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Synchronized neuronal activity occurring at different developmental stages in various
brain structures represents a hallmark of developmental circuits. This activity, which
differs in its specific patterns among animal species may play a crucial role in de novo
formation and in shaping neuronal networks. In the rodent hippocampus in vitro, the
so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal
synchrony preceding more organized forms of activity such as oscillations in the theta
and gamma frequency range. GDPs are generated at the network level by the interaction
of the neurotransmitters glutamate and GABA which, immediately after birth, exert
both a depolarizing and excitatory action on their targets. GDPs are triggered by
GABAergic interneurons, which in virtue of their extensive axonal branching operate
as functional hubs to synchronize large ensembles of cells. Intrinsic bursting activity,
driven by a persistent sodium conductance and facilitated by the low expression of
Kv7.2 and Kv7.3 channel subunits, responsible for IM, exerts a permissive role in
GDP generation. Here, we discuss how GDPs are generated in a probabilistic way
when neuronal excitability within a local circuit reaches a certain threshold and how
GDP-associated calcium transients act as coincident detectors for enhancing synaptic
strength at emerging GABAergic and glutamatergic synapses. We discuss the possible
in vivo correlate of this activity. Finally, we debate recent data showing how, in several
animal models of neuropsychiatric disorders including autism, a GDPs dysfunction
is associated to morphological alterations of neuronal circuits and behavioral deficits
reminiscent of those observed in patients.

Keywords: GDPs, network-driven events, postnatal development, hippocampus, GABAergic interneurons, SPWs,
depolarizing GABA, chloride transporters

INTRODUCTION

During brain development, neuronal circuits established by a fixed genetic program,
regulated already in utero by maternal factors (see Reid et al., 2017), undergo refinement
though adaptive processes involving experience- or activity-dependent mechanisms such
as synapse formation and elimination (Ben-Ari, 2001; Spitzer, 2006). In the visual system,
for instance, genetically determined visual projections from the retina to the brain and
within the brain among visual areas, following the opening of the eyes are tuned by
visual experience into an adult pattern of connectivity (Blankenship and Feller, 2010).
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As neurons start to develop synaptic connections and
functional circuits become to be defined, spontaneous network-
driven events, involving large neuronal populations begin to
emerge. This activity differs among animal species. In rodents,
it occurs at different developmental stages in various brain
structures, including the retina (Galli and Maffei, 1988; Meister
et al., 1991), the spinal cord (Landmesser and O’Donovan, 1984),
the cerebellum (Watt et al., 2009), the cochlea (Tritsch et al.,
2007), the hippocampus (Ben-Ari et al., 1989) and the neocortex
(Garaschuk et al., 2000).

In the in vitro rodent hippocampus, early synchronized events
take the form of giant depolarizing potentials (GDPs; Ben-Ari
et al., 1989). GDPs are generated by the interplay between the
neurotransmitters GABA and glutamate that, early in postnatal
life, are both depolarizing and excitatory (Ben-Ari et al., 1989).
They occur at the frequency of 0.05–0.5 Hz and are characterized
by large membrane depolarization, lasting several hundreds of
milliseconds, with superimposed bursts of action potentials,
followed by silent periods. Depolarizing responses are usually
subthreshold for action potential generation. They require the
activation of a persistent sodium conductance to bring the cell
to fire (Sipilä et al., 2006a; Valeeva et al., 2010).

The sustained membrane depolarization activates voltage-
dependent calcium channels and N-methyl-D-aspartate
(NMDA) receptors with consequent rise of intracellular
calcium. This in turn stimulates downstream cascades essential
for several developmental functions (Cherubini et al., 1991).

In rats and mice, GDPs disappear towards the end of the
first postnatal week, when GABA shifts from the depolarizing
to the hyperpolarizing direction. Therefore, GDPs are limited
to a transient period and precede more synchronized forms
of activity, such as gamma rhythms, known to be involved
in high cognitive functions (Buzsáki and Draguhn, 2004). The
emergence of gamma oscillations may be favored by the late
switch in GABA polarity at axon initial segments of principal
cells, as demonstrated in the somatosensory (Khirug et al., 2008)
and prefrontal cortex (Rinetti-Vargas et al., 2017).

