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Abstract

Accretion disks can be eccentric: they support m=1 modes that are global and slowly precessing. But whether the
modes remain trapped in the disk—and hence are long-lived—depends on conditions at the outer edge of the disk.
Here we show that in disks with realistic boundaries, in which the surface density drops rapidly beyond a given
radius, eccentric modes are trapped and hence can live for as long as the viscous time. We focus on pressure-only
disks around a central mass, and show how this result can be understood with the help of a simple second-order
WKB theory. We show that the longest-lived mode is the zero-node mode in which all of the disk’s elliptical
streamlines are aligned, and that this mode decays coherently on the viscous timescale of the disk. Hence, such a
mode, once excited, could live as long as the lifetime of the disk. It may be responsible for asymmetries seen in
recent images of protoplanetary disks.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Circumstellar disks (235); Eccentricity (441);
Hydrodynamics (1963)

1. Introduction

Accretion disks are usually assumed to be circular. But for
disks in nearly Keplerian potentials, orbits are in general
eccentric, and hence the disk as a whole might be eccentric.
Eccentric disks are interesting for a variety of reasons, e.g.,
their distorted shape could be observed, and planets born within
such disks would be eccentric, perhaps explaining observed
planetary eccentricities.

Eccentric orbits of fluid around a star precess differentially
due to the effects of pressure, self-gravity, and non-Keplerian
potential components. However, particular eccentricity profiles
may be found such that the disk as a whole precesses rigidly
while maintaining its eccentricity. To find such profiles, one
may linearize the equation of motion for the (complex)
eccentricity, in which case the solution is a sequence of normal
modes. The “fundamental” zero-node mode, i.e., the one in
which the eccentricity is never zero, is typically the one of
primary interest (e.g., it lives longest in the presence of
viscosity).

The aforementioned normal-mode calculation has been
studied by many authors (Kato 1983; Lubow 1991, 2010;
Tremaine 2001; Papaloizou 2002; Goodchild & Ogilvie 2006;
Ogilvie 2008; Saini et al. 2009; Teyssandier & Ogilvie 2016).
In Lee et al. (2019, hereafter Paper I), we solved the normal-
mode problem in disks subject to both pressure and self-gravity
forces, and also explained the numerical results in terms of a
simple WKB theory. However, an important problem with
virtually all previous studies is the boundary condition. It is
usually assumed that the disk has sharp edges, i.e., the surface
density drops to zero via an artificial tapering function (e.g.,
Papaloizou 2002; Teyssandier & Ogilvie 2016). But real disks
likely have a more gradual drop (Lynden-Bell & Pringle 1974;
provided viscosity is independent of surface density). One
might worry that normal modes would not be trapped in such a
disk, leading to no solutions in which the disk can remain
eccentric.

In this Letter, we shall show that this worry is unfounded.
Virtually any disk with a realistic surface density profile will

lead to trapped eccentric modes. Furthermore, we calculate
with numerics and theory the eccentricity profile and preces-
sion rate that occur in disks of arbitrary surface density profiles.
Throughout this paper, we focus on the pressure-only case, i.e.,
we ignore self-gravity. We do this for simplicity, but also
because even if self-gravity is important in the bulk of the disk,
in the outer part where the surface density is small pressure will
play the larger role (Paper I). We organize this paper as
follows. In Section 2, we present the equations of motion and
their WKB formulation. In Section 3 we present numerical
eigensolutions, and show how these results may be understood
with WKB theory. In Section 4 we address additional effects,
before concluding in Section 5.

