + y2)

U2(x, y; r) =
(0.2 + 0.2r)n + (x2 + y2)

2!

U3(x, y; r) =
(0.2 + 0.2r)n + (x2 + y2)

3!

U4(x, y; r) =
(0.2 + 0.2r)n + (x2 + y2)

4!
...


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and

U1(x, y; r) = (0.6− 0.2r)n + (x2 + y2)

U2(x, y; r) =
(0.6− 0.2r)n + (x2 + y2)

2!

U3(x, y; r) =
(0.6− 0.2r)n + (x2 + y2)

3!

U4(x, y; r) =
(0.6− 0.2r)n + (x2 + y2)

4!
...


The solution for ũ(x, t; r) is

u(x, y, t; r) =
∞

∑
j=0

U j(x, y; r)tj = (0.2 + 0.2r)n +

[
(x2 + y2)

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+ · · ·∞

)]
,

u(x, y, t; r) =
∞

∑
j=0

U j(x, y; r)tj = (0.6− 0.2r)n +

[
(x2 + y2)

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+ · · ·∞

)]
,

and the exact solution is

ũ(x, y, t; r) = [(0.2 + 0.2r)n, (0.6− 0.2r)n]⊕
(
(x2 + y2) exp(t)

)
, 0 ≤ r ≤ 1.

Example 3. We consider following two-dimensional initial value problem describing heat-like equations

∂ũ
∂t

= ν̃(x, y, t)⊕ 1
4

[
x2 � ∂2ũ

∂x2 ⊕ y2 � ∂2ũ
∂y2

]
, 0 < x, y < 1, t > 0, (29)

subject to the initial condition
u(x, y, 0) = 0̃, (30)

where

ν̃(x, y, t; r) = (−1, 0, 1)� (xy)2

= [(r− 1)n, (1− r)n]� (xy)2, 0 ≤ r ≤ 1, (n = 1, 2, 3, ...), 0̃ ∈ E1.

The parametric form of (29) is

∂u
∂t

= (r− 1)n(xy)2 +
1
4

[
x2 ∂2u

∂x2 + y2 ∂2u
∂y2

]
, 0 < x, y < 1, t > 0,

∂u
∂t

= (1− r)n(xy)2 +
1
4

[
x2 ∂2u

∂x2 + y2 ∂2u
∂y2

]
, 0 < x, y < 1, t > 0.

Applying the RDTM, we get the recurrence relation as(j + 1)U j+1(x, y; r) = (r− 1)nx2y2δ(j) + 1
4

[
x2 ∂2

∂x2 U j(x, y; r) + y2 ∂2

∂y2 U j(x, y; r)
]

,

(j + 1)U j+1(x, y; r) = (1− r)nx2y2δ(j) + 1
4

[
x2 ∂2

∂x2 U j(x, y; r) + y2 ∂2

∂y2 U j(x, y; r)
]

,
(31)

where δ(j) = 1 when j = 0, and δ(j) = 0 when j 6= 0. Moreover Ũj(x, y; r) =
[
U j(x, y; r), U j(x, y; r)

]
is the

transform function. From the initial conditions, we obtain

U0(x, y; r) = 0̃, (32)

U0(x, y; r) = 0̃. (33)
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Substituting Ũ0(x, y; r) into the recurrence relation (31), we get the following Ũj(x, y; r) values successively

U1(x, y; r) = (r− 1)nx2y2

U2(x, y; r) =
(r− 1)nx2y2

2!

U3(x, y; r) =
(r− 1)nx2y2

3!

U4(x, y; r) =
(r− 1)nx2y2

4!
...


and

U1(x, y; r) = (1− r)nx2y2

U2(x, y; r) =
(1− r)nx2y2

2!

U3(x, y; r) =
(1− r)nx2y2

3!

U4(x, y; r) =
(1− r)nx2y2

4!
...