The depolarizing or hyperpolarizing action of GABA,
depends on the intracellular concentration of chloride [Cl−]i
which is regulated via the cation-chloride importer and exporter
NKCC1 and KCC2, respectively. The enhanced membrane
expression of KCC2 towards the end of the first postnatal week
is responsible for the shift of GABA from the depolarizing to
the hyperpolarizing direction (Rivera et al., 1999). Two different
splice variants of KCC2 exist: KCC2a and KCC2b. While the
expression of KCC2a remains relatively low throughout life,
KCC2b is strongly upregulated during postnatal life, particularly
in most rostral regions of the CNS, in in both brain region-
and species-specific ways. This explains why, immediately after
birth, GABA promotes fast hyperpolarizing responses in the
spinal cord but not in the hippocampus or in the neocortex
(reviewed by Kaila et al., 2014). The developmentally regulated
expression of KCC2 is controlled by several factors including
membrane trafficking and phosphorylation processes (Kahle
et al., 2013; Kaila et al., 2014). Interestingly, KCC2 is also involved
in dendritic spines formation independently of its chloride
transport function (Li et al., 2007).

The early depolarizing action of GABA is critical for the
proper development of cortical neurons. Thus, the premature
expression of KCC2 (Cancedda et al., 2007) or the suppression
of the excitatory GABAergic input from the zona incerta to
cortical pyramidal neurons in the somatosensory and motor
cortex (Chen and Kriegstein, 2015), causes a severe impairment
of dendritic arborization. It is worth noting that the balance
between NKCC1 and KCC2 is highly labile and it may return to
an immature state after seizures, spinal cord lesions, and other
pathological conditions (Ben-Ari et al., 2012; Kaila et al., 2014).

The aim of this review article is to provide the background
for the functional role of GABAergic signaling and particularly
of spontaneously occurring network-driven synaptic events such
as GDPs in brain maturation. We will discuss also how GDPs
dysfunctionsmay lead to severe alterations in synaptic wiring and
neurodevelopmental disorders.

MECHANISMS OF GDPs GENERATION

GDPs are synaptic-driven events: they require the concomitant
activation of a relatively small number of cells within a local
neuronal circuit. They persist in small tissue islands, isolated
from the rest of the hippocampus, containing few hundreds of
neurons (Khazipov et al., 1997; Garaschuk et al., 1998; Bolea et al.,
1999). Although GDPs can independently initiate from different
hippocampal regions, in the CA3 area they are facilitated by the
extensive network of recurrent excitatory connections among
interneurons and principal cells (Menendez de la Prida et al.,
1998). In this area, GDPs are also facilitated by the presence
of intrinsic bursts that can drive other neurons to fire (Sipilä
et al., 2005; Safiulina et al., 2008). Hence, in the presence of
ionotropic synaptic antagonists, spontaneous voltage-dependent
bursts of spikes, can be unveiled in CA3 principal cells. Intrinsic
bursting activity, which plays a permissive role in generation
of network-driven events, is initiated by a slow regenerative
depolarization driven by a persistent sodium conductance
(Sipilä et al., 2005, 2006a). Intrinsic bursts are also favored
by the low expression of Kv7.2 and Kv7.3 channel subunits,
responsible for IM in the hippocampus. The low density of
IM in neonatal CA3 pyramidal cells facilitate intrinsic bursts
that in comparison with juvenile or adult neurons are more
robust, last longer and occur more regularly (Safiulina et al.,
2008).

CA3 pyramidal neurons trigger GDPs but are not required for
their generation since oscillatory activity can be recorded at lower
frequency in the CA1 region, surgically isolated from the CA3
(Ben-Ari et al., 2007). In addition, growing evidence suggests
that extrasynaptic transmission contributes to propagating
waves of depolarization in developing networks. After being
released from presynaptic nerve terminals, neurotransmitters
can spill out to activate extrasynaptic receptors located on
postsynaptic, presynaptic, neighboring cells and glia. The
activation of high affinity extrasynaptic GABAA receptors by
ambient GABA generates a tonic GABAA-mediated conductance
that contributes to depolarize targeted cells to the voltage
window where intrinsic bursts are generated (Sipilä et al., 2005,
2009), and to enhance the glutamatergic drive to principal
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cells (Marchionni et al., 2007). It is worth noting that, in
the absence of glycinergic synapses, the newborn hippocampus
is endowed of strychnine-sensitive anion-permeable glycine
receptors possibly activated by endogenous glycine, taurine
and β-alanine (Ito and Cherubini, 1991; Sipilä et al., 2014).
The glycine receptor mediated tonic conductance, controlled
by glycine transporter 1, exerts an inhibitory action on GDPs
despite a depolarizing chloride driving force (Sipilä et al., 2014).
Whether also extrasynaptic glutamate receptors activated by
ambient glutamate participate to GDPs generation remains to be
established.