2. Equation of Motion

We consider a two-dimensional gas disk orbiting a central
object of massMå. The disk is cold and thin, such that its aspect
ratio is much less than one. Perturbed variables are assumed to
depend on time and azimuth in proportion to j w-ei m t( ). We
further set m=1, as is the case for eccentric perturbations, in
which case ω may be identified as the precession frequency.
Using the equations of continuity, momentum, and entropy,
one can derive the following eccentricity equation by
expressing the fluid variables in terms of eccentricity (Good-
child & Ogilvie 2006; Ogilvie 2008; Teyssandier & Ogil-
vie 2016; see Appendix A of Paper I):
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where E is the complex eccentricity; Σ, P, and W = GM r3
*

are the surface density, two-dimensional pressure, and
rotational frequency of the gas, respectively; and γ is the
adiabatic index. The complex eccentricity = v-E E e i∣ ∣ is used
because both the amplitude E∣ ∣ and the periapse angle ϖ are
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radial functions. We assume the perturbation is adiabatic,1

while the equilibrium disk may have nonconstant background
entropy. In deriving Equation (1) we assume the mode
frequency ω is much smaller than the orbital frequency Ω of
the disk, i.e., the mode precesses very slowly.

2.1. Trapped Modes

Equation (1) may be cast into a more transparent form by
transforming variables from E to

=y r P E, 23 1 2( ) ( )

which leads to an equation with no single-derivative (dy/dr)
term:
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where

g= Sc P

is the sound speed, and the “effective potential” ωp is given by
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Equation (3) is particularly simple to analyze because of its
similarity to Schrödinger’s equation, with ωp playing the role of
the potential and ω the role of the energy.2 It is apparent that y
is wave-like where ωp>ω and evanescent where ωp<ω, with
turning points at ωp=ω.

For realistic disk profiles, the “potential” ωp almost always
has an inverted-U shape. As a result, eccentric modes are
trapped by the peak of the potential, and their character will not
depend on what happens far from the peak—a central result of
this Letter. For example, we plot ωp in the middle panel of
Figure 1 for our “fiducial case”: a disk with the temperature and
surface density profiles µ -T r 1 2 and S = - -r e r1 (Figure 1,
top panel), respectively. More generally, motivated by the self-
similar solutions of Lynden-Bell & Pringle (1974), we consider
profiles of the form

µ -T r r , 5q( ) ( )

S µ - - x
r r e , 6p r r0( ) ( )( )

i.e., with a cutoff on the surface density at rr0, and two free
parameters, p and q. For simplicity, we set ξ in the above
equations to ξ=2−p, as is the case for a self-similarly
evolving disk that has power-law viscosity.3 While these
profiles should evolve on a viscous timescale, we are interested
in a shorter timescale and hence assume they are static. The
resulting ωp is a sum of three power laws (given explicitly in
Equation (17)). In Figure 2 the white region shows where, in

the p–q plane, ωp has an inverted-U shape, and so can trap
modes. In the gray region ωp rises continually outward, and so
modes cannot be trapped. For the remainder of this Letter, we
consider only the white region because it encompasses most
typically assumed values for p and q.

2.2. Second-order WKB Theory

An advantage of analyzing Equation (3) rather than (1) is
that one may derive a second-order-accurate WKB dispersion
relation by replacing d dr ik (Gough 2007):

w w= -
W

c
k

2
, 7p

2
2 ( )

where k is the radial wavenumber. We consider Equation (7) as
a second-order dispersion relation because ωp is two orders of

Figure 1. A disk with background profiles µ -T r 1 2 and S = - -r e r r1 0 is
considered. (Top) The surface density profile in arbitrary units. (Middle) A
frequency diagram. The blue curve shows ωp normalized by ω0 (which is
defined in Equation (9)). The numerical spectrum of the three highest
frequencies is shown as the horizontal lines, in which their radial extents
represent the wave cavity. Turning points are denoted by black squares.
(Bottom) The dispersion relation map (DRM), showing contours of constant ω
for the three modes in the middle panel. The arrow marks the direction of
propagation. The area enclosed by each mode is an odd integral multiple of π
(i.e., quantum condition in Equation (8)).

