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ABSTRACT 
 

Aim:  To develop good and rational Quantitative Structure Activity Relationship (QSAR) 
mathematical models that can predict to a significant accuracy the anti-Staphylococcus aureus 
Minimum inhibitory concentration (MIC) of Ni-Schiff base complexes.  
Place and Duration of Study: Department of Chemistry (Physical Chemistry unit), Ahmadu Bello 
University, Zaria, Nigeria, between January and June 2015. 
Methodology: A set of 36 nickel-Schiff base complexes with their antibacterial activities in terms of 
minimum inhibitory concentration (MIC)  against the gram-positive bacteria, Staphylococcus aureus 
were selected for 0D, 1D, 2D and 3D quantitative structure activity relationship (QSAR) analysis by 
means of Density Functional Theory (DFT) using the Becke’s three-parameter hybrid functional 
(B3LYP) and 6-31G* basis set. The computed descriptors were correlated with their experimental 
MIC. Genetic function approximation (GFA) method and Multi-linear regression analysis (MLR) was 
used to derive the most statistically significant QSAR model. 
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Results: Among the obtained QSAR models, the most statistically significant one was a tri- 
parametric linear equation with the squared correlation coefficient R2 value of 0.9399, adjusted 
squared correlation coefficient R 2

adj value of 0.9313 and Leave one out (LOO) cross validation 
coefficient (Q2) value of 0.9074. An external set was used for confirming the predictive power of the 
model, its R2

pred = 0.9725. 
Conclusion: The QSAR results reveal that molecular size and polarity predominantly influence the 
anti-Staphylococcus aureus activity of the complexes. The wealth of information in this study will 
provide an insight to designing novel bioactive nickel-schiff base complexes that will curb the 
emerging trend of multi-drug resistant strain of Staphylococcus aureus. 
 

 
Keywords: QSAR; Staphylococcus aureus; GFA; MLR; Ni-schiff base complexes; MIC. 
 
1. INTRODUCTION 
 
The discovery and development of antibiotics are 
among the most powerful and successful 
achievement of modern science and technology 
for the control of infectious diseases. After the 
discovery of penicillin by Alexander Fleming, 
antibiotics were regarded as wonder drugs for 
curing virtually all infections. However, the 
careless use and overconsumption of antibiotics 
in both human and veterinary medicine have led 
to the emergence of antibiotic-resistant bacterial 
and fungal strains [1].  
 
Of major concern is the development of antibiotic 
resistance in Staphylococcus aureus. Infections 
with multi-drug resistant S. aureus have become 
responsible for huge healthcare costs and are 
projected to be responsible for more deaths at 
present in the United States than HIV/AIDS [6]. 
S. aureus can be both a commensal and a 
dangerous pathogen causing severe infections—
skin abscesses, endocarditis, pneumonia, 
osteomyelitis—even leading to toxic shock 
syndrome. S. aureus infection is a major cause 
of skin, soft tissue, respiratory, bone, joint, and 
endovascular disorders [2]. It is also an important 
etiological agent of food-borne diseases. This 
bacterium produces heat-resistant enterotoxins 
when growing in food leading to staphylococcal 
food poisoning [3]. In fact, S. aureus is a 
pathogenic bacterium considered as a major 
threat to food safety and food-borne disease 
worldwide [4-6]. 
 
Schiff base and its complexes with nickel (ii) ion 
are considered to be among the most important 
stereo - chemical models due to their preparative 
accessibility, structural varieties and high anti-
microbial activities against disease causing 
bacteria and fungi species [7].  
 
There is abundant literature concerning the 
biological activity of Ni – Schiff base complexes 

against Staphylococcus aureus. These 
complexes have been reported to possess higher 
anti-microbial activities compared to their organic 
ligands. The increase in activity of the complexes 
has been explained on the basis of the overtone 
concept and chelation theory [8-10].  
 
Quantitative structure activity relationship 
(QSAR) study provides medicinal chemists 
valuable information that is useful for drug design 
and prediction of drug activity. QSAR models are 
mathematical equations which construct a 
relationship between chemical structures and 
their biological activities as a linear regression 
model in the form Y = Xb + e. This equation may 
be used to describe a set of predictor variables 
(X) with a predicted variable (y) by means of a 
regression vector (b) [11]. 
 