Interestingly, in a recent study evidence has been provided
that GABA action during GDPs is dynamically controlled by the
membrane potential in such a way that is excitatory at their onset
and inhibitory at their peak (Khalilov et al., 2015). This inhibitory
effect would prevent generation of seizures in the immature
hippocampal network.

The circuit mediating network-driven oscillations comprises
principal cells and interneurons and therefore GDPs express
both GABAergic and glutamatergic components. The magnitude
of the GABAergic conductance however, exceeds that of the
glutamatergic one and GDP’s reversal is close to EGABA (Ben-Ari
et al., 1989; Bolea et al., 1999). The glutamatergic component can
be unveiled by blocking the GABAergic one with an intracellular
solution containing fluoride, which poorly permeates GABAA
receptor channels. In this condition, the reversal of GDPs is
close to zero, the equilibrium potential for AMPA receptors
(Bolea et al., 1999). Local GABAergic interneurons usually
drive principal cells to fire, as demonstrated by the temporal
relationship between glutamatergic and GABAergic inputs. The
first evidence that GABA released fromGABAergic interneurons
drives principal cells was provided by Mohajerani and Cherubini
(2005) who, using organotypic hippocampal slice cultures,
demonstrated, by holding two neighboring CA3 principal
cells at the reversal potentials for glutamate (∼0 mV)
and GABA (∼−70 mV), respectively, that the GABAergic
component of GDPs always precedes the glutamatergic one
by several milliseconds. Later on, using network dynamics
imaging, online reconstruction of functional connectivity and
targeted whole-cell recordings from immature hippocampal
slices, Bonifazi et al. (2009) demonstrated that GABAergic
interneurons with large axonal branching, operate as functional
hubs to synchronize large ensembles of cells (Bonifazi et al.,
2009).

Using ‘‘genetic fate mapping’’ to selectively label GABAergic
neurons on the basis of their place and time of origin, Picardo
et al. (2011) found that, a subpopulation of superconnected
hub neurons, characterized by an exceptionally widespread
axonal arborization is generated earlier than other interneurons.
These cells may persist in adulthood as putative long-range
GABAergic projecting cells (Jinno et al., 2007). In agreement
with the dendritic localization of immature GABAergic
synapses (Gozlan and Ben-Ari, 2003), early generated
interneurons target mainly dendrites. These interneurons
usually contain somatostatin. However, this population is
highly heterogeneous and comprises also parvalbumin-positive
perisomatic basket cells. Recently, optogenetic tools have

been used to address the question of which interneurons,
among those generated during embryonic development
from the caudal or medial ganglionic eminence (CGE or
MGE), respectively, play a dominant role in GDPs generation
in the neonatal mouse hippocampus in vitro (Wester and
McBain, 2016). Light activation of MGE-derived interneurons
with archaerhodopsin suppresses GDPs in a region-specific
manner, whereas activation of CGE-derived interneurons has
a small impact on GDPs. Interestingly, as early generated
neurons (Picardo et al., 2011), MGE-derived interneurons
have a higher rate of synaptic connectivity and give rise to
interneurons containing mainly somatostatin and parvalbumin
(Figure 1).

As for population bursts generated in the CA3 region of
the adult hippocampus by suppression of inhibition, GDPs
occur in a stochastic manner when neuronal excitability attains,
within a restricted period of time, a certain threshold (de
la Prida et al., 2006). Simultaneous recordings from pairs of
CA3 pyramidal neurons have shown that GDPs are preceded
by an increased frequency of spontaneously occurring synaptic
events able to drive a sufficient number of cells to fire (Menendez
de la Prida and Sanchez-Andres, 1999). In the case of GDPs,
synaptic interactions are facilitated by the excitatory action
of GABA. Using knock-in mice with conditional expression
of channelrhodopsin-2 in GABAergic interneurons, Valeeva
et al. (2016) have clearly demonstrated that, activation of
interneurons by light, evokes in P2–P8 hippocampal slices an
increase in frequency of glutamatergic excitatory postsynaptic
currents (EPSCs). In line with the excitatory-to-inhibitory
switch of GABA action (Ben-Ari et al., 1989), light caused
an increase in EPSCs frequency at P2–P8 and a decrease at
P9–P15.