1 Corresponding equations for locally isothermal perturbations (i.e., short
cooling time) and vertically integrated 3D disks can be found in Teyssandier &
Ogilvie (2016).
2 More precisely, −ωp plays the role of potential and −ω plays the role of
energy. Also, the fundamental mode is the one whose w w- p∣ ∣ is smallest. We
find it least confusing to stick with the sign convention of disk dynamics rather
than quantum mechanics. Unlike Schrödinger’s equation, Equation (3) has a
spatially variable coefficient (2Ω/c2) multiplying its energy term. That may be
fixed by transforming coordinates (e.g., Ogilvie 2008; Saini et al. 2009), but we
do not do so.
3 If the disk also has an α-viscosity with constant α, then q=3/2−p.
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kr smaller than the leading term.4 Interested readers may refer
to Section 4 of Paper I for a discussion of our WKB ordering
convention.

Following Paper I, the dispersion relation can be analyzed
using a frequency diagram (Figure 1, middle panel) and
dispersion relation map (DRM; Figure 1, bottom panel), which
plots contours of constant ω in the r–kr plane. The frequency
diagram shows the trapped modes. The mode with highest
frequency is the zero-node fundamental mode, and those with
more negative frequency have an increasing number of nodes.
Note that in this example (and as is typically true in the absence
of self-gravity forces) frequencies are negative, meaning modes
are retrograde. From the DRM, we see how a trapped wave
refracts5 as it propagates, transitioning from outwardly
propagating (in the lower half of the figure) to inwardly
propagating (top half) at its turning point (k=0). Its group
velocity is w= ¶ ¶ = - Wv k kcg r

2( ) .
In order for a trapped wave to represent a standing mode, its

phase must change by an integral multiple of 2π over the
course of a loop in the DRM. Accounting for the phase change
at turning points, that implies that standing modes must satisfy

p p p p= + = ¼kdr n2 1 , 3 , 5 , , 8∲ ( ) ( )

where a clockwise integration is chosen to keep the integral
positive (opposite to the wave propagation direction in the
DRM), and n=0, 1, 2, K labels the number of nodes
(Mark 1977; Shu et al. 1990; Paper I). Equation (8) allows us to
determine the mode frequency from theory, after inserting k(r;
ω) from the dispersion relation.

3. Solutions

3.1. Numerical Solutions

We solve Equation (1) numerically; in subsequent subsec-
tions we shall explain the results with second-order WKB
theory. For the background state, we adopt Equations (5)–(6),
with p=1, ξ=1, and q=1/2, and explore other values for
these parameters below. We set the 2D adiabatic index to
γ=3/2. Using P=Σ c2/γ in Equation (1) implies that its
right-hand side is proportional to

w º
W
c

r2
, 90

0
2

0 0
2

( )

where c0 and Ω0 are evaluated at the density cutoff r0. The
quantity ω0 is the characteristic frequency that determines the
precession frequency of the modes, aside from dimensionless
constants. We can write w ~ Wh0 0

2
0 where h0 is the aspect ratio

of the disk at the outer cutoff, i.e., it is slower than the orbital
frequency at the disk’s outer cutoff by the square of the aspect
ratio there. Henceforth we shall measure mode frequencies in
units of ω0 (i.e., set w  10 ). We choose our length unit to be
r0, i.e., set r 10 .
For boundary conditions, the inner and outer disk edges are

assumed to be free surfaces (i.e., zero Lagrangian pressure),
such that the following boundary condition holds (Ogil-
vie 2008; Teyssandier & Ogilvie 2016, Paper I):

=dE dr 0. 10( )

The inner and outer radii of the disk are = -r 10min
4 and

rmax=50, respectively.
We solve the boundary-eigenvalue problem of Equations (1)

and (10) with a finite difference method (see Paper I for details)
and a Chebyshev spectral method (Trefethen 2000). In both
cases, we construct a square matrix and solve for the
eigenvalues and eigenfunctions using the LAPACK library.
The two solution methods give essentially the same results, and
we have checked that the results have converged with respect
to the number of grid points.