In recent years, substantial progress has been 
made in the application of in silico computational 
methods to predict S. aureus inhibition activities 
of some chemicals. 
 
Preeti et al. [12] performed a multi-target QSAR 
studies on a data set of 12 thiazole derivatives. 
The structures of the compounds were pre-
optimized with molecular mechanics forcefield 
(MMFF) and the resulting geometries were 
further refined by means of semi-empirical (PM3) 
method. The mt-QSAR model (n=12, r=0.986, r2 
= 0.972, Q2 = 0.963, S=0.055, F=119.646) 
indicated that molecular connectivity index and 
kier’s shape index are the key parameters for 
anti-microbial activity of the compounds studied. 
 
The MLR-mt QSAR studies carried out by 
Pradeep et al. [13] on 22 benzohydrazide 
derivatives (n=13, r=0.808, Q2 = 0.515, 
S=0.0198, F=9.43) indicated that the anti-
microbial activities of the compounds were 
governed by balaban index and valence 
molecular connectivity. The structures of 
compounds were pre-optimized with molecular 
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mechanics force field (MM+) and the resulting 
geometries were further refined by means of 
semi-empirical (PM3) method. 
 
Sumit et al. [14] also performed a QSAR studies 
on anti-microbial activity of 17 triazole derivatives 
against C. albicans and S. aureus. The 
structures of compounds were pre-optimized with 
molecular mechanics force field (MM+) and the 
resulting geometries were further refined by 
means of semi-empirical (PM3) method. The 
QSAR model (n=13, r=0.842, Q2=0.530, 
S=0.058, F=12.17) indicated the importance of 
topological and electronic parameter in 
describing the anti-microbial activities of the 
compounds. 
 
The result of the QSAR models built by Milan         
et al. [15] on 15 coumarin derivatives using both 
semi-empirical and DFT based calculations 
indicated that number of thiazole atom played 
dominant influence on the activity the 
compounds against S.aureus (n =15, r = 0.997, s 
= 0.03, Q2 = 0.995, F = 104.2987). The equation 
(n = 15, r = 0.991, s = 0.068, F = 42.6548, Q2 = 
0.983) explaining the anti-fungal activity of the 
compounds against C. albicans identified the 
influence of solubility, electronic and sterric 
parameter on the activity of the compounds. 
 
However, external validation of QSAR model 
reflects the predictive capability of the model on 
new data set. This validation technique is 
conspicuously lacking in recent QSAR studies on 
anti-staphylococcal activities of compounds as 
reviewed above. In this study, the statistically 
significant model selected has been subjected to 
external validation in addition to internal 
validation in order to confirm its predictive power 
and robustness. 
 
As against the recent QSAR works on anti-
Staphylococcus aureus activities of molecules, 
this study focused on complexes since research 
has shown that the biological activities of 
compounds increases on complexation due to 
chelation [16]. QSAR works on Complexes are 
expected to provide a better option to man in his 
desperate search for potent anti-microbial drug to 
curb the emerging trend of multi-drug resistance 
in Staphylococcus aureus. 
 
Likewise, literature search (as evidenced in the 
review above) has shown that molecular 
optimization in recent QSAR studies on anti-
Staphylococcal activities of compounds are 
performed predominantly using the semi-

empirical method even though research in QSAR 
studies [17-19] have shown that DFT method 
gives better result compared to the semi-
empirical (AM1 and PM3) as the former gives 
better correlation between calculated results and 
experimental data. Therefore, the DFT method 
because of its accuracy over the semi-empirical 
methods is expected to lead to a more reliable 
and accurate results. This necessitated the 
preference of DFT/B3LYP method in this work 
over PM3 or AM1 semi-empirical method. 
 
The aim of this study is to develop good and 
rational QSAR mathematical models that can 
predict to a significant accuracy the anti-
Staphylococcal inhibitory activities (in form of 
MIC) of Ni-Schiff base complexes.  
 