Additional factors that may contribute to trigger GDPs
in the immature hippocampus are: (i) the low expression of
Kv7.2 and Kv7.3 channels, responsible for the non-inactivating,
low-threshold M current (IM) that in adulthood controls spike
after-depolarization and burst generation (Yue and Yaari, 2004);
(ii) the slow activating inwardly rectifying cationic current Ih
mediated by HCN channels highly expressed in the hippocampus
from birth, known to facilitate network oscillations (Pape, 1996).
In a previous study, we found that a low concentration (0.3 mM)
of the Ih blocker cesium was able to block GDPs in hilar
interneurons (Strata et al., 1997) suggesting a pacemaking role
of Ih in GDPs. In contrast, Sipilä et al. (2006a), using a higher
concentration of cesium (0.5–2 mM), observed an increase
in frequency of GDPs, probably caused by the inhibition of
selective potassium channels. Whether this discrepancy depends
on the different concentrations of cesium or other factors is
presently unknown. As in Strata et al. (1997), GDPs were
reduced by ZD 7288, another Ih antagonist (Bender et al., 2005).
However, at concentrations used (1–50 µM), this compound
may have unspecific effects (Chevaleyre and Castillo, 2002).
The observation that mice lacking HCN channels can still
generate GDPs (Bender et al., 2005), strongly suggest that
Ih is not critically involved in these events; and (iii) gap
junctions. They constitute a way of signaling particularly well
developed in immature neurons. In the hippocampus, neuronal
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FIGURE 1 | Intrinsic bursts exert a permissive role in giant depolarizing potentials (GDPs) generation. On the left: schematic drawing of a pyramidal cell endowed
with some of the ionic channels contributing to up- and down regulate intrinsic bursts. Nap: voltage-dependent sodium channel mediating persistent sodium current
(I-Nap); Kv7.2–7.3: potassium channel responsible for IM; hyperpolarization-activated cyclic nucleotide (HCN)-gated channel mediating Ih; gKCa2+: calcium
dependent potassium channel mediating the slow after hyperpolarization. In the trace below: whole cell patch clamp recording (in current clamp configuration) from a
P3 CA3 principal cell, in the presence of DNQX, APV, PTX to block synaptic transmission. A membrane depolarization from −80 mV to the voltage window where
Nap channels are activated (dashed line) triggers bursting activity (a single burst shown on the right in an expanded time scale). Intrinsic bursts are facilitated by the
low expression of IM. The pacemaking role of Ih in bursting activity is unclear (see text). Calcium rise during repeated action potentials within the burst open
calcium-dependent potassium channels responsible for bursts termination. On the right: schematic drawing of the local hippocampal circuit responsible for GDPs.
Medial ganglionic eminence (MGE) derived interneurons (gray) give rise to somatostatin (SOM) and parvalbumin (PV)-positive interneurons (blue) innervating the distal
and proximal dendrites of pyramidal cells, respectively. CA3 principal cells (green) are connected via recurrent collaterals (red) and through gap junctions. They
receive also glutamatergic inputs from entorhinal cortex (EC) and from the controlateral hippocampus (red). At this developmental stage, the majority of GABAergic
synaptic contacts on principal cells and interneurons are depolarizing and excitatory (+) because of the outwardly directed flux of chloride ions. Gap junctions favor
network synchronization and GDPs occurrence. In addition, GDPs are modulated by extrasynaptic GABAA and glycine receptors. Activation of GABAB receptors by
massive release of GABA during GDPs, together with the activation of calcium-dependent potassium channels are responsible for GDPs termination. Below: whole
cell patch clamp recording (in voltage clamp configuration) of network-driven events (GDPs) from a P5 CA3 principal cell (upper trace) and associated local field
potentials (bottom trace). These events are shown on the right in an expanded time scale.

coupling via gap junctions, contributes to trigger GDPs as
demonstrated by their disruption upon gap junctions uncoupling
with octanol (Strata et al., 1997; Figure 1). However, these results
should be taken with caution in view of the fact that octanol
has several non-specific effects, including blockade of voltage-
gated calcium channels and transmitter release (Tovar et al.,
2009).

Interestingly, chemokine stromal cell-derived factor-1-alpha
(SDF-1 or CXCL12), the natural ligand for chemokine motif
receptor 4 (CXCR4), known to play an important role in brain
development, decreases GDPs frequency, an effect prevented
by T140, a CXCR4 receptor antagonist, suggesting that SDF-1
alpha modulates GDPs via CXCR4. The inhibitory action of

SDF-1 alpha on GDPs may reflect a potential mechanism for
chemokine regulation of neural development early in postnatal
life (Kasyanov et al., 2006).