The solution for ũ(x, t; r) is

u(x, y, t; r) =
∞

∑
j=0

U j(x, y, t; r)tj = (r− 1)n
[
(x2y2)

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+ ...∞

)]
,

u(x, y, t; r) =
∞

∑
j=0

U j(x, y, t; r)tj = (1− r)n
[
(x2y2)

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+ ...∞

)]
,

and the exact solution is

ũ(x, y, t; r) = [(r− 1)n, (1− r)n]�
(
(x2y2) exp(t)

)
, 0 ≤ r ≤ 1.

Example 4. We consider the following fuzzy partial differential equation

∂ũ
∂t

=
∂2ũ
∂x2 	gH ũ2, (34)

subject to the initial condition

ũ(x, 0) = [(0.5 + 0.5r)n, (1.5− 0.5r)n]⊕ 1, (35)

where (n = 1,2,3,...). Now

k̃(s) =


2(s− 0.5), s ∈ [0.5, 1],

2(1.5− s), s ∈ (1, 1.5],

0, s /∈ [0.5, 1.5],

(36)

[k̃n](r) = (0.5 + 0.5r)n and [k̃n](α) = (1.5− 0.5r)n. The parametric form of (34) is

∂u
∂t

=
∂2u
∂x2 − u2, (37)

∂u
∂t

=
∂2u
∂x2 − u2, (38)
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for r ∈ [0, 1], where u stands for u(x, t)(r) and u stands for u(x, t)(r). Applying the RDTM on Equations (37)
and (38), we get the recurrence relation as{

(k + 1)U j+1(x; r) = ∂2

∂x2 [U j(x; r)]−∑
j
i=1[Ui(x; r)U j−i(x; r)],

(k + 1)U j+1(x; r) = ∂2

∂x2 [U j(x; r)]−∑
j
i=1[Ui(x; r)U j−i(x; r)].

(39)

The transformed initial condition (35) becomes

U0(x; r) = (0.5 + 0.5r) + 1, (40)

U0(x; r) = (1.5− 0.5r) + 1. (41)

For different values of j, we get the following results

U1(x; r) = (0.5 + 0.5r)− 1

U2(x; r) = (0.5 + 0.5r) + 1

U3(x; r) = (0.5 + 0.5r)− 1

U4(x; r) = (0.5 + 0.5r) + 1
...


and

U1(x; r) = (1.5− 0.5r)− 1

U2(x; r) = (1.5− 0.5r) + 1

U3(x; r) = (1.5− 0.5r)− 1

U4(x; r) = (1.5− 0.5r) + 1
...


The solution for ũ(x, t; r) is

u(x, t; r) =
∞

∑
j=0

U j(x; r)tj =
(

U0(x; r) + U1(x; r)t + U2(x; r)t2 + U3(x; r)t3 + · · ·
)

= (0.5 + 0.5r) + (1− t + t2 − t3 + · · ·),

u(x, t; r) =
∞

∑
j=0

U j(x; r)tj =
(

U0(x; r) + U1(x; r)t + U2(x; r)t2 + U3(x; r)t3 + · · ·
)

= (1.5− 0.5r) + (1− t + t2 − t3 + · · ·),

and the exact solution is

ũ(x, t; r) = [(0.5 + 0.5r)n, (1.5− 0.5r)n]⊕
[

1
1 + t

]
, 0 ≤ r ≤ 1.

Figure 1 illustrate that the left-hand functions of the r-level set of ũ (u lower) are always increasing
functions of r and the right-hand functions of the r-level set of ũ (u upper) are always decreasing functions
of r in the above examples.

5. Conclusion

In this paper, the reduced differential transform method (RDTM) has been successfully applied for solving
fuzzy nonlinear partial differential equations under gH-differentiability. The solutions are considered as
infinite series expansions that converge rapidly to the exact solutions. We solved some examples to illustrate
the proposed method. The results reveal that the proposed method is a powerful and efficient technique for
solving fuzzy nonlinear partial differential equations.
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(a) (b)

(c) (d)

Figure 1. (a) Ex (4.1)x = 0.2, t = 0.3, n = 1. (b) Ex (4.2)x = 0.0004, y = 0.0005, t = 7, n = 7. (c) Ex
(4.3)x = 0.000002, y = 0.000003, t = 5, n = 5. (d) Ex (4.4)t = 0.4, n = 9.
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