Harnessing the structure-activity relationship of 
this class of complexes which show considerable 
biological activity against Staphylococcus aureus 
may represent an interesting approach for 
designing new anti-staphylococcal aureus drugs. 
This may be due to the dual possibility of both 
ligands plus metal ion interacting with different 
steps of the pathogen life cycle. 
 
2. MATERIALS AND METHODS 
 
2.1 Materials 
 
The materials use in this study include; H.P 650 
computer system (Intel Pentium), 2.43GHz 
processor, 4GB ram size on Microsoft windows 7 
Ultimate operating system, Spartan 14 V.1.1.0, 
Chm 3D Pro 12.0.1V, Padel descriptor tool kit 
and Microsoft office Excel 2013 version + 
Analyze it@ Statistical software, Material Studio 
(modeling and simulation software) version 7.0, 
Printers. 
 
2.2 Computational Methodology 
 
Chemdraw ultra software was used to draw the 
structure of the compounds in the data set and 
each structure was saved as MDL file. The 
Spartan 14 V.1.1.0 software was used for the 
optimization of the molecules. The molecules 
were first pre-optimized with the Semi-empirical 
(AM1) procedure included in Spartan’14 V1.1.0 
software and the resulting geometries were 
further refined by means of Density functional 
theory (DFT) using the B3LYP version and 6-
31G* basis set. The lowest energy structure was 
used for each molecule to calculate their 
physicochemical properties. The quantum 
chemical descriptors were calculated using the 
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Spartan’14 V.1.1.0 quantum chemistry package. 
Padel descriptor tool kit was used to calculate 
1D, 2D and 3D descriptors as well. 
 

2.3 QSAR Methodology 
 
2.3.1 Data collection  
 
The chemical structures and experimental 
minimum inhibitory concentration (MIC) values in 
µg/ml of anti- Staphylococcus aureus were taken 
from literature [20-36]. The MIC values of the 
compounds were converted to logarithmic scale 
[pMIC = logMIC (µg/mL)]. The notation, structure, 

MIC and pMIC values for each member of the 
training set are presented in Table 1.  
 
2.3.2 Descriptor selection  
 
Over 1000 descriptors comprising of 0D, 1D, 2D, 
and 3D types were generated for each molecule. 
The descriptors were correlated with the 
biological activities of the molecules using 
Pearson’s correlation matrix. Pearson’s 
correlation matrix was used to select the suitable 
descriptors for Genetic Function Approximation 
(GFA) and multi-linear regression (MLR) analysis 
based on the correlation coefficients. 

 
Table 1. Experimental MIC values of the complexes against  Staphyloccocus aureus 

 
Cpd.  Structure  

 
MIC value  
(µg/ML) 

pMIC 
 

C1 

 

9.3 
 

0.97 

C2 
 

 

26 1.41 

C3 

 

18.3 1.26 
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C4 

 

256 2.41 

C5  

 

50 1.70 

C6 

 

50 1.70 

C7  

 

50 1.70 
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C8 

 

26 1.41 

C9 

 

31.25 1.49 

C10 

 

24 1.38 

C11 

 

50 1.48 

C12 

 

100.5 2.00 
 

C13 

 

13 1.11 
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C14 

 
 

20 1.30 

C15 

 

64 1.81 

C16 

 

32 1.51 

C17 

 

128 2.11 

C18 
 
 
 
 

 

325 
 
 
 
 

2.51 
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C19 

 

475 2.68 

C20 

 

20 1.30 

C21 

 

19 1.28 

C22 

 

21 1.32 

C23 

 

32 1.51 
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C24 

 

1000 3.00 

C25 

 

500 2.70 

C26 

 

100 2.00 

C27 

 

50 1.70 

C28 

 

64 1.81 

C29 

 

73 1.86 
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C30 

 

70 1.85 

C31 

 
 

32 1.51 

C32 

 

128 2.11 

C33 

 

8 0.90 

C34 

 

256 2.41 
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C35 

 

75 1.88 

C36 

 

50 1.70 

   
2.3.3 Training set and data set  
 
The data set for the biological activity was split 
into training set and test set. At least 70% of the 
data set was used as training set and the rest as 
test set in line with the optimum splitting pattern 
of data set in QSAR study [37]. Consequently, 
the data set of 36 complexes was split into 25 
training set and 11 test set. The training set was 
used to generate the model while the test set 
was used to evaluate their prediction abilities. 
 