3.2. Eigenfunctions

Figure 3 shows the numerical eigenfunctions for the first few
modes. From the right-hand panel, which shows the scaled
eccentricity y (Equation (2)), we see that the oscillatory and
evanescent regions predicted from the frequency diagram
(Figure 1) match up with those of the solutions. The left-hand
panel shows the unscaled eccentricity E, which rises outward,
as explained in further detail in Section 3.4.

3.3. Eigenvalues

In Figure 4, the orange dots show the numerically calculated
eigenfrequencies up to n=15. Also shown, as blue dots, is the
result from reducing the outer boundary from rmax=50 to 10.
For small n the two sets agree, while for larger n they diverge.

Figure 2. Regions of interest within parameter space, where the axes p and q
denote the power laws of the background surface density and temperature
profiles. The white region shows where modes are trapped, i.e., where ωp takes
on an inverted-U shape. The dashed black line bounding the white region is the
line 2p+q=7/2, beyond which ωp rises outward. For constant α self-similarly
evolving disks, p and q are constrained to the line q=3/2−p; the red circle
shows the fiducial case (p, q)=(1, 1/2) considered in this work. The blue
dashed lines that are labeled by rpeak (one of which is identical to the constant α
line) show where the eccentricity of the fundamental mode peaks, as discussed
in Section 3.4.

4 Equation (3) admits a conserved, i.e., spatially constant, quantity
pg

= - -F i
m

y
dy

dr
y

dy

dr2
*

*( ) that is equal to the angular momentum flux. In

WKB, pg=F m r Pk E3 2∣ ∣ (Goldreich & Tremaine 1979).
5 We use the term refraction because k crosses through zero continuously
rather than changing its sign abruptly (Shu et al. 1990).
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The reason for the divergence is that, in the lower rmax
simulation, the turning points no longer fit in the simulation
domain when n3 (Figure 3, right panel).

We may calculate the eigenfrequencies theoretically by
inserting k(r; ω) from the dispersion relation (Equation (7)) into
the quantum condition (Equation (8)). For the fiducial case (p,
ξ, q)=(1, 1, 1/2) (red circle in Figure 2), the integral can be
performed analytically, yielding a harmonic-oscillator-like
form:

w w= - + +n
1

2
, 11p,peak⎜ ⎟⎛

⎝
⎞
⎠ ( )

where w -0.81p,peak  is the peak value of ωp. Figure 4 shows
that the WKB formula above provides an excellent match to the
numerical eigenvalues. In fact, it might appear that the
agreement is too good at small n, given that we are making
the WKB approximation, which one might expect to fail for the
low n modes. The reason is that, near the peak of ωp, the exact
equation (Equation (3)) is similar to the equation for a
harmonic oscillator, for which the WKB solution is exact.

We now consider the more general case where p and q are
arbitrary (but ξ=2−p), proceeding approximately. The

quantum condition reads
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where r± are the turning points, and in the latter expression we
dropped ωp because it becomes small (in magnitude) relative to
ω far from the turning points. To estimate r+ we set ω=ωp,
where for ωp we use its dominant piece, i.e., the last term in
Equation (17). We find

w ~ dn , 131∣ ∣ ( )

where d = + - - +q p q2 1 14 8 4 1 2( ) ( ) and we omit
order-unity coefficients.