How do GDPs terminate? Early studies from CA3 pyramidal
cells, have suggested that burst firing of action potentials at
the top of GDPs, induces a transient elevation of intracellular
calcium, which activates a calcium-dependent potassium
conductance responsible for the slow after-hyperpolarization
(AHP) that follows GDPs (Ben-Ari et al., 1989; Sipilä et al.,
2006a). The duration of the AHP would depend on the
number of action potentials and the amount of intracellular
calcium. However, other evidences indicate that activation of
postsynaptic GABAB receptors by massive release of GABA
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during GDPs may contribute to the AHP (McLean et al., 1996;
de la Prida et al., 2006; Fiorentino et al., 2009). Immediately
after birth, postsynaptically expressed GABAB receptors are
absent and monosynaptically evoked GABAergic responses
in CA3 pyramidal cells and neocortical neurons lack the late
GABAB-mediated component. This starts appearing as early as at
the postnatal day P3 (Luhmann and Prince, 1991; Fukuda et al.,
1993; Gaiarsa et al., 1995; Caillard et al., 1998; Nurse and Lacaille,
1999; Verheugen et al., 1999). The possibility therefore that,
during the first postnatal days, postsynaptic GABAB receptors
are activated only by massive release of GABA during GDPs
cannot be excluded. In favor of this hypothesis is the observation
that blockade of GABAB receptors prolong GDPs and transform
them in interictal- and ictal-like discharges (McLean et al.,
1996). A recent study (Khalilov et al., 2017), has confirmed
that the AHP following GDPs involves a calcium-dependent
potassium conductance activated by calcium rise during burst
firing and a GABAB receptor-mediated potassium conductance
activated by the release of GABA. The cooperation of these
two complementary inhibitory postsynaptic mechanisms may
contribute to terminate GDPs.

CORRELATED NETWORK ACTIVITY IS
CRUCIAL FOR ENHANCING SYNAPTIC
EFFICACY AT IMMATURE GABAERGIC
AND GLUTAMATERGIC CONNECTIONS

How neuronal connectivity emerges early in postnatal
life constitutes a fundamental question in developmental
neurobiology. After their proliferation, neurons migrate
to the proper position and differentiate through processes
involving several cell-intrinsic and extrinsic signals including
the neurotransmitter GABA, which, at this developmental
stage, works mainly as a trophic factor (Wang and Kriegstein,
2009). Interestingly, GABAA receptors are present on neuronal
progenitors before synapse formation. Extrasynaptic GABAA
receptors behave like sensors for ‘‘ambient’’ GABA, released
in a calcium and SNARE-independent way by growth cones
and astrocytes. This neurotransmitter enables to activate, in a
paracrine fashion, cells located at substantial distances from the
releasing sites (Demarque et al., 2002). Synapses develop later
and, at least in principal cells of the hippocampus, GABAergic
connections occur before glutamatergic ones. Their development
strictly correlates with the level of dendritic arborization (Tyzio
et al., 1999; Khazipov et al., 2001; Ben-Ari et al., 2007). At later
developmental stages, spontaneously active GABAergic and
glutamatergic synapses give rise to GDPs, which, by temporally
linking neuronal ensembles, facilitate synaptic plasticity.

In previous studies, the hypothesis was tested that
GDPs-associated calcium transients act as coincident detectors
to persistently enhance synaptic efficacy at emerging GABAergic
and glutamatergic connections (Kasyanov et al., 2004;
Mohajerani et al., 2007). To this aim, a pairing procedure
was developed, consisting in stimulating for a short period
of time (5 min) mossy fibers (MF), the axons of granule
cells, with the rising phase of spontaneously occurring GDPs,