2.3.4 Regression analysis  
 
Different possible combinations of descriptors 
were subjected to Genetic Function 
Approximation (GFA) and multiple linear 
regressions (MLR) analysis with the 
experimentally determined biological activity on 
logarithmic scale (pMIC) as dependent variable 
and the descriptors as independent variable. Out 
of the three statistically significant generated 
GFA models, the best (model-1a) was selected 
based on the one with the smallest LOF score. 
The MLR equation was generated in stepwise 
manner by forward selection method starting with 
best single variable and adding further significant 
variable according to their contribution to the 
model that leads to the smallest P-value at 95 
percent confidence level, until there is no other 
variable outside the equation that satisfies the 
selection criteria [38]. The P-values of the model 
was provided by the Analyze it® statistical 
software at 95% confidence level. The p-value is 
a probability that measures the evidence against 

the null hypothesis. Lower probabilities provide 
stronger evidence against the null hypothesis. 
The null hypothesis implies that there is no 
association between the descriptors and the 
pMic of the molecules. Model (1a and 1b) gives 
the best QSAR equations using GFA and MLR 
analysis respectively. 
 
Use of the Friedman lack-of-fit (LOF) measure 
has several advantages over the regular least 
square error measure. In Materials Studio, LOF 
is measured using a slight variation of the 
original Friedman formula [39]. The revised 
formula is: 
 

LOF = SSE / (1 −
����

�
)2                             (1) 

 
Where SSE is the sum of squares of errors, c is 
the number of terms in the model, other than the 
constant term, d is a user-defined smoothing 
parameter, p is the total number of descriptors 
contained in all model terms (ignoring the 
constant term) and M is the number of samples 
in the training set. Unlike the commonly used 
least squares measure, the LOF measure cannot 
always be reduced by adding more terms to the 
regression model. While the new term may 
reduce the SSE, it also increases the values of c 
and p, which tends to increase the LOF score. 
Thus, adding a new term may reduce the SSE, 
but actually increases the LOF score. By limiting 
the tendency to simply add more terms, the LOF 
measure resists over fitting better than the SSE 
measure (Materials Studio 5.0 Manual). 
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2.3.5 Model validation  
 

Validation is a crucial aspect of any QSAR 
modeling. It is the process by which the reliability 
and relevance of a procedure are established for 
a specific purpose [40]. It is the process of 
establishing the reliability and predictivity of a 
QSAR model. Both external and internal 
validations were carried out on the model. The 
minimum recommended value for a generally 
acceptable QSAR model proposed by 
Ravinchandran et al. [41] is shown in Table 2. 
 

2.3.6 Model validation  
 
Validation is a crucial aspect of any QSAR 
modeling. It is the process by which the reliability 
and relevance of a procedure are established for 
a specific purpose [40]. It is the process of 
establishing the reliability and predictivity of a 
QSAR model. Both external and internal 
validations were carried out on the model. 
 

2.3.6.1 Internal validation 
 

This is the validation done using the data that 
created the model. The QSAR models were 
internally validated using the methods of least 
squares fit (R2), cross validation coefficient (Q2), 
adjusted R2 (R2adj), difference between R2 and 
Q2 (R2 - Q2) and its confidence interval of all 
regression coefficient at 95% significant level (α 
value). The values of these parameters were 
compared with the minimum criterion for robust 
QSAR models proposed by Ravichandran et al. 
[41] in Table 2. 
 

R2 value is interpreted as the proportion of 
variation in Y that is explained by the model. It is 
given by the formula:  
 

R2 = 
��	

��

 = 

��
����

���
                                        (2) 

 

Where SST = total sum of squares, SSR = 
regression sum of squares, and SSE = minimum 
sum of squared residuals of any linear model. 
 