3.4. Behavior of Eigenfunction at Large Radii

Figure 3 shows that at r1 the eccentricity continues to rise
outward. Since the behavior near r∼1 is potentially
observable, we examine it here in more detail. Figure 5 shows
the fundamental modes for a set of background profiles with
different p. Sometimes the eccentricity is peaked within the
disk, while sometimes it rises continuously outward. Nonlinear
effects may become important for large eccentricity (e.g.,
Ogilvie 2001), but this is out of the scope of the current linear
theory. For more general values of p and q, we have determined
numerically where the eccentricity of the fundamental mode
peaks. Our results are shown as blue dashed lines in Figure 2,
labeled by rpeak (the radius where they peak). Curiously,
beyond the constant α line the eccentricity peaks at infinite r;
otherwise, it peaks further in.
We may understand this behavior from WKB theory. The

solution beyond the outer turning point is a decaying
exponential function for y (e.g., Bender & Orszag 1999),
which leads to

~ --E r P S rexp , 143 1 2( ) [ ( )] ( )

where ò= -
+

S k s ds
r

r 2 ( ) and we assume r+=r. Inserting

the expression for k from the dispersion relation, and Taylor
expanding in small 1/r yields

Figure 3. Plot of the first three eccentric modes with the fewest nodes (n). The left and right panels show the real parts of E and =y r P E3 1 2( ) , respectively (both are
normalized to their peak values, and the imaginary part vanishes). The outer computational boundary is at 50. The black squares mark the turning points taken from
Figure 1.

Figure 4. Mode frequencies ω against number of nodes n are shown for a disk
with x =p q, , 1, 1, 1 2( ) ( ). The orange dots mark the numerically computed
ω for rmax=50; the blue dots are for a case with lower rmax, in which case the
boundary gives rise to incorrect results at high n. The black dashed curve is the
theoretical estimate using the WKB theory in Equation (11).
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the last term is subdominant because q−2ξ+1/2<0 in the
white “trapped mode” zone in Figure 2. Therefore, we get
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We see that for p+q−3/2>0 (i.e., beyond the constant α
line), the eccentricity rises inexorably outward, while in the
opposite limit it is peaked in the disk, confirming the numerical
result.

4. Discussion

4.1. Viscous Damping

To study the lifetime of the disk eccentricity, we consider the
damping effects of bulk viscosity, following Goodchild &
Ogilvie (2006). We ignore shear viscosity because it may cause
overstability (Ogilvie 2001). The linearized equation of motion
with bulk viscosity is obtained by replacing the adiabatic index
γ by γ+iα in Equation (1), where α is the Shakura–Sunyaev
parameter (but for bulk viscosity rather than the more common
shear viscosity). We solve this modified equation numerically
in the same way as before, and obtain the damping rate as the
imaginary part of the eigenfrequency Γ=−Im ω.

We find that the numerical damping rate is of the order of
a w∣ ∣. This can be understood by considering an integral relation
from Equation (1) (Goodchild & Ogilvie 2006; Lubow 2010;
Teyssandier & Ogilvie 2016):

ò
ò

ò
ò

a a
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r P dE dr dr
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dy dr dr

c y dr2 2
, 16

3 2

3 2

2

2 2
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∣ ∣
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where the absolute sign denotes the amplitudes. The last
approximation is justified because the numerator is dominated
by the oscillatory region within the wave cavity (Figure 3).
Under the WKB approximation, the integrals can be estimated
as a a wG ~ W ~k c 22 2 ∣ ∣, consistent with the numerical result.
This damping rate a wG ~( ∣ ∣) is slow. In particular, since

ω∼ω0, the damping time Γ−1 is comparable to the viscous
time of the disk as a whole. Therefore, once such a mode is
excited, it will live for the lifetime of the disk.

4.2. Three-dimensional Effects

We have assumed throughout this Letter that the disk is two-
dimensional. But Ogilvie (2008) pointed out that in 3D disks an
extra precession term needs to be included because a fluid
parcel cannot maintain vertical hydrostatic equilibrium while in
an eccentric orbit. He derived an equation analogous to
Equation (1) valid for 3D disks. We have analyzed that
equation in the same way as we analyzed Equation (1), but we
do not present details here—primarily because in order to
derive a reduced 1D equation (such as Equation (1)), one must
make the questionable assumption that the eccentricity is
independent of height. Nonetheless, the result is very similar to
the one found in this paper, i.e., there is an ωp function that
traps the modes. But there is one important difference, which is
that in the inner disk the sign of the dominant term of ωp

switches to positive, which can potentially remove the inner
turning point (the outer turning point is unaffected), and hence
the modes must rely on the reflection at the disk inner edge in
order to remain trapped (e.g., Kato 1983; Miranda &
Rafikov 2018). In that case, the trapped modes can be prograde.