in such a way that the two events (GDPs and MF inputs)
occurred simultaneously. Immediately after birth, MF releases
mainly GABA (Safiulina et al., 2006, 2010). Pairing GDPs
with MF stimulation caused a persistent increase in amplitude
of MF-evoked synaptic currents that was associated to a
reduced incidence of failures of transmitter release. This form
of long-term potentiation (LTP) was maintained through a
presynaptic increase in the probability of GABA release as
indicated by the decrease in paired pulse ratio. In fact, an
increase in transmitter release in response to the first stimulus
leads to a decreased amount of transmitter released in response
to the second stimulus. In the absence of pairing, these changes
do not occur. This form of LTP has a clear temporal and spatial
specificity. First, LTP declined to baseline level when a delay of
few seconds intervened between GDPs and synaptic stimulation.
Second, GDPs-induced synaptic potentiation was generally
restricted to the paired input and only occasional spread to
the unpaired one. The mechanism of pairing-induced LTP
involved elevation of intracellular calcium in the postsynaptic
cell through voltage-gated calcium channels, since it was
prevented by intracellular BAPTA and by bath application of
the calcium channel blocker nifedipine. Although, LTP seems
to rely mainly in a presynaptic increase in GABA release from
MF terminals, as indicated by pairing-induced changes in the
paired-pulse ratio, postsynaptic modifications such as insertion
of new receptors in the subsynaptic membrane cannot be
excluded. Both processes may contribute to the appearance
of synaptic responses at apparently silent connections. The
immature brain is known to express an elevated number of
silent synapses. These are synapses that do not conduct at rest
either because the probability of neurotransmitter released is
too low to activate low affinity receptors or because they are
unable to detect the release of neurotransmitters due to the
lack of receptors on the subsynaptic membrane (Durand et al.,
1996; Gasparini et al., 2000). Conversion of silent synapses into
conductive ones represents the most common mechanism of
LTP (Voronin and Cherubini, 2004). In line with Kasyanov
et al. (2004), previous data from the immature hippocampus
have shown that repeated bursts of action potentials, applied
at low frequency to CA3 principal cells, are able to potentiate
GABAA-mediated synaptic currents in an NMDA-independent
way (Caillard et al., 1999; Gubellini et al., 2001, 2005). However,
in these studies the origin of GABAergic input was not
identified.

Similarly to MF-CA3 synapses, GDPs act as coincident
detectors to enhance synaptic strength at immature
glutamatergic CA3-CA1 connections (Mohajerani et al.,
2007). Also in this case, pairing GDPs with Schaffer collateral
stimulation induced a persistent increase in amplitude of
glutamatergic currents. LTP induction was postsynaptic since
it required calcium rise in the postsynaptic cell via voltage-
dependent calcium channels. However, its expression was
presynaptic as suggested by pairing-induced decrease in failure
rate, in paired pulse facilitation, and increase in the inversed
square of the coefficient of variation, all indices of presynaptic
change in release probability. This implies a cross-talk between
the post- and presynaptic sites via a retrograde messenger.
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BDNF, possibly secreted from the postsynaptic neuron
during GDPs-induced burst firing, was identified as the
retrograde signal. Thus, pairing-induced synaptic potentiation
was prevented by scavengers of endogenous BDNF or by
tropomyosin-related kinase receptor B (TrkB) antagonists. In
addition, exogenously applied BDNF mimicked pairing-induced
synaptic potentiation.

THE IN VIVO COUNTERPART OF GDPs

The predominant rhythm observed at P3–P6 in the CA1 region of
the hippocampus of both anesthetized and awake rats consists in
sharp wave (SPW) oscillations occurring at∼0.1 Hz, followed by
multiunit bursts lasting from 0.5 s to 3 s (Leinekugel et al., 2002;
Buzsáki, 2015). Starting from the second postnatal week, bursts
associated to SPWs disappear while faster oscillations including
dentate spikes, theta, gamma and ripples emerge (Lahtinen et al.,
2002; Leinekugel et al., 2002; Buhl and Buzsáki, 2005).

The level of synchronization and the frequency of SPWs
are reminiscent of GDPs observed in hippocampal slices (Ben-
Ari et al., 1989). Hippocampal bursts occur mainly during
immobility periods, sleep, and feeding. These are often associated
to twitches of skeletal muscles, indicating, as in the cortex, the
involvement of a sensory feedback mechanism (Khazipov and
Luhmann, 2006). During crawling, an irregular firing replaces
bursting activity in the absence of background oscillations
(Mohns and Blumberg, 2008). Like GDPs, SPWs bear double
glutamatergic and GABAergic synaptic components (Leinekugel
et al., 2002). The glutamatergic component probably reflects the
excitatory drive from the entorhinal cortex (EC) and from the
Schaffer collateral of CA3 principal cells, already present and
functional at P2 (Supèr and Soriano, 1994; Figure 2). EC inputs
may carry sensory feedbacks from neocortical areas (Mohns
and Blumberg, 2010) while CA3 may carry information from
the intrinsic hippocampal assemblies. Synaptic input from the
CA3 area may prevail since, the amplitude/depth profile of
SPWs reaches a peak in stratum radiatum where CA3 axon
terminals make synaptic contacts with CA1 dendritic spines
(Leinekugel et al., 2002). Moreover, synaptic responses evoked
by stimulating the ventral hippocampal commissure show the
same amplitude/depth distribution of SPWs, confirming the
involvement of intra-hippocampal inputs (Leinekugel et al.,
2002; Figure 2). Although, the glutamatergic component
prevails, the GABAergic one seems to play a key role in
promoting SPWs as the intraperitoneal administration of
bumetanide completely abolishes them (Sipilä et al., 2006b).
Bumetanide may act via a peripheral action since apparently
with low doses applied i.p., it does not have effect in vivo on
hippocampal and cortical neurons (Puskarjov et al., 2014).