R2 value varies directly with the increase in 
number of regressors i.e. descriptors, thus, R2 
cannot be a useful measure for the goodness of 
model fit. Therefore, R2 is adjusted for the 
number of explanatory variables in the model. 
The adjusted R2 is defined as:   
 

R2
adj = 1- (1 − ��) 

���

�����
 = 

(���)	���

�����
           (3) 

 
Where p = number of independent variables in 
the model [42]. 
 
The LOO cross validated coefficient (Q2) is given 
by;  
 

Q2 = 1 - 
∑(����)�

∑(����)�
                                         (4) 

 
Where Yp and Y represent the predicted and 
observed activity respectively of the training set 
and Ym the mean activity value of the training set. 
 
The predicted r2 value is calculated as follows; 
 

Pred-R2 =1 – 
∑[�����(��)��(��)]�

∑[�(��)���(��)�
                    (5) 

 
Ypred.(test) and Y(test) indicate predicted and 
observed activity values respectively of the test 
set compounds and Ym(tr) indicates mean 
activity value of the training set. 
 
2.3.6.2 External validation 
 
The real predictive ability of any QSAR model 
cannot be judged solely by using internal 
validation, it has to be validated on the basis of 
predictions of activities of molecules not used in 
the models [41]. Prior to the development of the 
models, each data set was split into training and 
test set. QSAR models were built using the 
training set while the tests set were used for 
externally validating the models. The predicted 
R2 was computed in each case using the formula 
in equation (5). 

Table 2. Minimum recommended value of validation pa rameters for a generally acceptable 
QSAR model  

 
S/n.    Validation parameter  Value  

Symbol  Name 
1. R2 Coefficient of determination ≥ 0.6 
2. P (95%) Confidence interval at 95% confidence level. < 0.05 
3. Q2 Cross validation coefficient ˂ 0.5 
4. R2

ext. Coefficient of determination for external test set ≥ 0.6 
5. R2 - Q2 Difference between R2 and Q2 ≤ 0.3 
6. Next. test set Minimum number of external test set ≥ 5 

(Source: Ravinchandran et al. [41]) 
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3. QSAR STUDY RESULTS AND 
DISCUSSION 

 
The best performing QSAR model for the pMIC 
of the complexes against S. aureus using GFA 
and MLR is represented by model 1a and 1b 
respectively. The name and symbol of the 
descriptors used in the QSAR model and 
Pearson’s correlation matrix for descriptors used 
in the model are shown in the Tables 3 and 4 
respectively. 
 

3.1 Model –1a: GFA Derived Model for 
Anti-staphylococcal Activity of the 
Complexes 

 
pMIC    =  1.314686782 WD.polar + 0.094735041 

nT6Ring + 2.031680337 Wta3.po - 
0.716922788 

n        = 25, Friedman LOF = 0.09036500, R2 = 
0.93993300, R2adj. = 0.93135200, 
Q2=0.90741600 

F-value = 109.5362400, Min. expt. error for non-
significant LOF (95) = 0.11706500 

 
3.1.1 Effect of model  
 

 
 
Fig. 1. Plot of actual verses predicted pMIC of 

the complexes 
 

3.1.2 Residual plot of model -1a  
 
Pred-R2 =1-(0.05397395/1.9621) = 0.9725 i.e. 

using the formula in equation 5. 
 
3.1.3 Model – 1b: MLR derived model for anti-

staphylococcal activity of the 
complexes  

 
pMIC  =-0.7169 + 1.315 WD.polar + 0.09474 

nT6Ring + 2.032 Wta3.po 
n  = 25, R2 = 0.940, R2

adj = 0.931, SE (RMSE) 
= 0.1462, P-value at 95% C.L < 0.0001. 

 
The result of the GFA QSAR model is in 
conformity with the standard shown in Table 2 as 
R2 = 0.9399, R2

adj = 0.9313, Q2 = 0.9074, R2
pred. 

= 0.9725. This confirms the robustness of the 
model. 
 