5. Conclusion

1. We demonstrate that typical accretion disks with a
realistic outer density drop support trapped eccentric
modes. We use the second-order WKB theory developed
in Paper I to explain the different features, such as the
wave cavity and the eccentricity in the outer part of
the disk.

2. Each normal-mode solution corresponds to a rigidly
precessing eccentric pattern. This is a balance between
the pressure precession effects caused by the axisym-
metric and nonaxisymmetric components of the disk. We
find that, instead of the “test-particle precession rate” (i.e.,
the difference between orbital and epicyclic frequencies
v k= W -˙ ) in celestial mechanics, the ωp function
gives the correct behavior of eccentricity of a gas disk.
Previous results based on the leading-order WKB
dispersion relation (e.g., Papaloizou 2002; Goldreich &
Sari 2003) may require extra examination.

3. We find that trapped eccentric modes are standing waves
with a discrete spectrum (Figure 1). The fundamental
mode has zero radial nodes and the least negative
frequency. It has the slowest damping rate when viscous
damping is considered (Section 4.1).

4. The eccentricity of a mode in the outer disk is evanescent
and does not carry angular momentum. It can also be
explained by the WKB theory (Section 3.4). The
eccentricity of a disk with p+q<3/2 peaks inside the
disk rather than at infinity (Figure 2).

5. The trapped modes are not affected by the boundary
conditions as long as the artificial computational

Figure 5. Comparison of the fundamental modes for disks with different p (and
ξ=2−p) and fixed q=1/2. In the middle panel, we show that all modes are
trapped (i.e., y decreases to zero near the edges). The width of the
eigenfunctions roughly coincide with that of the precession rates shown in
the bottom panel.
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boundary (i.e., rmax) is far from the turning point
(Figure 4).

Although we have shown that eccentric modes can live for a
long time, we have not addressed the question of how such
modes are excited. Some possibilities are gravitational excita-
tion by a planet or star (e.g., Lubow 1991; Teyssandier &
Ogilvie 2016), or an internal instability (Ogilvie 2001).

Finally, we note that a long-lived eccentric disk can possibly
be detected directly. Some lopsided disks have been detected
(e.g., Andrews et al. 2018; Dong et al. 2018), which may be
compared with a variety of mechanisms previously proposed
(e.g., Hsieh & Gu 2012; Ataiee et al. 2013; Lyra & Lin 2013;
Mittal & Chiang 2015; Zhu & Baruteau 2016). But whether the
lopsidedness might be due to the disk being eccentric is an
intriguing possibility.

We thank the referee for constructive comments. W.K.L.
thanks Kenny L.S. Yip for checking Equation (11) using
contour integration. Y.L. acknowledges NASA grant
NNX14AD21G and NSF grant AST-1352369.

Appendix
ωp in the Model Disk

For a disk model given by Equations (5)–(6) with general
parameters (p, q, ξ), the ωp function in Equation (4) is given by

w = - + +x x- -r A Br Cr . 17p
q 1 2 2( ) ( )

The coefficients are given by

g
= + + + + -A p q p q

3

4
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4

1
1 , 182

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

x
x

g
= + - - +B p q

2
2

2
, 19

⎛
⎝⎜

⎞
⎠⎟ ( )

x=C 4, 202 ( )

when units are set by ω0=1 and r0=1. For the fiducial case
(p=2−ξ=1, q=1/2, and γ=3/2), A=13/16,
B=−1/12, and C=1/4. The peak of ωp is
at w = - +B AC2p,peak ( ).
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