While a large body of evidence suggests that early in
postnatal life GABA exerts a depolarizing and excitatory effect
on its targets in vitro, its action in vivo is still a matter
of debate. Thus, combining electrophysiological and imaging
techniques, Kirmse et al. (2015) have shown that in anesthetized
animals, exogenously applied GABA from a pressure pipette
controls network activity through shunting inhibition in spite its
depolarizing effects in the majority of immature neurons. In this

case, GABA-induced membrane depolarization would not attain
the threshold for action potential generation. Similarly, using an
optogenetic approach, Valeeva et al. (2016) have demonstrated
that photo-stimulation of GABAergic interneurons expressing
channelrodopsin (at P3–P9), produces a reduction in frequency
of spontaneous glutamatergic events, suggesting an inhibitory
effect. Photorelease of GABA from GABAergic interneurons
would inhibit the firing of principal cells leading to a
depression of spontaneously occurring EPSCs. In contrast to
this view, a recent in vivo study has clearly demonstrated that,
the depolarizing action of GABA induces via the activation
of T-type voltage dependent calcium channel, calcium rise,
leading to an increased number of gephyrin puncta and
dendritic spines in layer 2/3 neocortical pyramidal neurons.
This suggests that the depolarizing and excitatory action of
GABA is involved in ‘‘the novo’’ synaptogenesis (Oh et al.,
2016). Although the reasons for these discrepancies are still
unknown, the possibility that different experimental conditions
including the effects of anesthetics, electrolyte composition of the
extracellular medium, temperature, gas exchanges may modify
passive and active membrane properties (i.e., resting membrane
potential and action potential threshold) of in vivo recorded
neurons cannot be excluded. However, indirect evidence that
GABA may exert a depolarizing and excitatory action also
in vivo is provided by the experiments in which inhibiting
the chloride importer NKCC1 with systemic administration
of bumetanide suppress SPWs (Sipilä et al., 2006b). The
observation that the intraperitoneal delivery of bumetanide
is able to prolong critical-period plasticity in visual cortical
circuits without affecting the overall development of the visual
system, an effect that involves BDNF and extracellular matrix
perineuronal nets, further supports this view (Deidda et al.,
2015). In favor of the depolarizing and excitatory action
of GABA in vivo is also the paradoxical excitatory effect
exerted by benzodiazepines in neonates affected by autism
spectrum disorders (ASDs) and epilepsy (Bruining et al.,
2015).

Although difficult to compare, early synchronized activity
recorded in vivo from the rat hippocampus during the first
postnatal week (Leinekugel et al., 2002) is reminiscent of that
observed in the electroencephalogram (EEG) of premature
babies. It is worth noting that mice and rats born at an early
stage of brain development corresponding to the second half
of human gestation (Clancy et al., 2001). The EEG of 20 weeks
post-conception babies has been defined by Dreyfus-Brisac et al.
(1956) ‘‘tracé discontinue’’ because of the alternation between
activity’s bursts synchronized across the two hemispheres and
long silent periods (lasting for minutes). During maturation,
silent periods between bursts decrease and, starting from the 30th
week post-conception, the ‘‘tracé discontinue’’ evolves into the
‘‘tracé alternant’’ (Stockard-Pope et al., 1992).

GDPs DYSFUNCTION IN ANIMAL MODELS
OF NEURODEVELOPMENTAL DISORDERS

Early changes in GABA action (from depolarizing and
excitatory to hyperpolarizing and inhibitory) may impair
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FIGURE 2 | Neuronal circuit involved in sharp wave (SPW) generation in the intact hippocampus. On the right: schematic drawing representing the circuit responsible
for SPW generation. On the left: simultaneous extracellular field recordings obtained in vivo (at P6) from stratum pyramidale (upper trace) and stratum radiatum
(bottom trace) of CA1 hippocampal area (modified from Leinekugel et al., 2002). In stratum pyramidale the SPW (arrow) is followed by a burst of firing. The largest
amplitude of the negative deflection (note the different calibration of the two traces) occurs in the middle of stratum radiatum where CA3 principal cells (green) make
synaptic contacts with CA1 neurons (red) through Schaffer collateral and associative commissural (A/C) inputs suggesting, as GDPs, a CA3 origin. The contribution
of immature mossy fiber path (dashed line) and perforant path from EC cannot be excluded. All glutamatergic inputs are regulated by local interneurons (blue).