The comparison of observed and predicted 
antibacterial activities of the complexes is 
presented in Table 5. The predictability of model-
1 is evidenced by the low residual values 
observed in Table 5 as well by the plot of 
predicted pMIC against observed pMIC (Fig. 1). 
Further, the plot of observed pMIC versus 
residual pMIC (Fig. 2) indicated that there was no 
systemic error in model development as the 
propagation of residuals was observed on both 
sides of zero [43]. 
 
The P-value of the model at 95% confidence 
level shown in model-1b is < 0.05. This reveals 
that the alternative hypothesis that there is an 
association between the descriptors used in the 
model and the pMic of the complexes takes 
preference over the null hypothesis. 
 
The effect of terms shown in section Table 7 
reveals that at 95% confidence level, all the 
descriptors in the model contribute significantly 
as their P-values are < 0.05, a requirement at 
this confidence limit. 
 

Table 3. Pearson’s correlation matrix for descripto rs used in QSAR model for the pMIC of   
anti- Staphylococcus aureus  molecules 

 
  log Mic  WD.polar  nT6Ring  Wta3.po  
log Mic 1    
WD.polar 0.67652 1   
nT6Ring 0.634432 0.304345 1  
Wta3.po 0.775394 0.345518 0.207828 1 

 
 
 

y = 1x + 2E-07

R² = 0.9399

0

0.5

1

1.5
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Table 4. The symbol and definition of the descripto rs used in the models 
 

S/N Descriptor symbol  Definition  
1 Weta3.polar Directional WHIM, weighted by atomic polarizabilities 
2 WD.polar Non-directional WHIM, weighted by atomic polarizabilities 
3 nT6Ring Number of 6-membered rings (includes counts from fused rings) 

 
Table 5. Comparison of observed pMIC and predicted pMIC of model 1a 

 
Cpd.  Observed Pmic  Predicted Pmic  Residuals  
C15 1.81 1.792307 0.017693 
C18 2.51 2.537564 -0.02756 
C19 2.68 2.546037 0.133963 
C2 1.41 1.265634 0.144366 
C20 1.30 1.482121 -0.18212 
C21 1.28 1.247022 0.032978 
C23 1.51 1.608446 -0.09845 
C24 3.00 3.048398 -0.0484 
C25 2.70 2.732927 -0.03293 
C26 2.00 1.924718 0.075282 
C27 1.70 1.635391 0.064609 
C29 1.86 1.738337 0.121663 
C3 1.26 1.368422 -0.10842 
C30 1.85 1.806446 0.043554 
C8 1.41 1.408819 0.001181 
C32 2.11 2.150687 -0.04069 
C33 0.90 0.968175 -0.06818 
C31 1.51 1.408819 0.101181 
C4 2.41 2.540626 -0.13063 
C5 1.70 1.31214 0.38786 
C6 1.70 1.642009 0.057991 
C7 1.70 1.704352 -0.00435 
C9 1.49 1.55428 -0.06428 
C36 1.70 1.713982 -0.01398 
C37 0.70 1.062339 -0.36234 

 
The closeness of the values of R2, R2

adj, Q2 of 
model obtained from GFA to that obtained 
through MLR, further reveals the reliability and 
robustness of the GFA model. 
 

Model-1 was developed to predict the 
antibacterial activity of the complexes against    
S. aureus. The positive coefficient of the 
descriptors; directional WHIM weighted by 
atomic polarizabilities (Wta3.po), non-directional 
WHIM weighted by atomic polarizabilities 
(WD.polar), and number of 6-membered ring 
(nT6Ring) indicated that the magnitude of the 
pMIC of these complexes increases with 
increase in the values of these descriptors. Since 
the activity of drug varies inversely with its 
minimum inhibitory concentration (MIC), the 
lower the values of these descriptors in a 
molecule, the more the activity of the molecule 
against S. aureus. 