GDPs expression and circuit formation. These alterations
are often present in animal models of neurodevelopmental
disorders including ASDs (Tyzio et al., 2014). Interestingly,
in a small number of cases, ASDs have been found to be
associated with single mutations in genes involved in synapse
function. Therefore, these forms of ASDs can be considered
synaptopathies (Südhof, 2008). Some of these involve adhesion
molecules of the neuroligin (NL)/neurexin (NRX) families,
which ensure the cross talk between the post and presynaptic
specializations. Neonatal mice carrying the R451C mutation
of NL3 (NL3R451C knock-in mice), found in a family with
two autistic children (Jamain et al., 2003), exhibit behavioral
deficits reminiscent of those present in autistic patients.
These mice show an increase in GDP frequency probably
dependent on the enhanced excitatory GABAergic drive to
principal cells (Pizzarelli and Cherubini, 2013). In another
mouse model of idiopathic autism (BTBR T+tf/J), whose
genetic background is still under investigation (Jones-Davis
et al., 2013), the reduced neuronal excitability within the
CA3 hippocampal circuit, leads to a reduced frequency of GDPs
and a persistent deficit in behavioral functions (Cellot et al.,
2016).

A reduced frequency of GDPs was detected also in
CA3 principal cells in hippocampal slices from neonatal mice
carrying the human mutation (R43Q) of the γ2 subunit
of GABAA receptors, known to have long-lasting effects

on seizures susceptibility during a critical developmental
period (Chiu et al., 2008). As compared to controls, mice
heterozygous for this mutation show a significant decrease
in GDPs frequency associated to a reduction in amplitude
and frequency of spontaneous GABAergic and glutamatergic
postsynaptic currents (Vargas et al., 2013). Interestingly systemic
administration of bumetanide to control animals mimicked the
effects of the γ2R43Q epilepsy mutation and lowered the threshold
for thermal seizures (Hill et al., 2011) as in patients affected by
febrile convulsions (Wallace et al., 2001). These data suggest that
a reduced expression of GDPs in the early neonatal period leads
to structural impairment of neuronal networks.

Furthermore, GDPs are sensitive to psychoactive agents as
alcohol, particularly deleterious for babies, if assumed during
pregnancy (Riley et al., 2011). For instance, ethanol (EtOH)
exposure potently excites immature neuronal networks by
increasing GDP frequency in the CA3 region of the neonatal
hippocampus (Galindo et al., 2005). GDPs do not develop
tolerance to the modulatory effect of EtOH since the effect does
not change with the duration of EtOH’ exposure (Galindo and
Valenzuela, 2006). In rats, the intraperitoneal injection of EtOH
during the first post-natal week induces weaker synchronization
of neuronal activity during GDP, effect that is not reversible with
time (Zakharov et al., 2016).

It is important to stress that a causal link between GDPs
disruption and behavioral deficits observed in animal models
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on neuropsychiatric disorders has not been proven yet and
the possibility that alterations of GDPs expression are the
consequence and not the cause of the above mentioned disorders
cannot be excluded. Obviously, these are not mutually exclusive
alternatives.

CONCLUSIONS

Although in the last years significant progresses have been
made to understand the mechanisms of GDPs generation
and their functional role in modifying synaptic strength at
emerging GABAergic and glutamatergic connections (Ben-Ari
et al., 2012), their role in the wiring of neuronal circuits is
still unknown. Many questions are still open. For instance,
are pairing-induced changes in synaptic efficacy associated
to structural modifications including changes in dendritic
morphology, number of branching, spine types and density?
Are SPWs in vivo counterpart of GDPs? Which circuits are
involved? Combined optogenetic tools and in vivo recordings
from the hippocampus and neocortex of freely moving animals
may contribute to unveil the spatial and temporal contribution of
selective glutamatergic and GABAergic pathways to SPW/GDP

generation. In addition, optical imaging techniques may help
elucidating, at mesoscale levels, brain activity in vivo (McVea
et al., 2016). This would allow estimating the temporal
dynamics of oscillations and their propagation in the immature
hippocampus and neocortex.
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