Increased lipophilicity enhances the penetration 
of complexes into the lipid membranes and 
blocks the metal binding sites in enzymes of the 
organism, disturbing the respiratory process of its 
cell and blocking the synthesis of proteins 
thereby restricting further growth of the organism 
[44]. Wta3.po and WD.polar are WHIM 
descriptors which describe the polarity of a 
molecule. The decrease in the anti-
Staphylococcus aureus activity with increasing 
polarity of the complexes as shown in the model 
may be due to decrease in lipophilicity 
orchestrated by increase in polarity. Since 
biological membranes are lipophilic, highly polar 
complexes may not be able to penetrate these 
membranes to bring about their inhibitory role on 
the growth of this pathogen, thus, reducing their 
activities. 
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Fig. 2. Plot of standardized residual against predic ted pMIC of the complexes 
 

Table 6a. External validation of model – 1a 
 

Test set  WD.polar  Weta3.polar  nT6Ring  Actual pMIC  Pred.pMIC  Residual  
C1 0.525646 0.117027 8 0.97 0.969779 0.000221 
C10 1.026511 0.189124 4 1.38 1.395797 -0.0158 
C11 1.073042 0.292321 2 1.48 1.477164 0.002836 
C12 1.14945 0.40593 4 2 1.997904 0.002096 
C13 0.825646 0.101061 8 1.11 1.331747 -0.22175 
C14 0.903492 0.133213 6 1.3 1.309943 -0.00994 
C16 0.99044 0.382282 2 1.51 1.55134 -0.04134 
C17 1.653996 0.303764 0 2.11 2.074715 0.035285 
C22 0.870735 0.363509 2 1.32 1.355825 -0.03583 
C28 0.989987 0.329866 6 1.81 1.823193 -0.01319 
C34 1.366777 0.191048 10 2.41 2.41546 -0.00546 

 
Table 6b. External validation of model – 1a 

 
cpd  Yte Ym(tr)  [Yte - Ym(tr)] 2 Ypred(te)  (YpTe-Yte)2 

C1 0.97 1.768 0.636804 0.969779 4.8841E-08 
C10 1.38 1.768 0.150544 1.395797 0.00024955 
C11 1.48 1.768 0.082944 1.477164 8.0429E-06 
C12 2 1.768 0.053824 1.997904 4.3932E-06 
C13 1.11 1.768 0.432964 1.331747 0.04917173 
C14 1.3 1.768 0.219024 1.309943 9.8863E-05 
C16 1.51 1.768 0.066564 1.55134 0.001709 
C17 2.11 1.768 0.116964 2.074715 0.00124503 
C22 1.32 1.768 0.200704 1.355825 0.00128343 
C28 1.81 1.768 0.001764 1.823193 0.00017406 
C34 2.41 1.768 0.412164 2.41546 2.9812E-05 
   ∑ = 1.9621  ∑ = 0.05397395 

 
Table 7. Effect of terms at 95% confidence level 

 
Term  SS DF MS F p-value  
WD.polar 0.781 1 0.781 36.56 <0.0001 
nT6Ring 1.113 1 1.113 52.13 <0.0001 
Wta3.po 2.090 1 2.090 97.84 <0.0001 
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The decrease in activity of the complexes with 
increasing number of fused 6-membered ring as 
depicted in the model may be attributed to the 
possibility of excessive increment of the 
molecular size of the complexes due to the 
increasing ring size, making the molecule to be 
largely confined to the plasma compartment 
because of their large size [45] affecting its 
distribution via out the body. 
 
4. RECOMMENDATION  
 
In the future design of novel Ni-Schiff base 
complexes as anti-Staphylococcus aureus drug, 
it is recommended based on this research that 
the complexes should be made less polar as 
possible. Also, number of fused 6-membered 
ring/bulkier ligands in the moieties should be 
reduced or completely substituted with a less 
bulky ligand or ring system. 
 
5. CONCLUSION  
 
The generated QSAR models, performed to 
explore the structural requirements controlling 
the observed antibacterial properties, hinted that 
the biological activities were affected by WHIM 
descriptors weighted by atomic polarizabilities as 
well as number of fused 6-membered ring. The 
robustness and applicability of QSAR equation 
has been established by internal and external 
validation techniques. It is envisaged that the 
wealth of information in this QSAR model will 
provide an insight to designing a novel bioactive 
nickel-schiff base complex that will curb the 
emerging trend of multi-drug resistant strain of 
Staphylococcus aureus. 
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