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Abstract: The concept of fuzzy set theory is of paramount relevance to tackling the issues of uncertainties
in real-life problems. In a quest to having a reasonable means of curbing imprecision, the idea of fuzzy sets
had been generalized to intuitionistic fuzzy sets, fuzzy multisets, Pythagorean fuzzy sets among others. The
notion of intuitionistic fuzzy multisets (IFMS) came into the limelight naturally because there are instances
when repetitions of both membership and non-membership degrees cannot be ignored like in the treatment of
patients, where each consultations are key in diagnosis and therapy. In IFMS theory, the sum of the degrees
of membership and non-membership is less than or equals one at each levels. Supposing the sum of the
degrees of membership and non-membership is greater than or equal to one at any level, then the concept
of Pythagorean fuzzy multisets (PFMS) is appropriate to handling such scenario. In this paper, the idea
of PFMS is proposed as an extensional Pythagorean fuzzy sets proposed by R. R. Yager. In fact, PFMS is
a Pythagorean fuzzy set in the framework of multiset. The main objectives of this paper are to expatiate
the operations under PFMSs and discuss some of their algebraic properties with some related results. The
concepts of level sets, cuts, accuracy and score functions, and modal operators are established in the setting
of PFMSs with a number of results. Finally, to demonstrate the applicability of the proposed soft computing
technique, a course placements scenario is discussed via PFMS framework using composite relation defined
on PFMSs. This soft computing technique could find expression in other multi-criteria decision-making
(MCDM) problems.

Keywords: Course placement, fuzzy set, fuzzy multiset, intuitionistic fuzzy set, pythagorean fuzzy set,
pythagorean fuzzy multiset.
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1. Introduction

F uzzy set theory proposed by Zadeh [1] has achieved a huge impact in many fields to handle
uncertainty/vagueness. Due to the vast majority of imprecise and vague information in real-life

problems, different extensions of fuzzy set have been developed by some researchers. Yager [2] applied the
idea of multiset [3], which is an extension of set with repeated elements in a collection to propose fuzzy
multiset. Consequently, a fuzzy multiset allows repetition of membership degrees of elements in multiset
framework. In fact, fuzzy multiset generalizes fuzzy set [4].

The concept of intuitionistic fuzzy sets (IFS) was proposed and studied in [5–7] as a generalization of fuzzy
sets. The main advantage of the IFS is its ability to cope with the hesitancy that may exist due to information
impression. This is achieved by incorporating a second function, along with the membership function, µ of
the conventional fuzzy set, called non-membership function, ν. The idea of IFS has found expression in many
cases like medical diagnosis, career placements, pattern recognition and other MCDM problems [8–13].

However robust the notion of IFS is, there are circumstances where µ+ ν ≥ 1 unlike the situation captured
in IFS (where, µ + ν ≤ 1). The shortcoming in IFS naturally led to the introduction of a concept, called
Pythagorean fuzzy sets (PFSs) by Yager [14]. PFS is a tool to deal with vagueness considering the membership
grade, µ and non-membership grade, ν satisfying the condition µ + ν ≥ 1. As a generalized set, PFS has close
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relationship with IFS. This idea can be used to characterize the uncertain information more sufficiently and
accurately than IFS. PFSs have been applied in many areas, like the one discussed in [15].

In [16], the concepts of IFS and fuzzy multiset were combined to proposed intuitionistic fuzzy multisets
(IFMS) as the generalization of IFS in multiset framework or the extension of fuzzy multisets by incorporating
count non-membership functions, CN =

{
ν1, ..., νn} in addition to the count membership functions, CM ={

µ1, ..., µn} captured in fuzzy multisets. Some operations and modal operators on IFMS have been studied in
[17,18]. Due to the resourcefulness of IFMS, it has been applied in many real-life problems as seen in [16–27].

The motivation of this paper follows from the ideas of PFSs [14] and IFMS [16]. The paper proposes
Pythagorean fuzzy multisets (PFMSs), studies its properties and also, its application to course placements.
PFMS is either the incorporation of IFMS in PFS setting or PFS in multiset framework.

The paper is organized by presenting some mathematical preliminaries such as fuzzy sets, fuzzy
multisets, IFSs, IFMSs and PFSs in Section 2. Moreover, Section 3 covers the concept of PFMS and explicates the
ideas of level sets, accuracy and score functions in the setting of PFMS. Also, the idea of cuts in PFMSs context is
discussed with some results, and some modal operators on PFMSs are proposed with some deduced theorems.
In Section 4, the application of PFMSs in course placements are discussed through composite relation defined
on PFMSs. Finally, Section 5 summarises the paper and gives some useful conclusions.

2. Preliminaries

2.1. Fuzzy sets

Definition 1. [1] Let X be a nonempty set. A fuzzy set A of X is characterized by a membership function

µA : X → [0, 1].

That is,

µA(x) =


1, if x ∈ X
0, if x /∈ X
(0, 1) if x is partly in X

Alternatively, a fuzzy set A of X is an object having the form

A = {〈x, µA(x)〉 | x ∈ X} or A =

{〈
µA(x)

x

〉
| x ∈ X

}
,

where the function
µA(x) : X → [0, 1]

defines the degree of membership of the element, x ∈ X.

2.2. Fuzzy multisets

Definition 2. [2] Assume X is a set of elements. Then, a fuzzy bag/multiset A drawn from X can be
characterized by a count membership function CMA such that

CMA : X → Q,

where Q is the set of all crisp bags or multisets from the unit interval I = [0, 1].
A fuzzy multiset can also be characterized by a high-order function. In particular, a fuzzy multiset A can

be characterized by a function

CMA : X → N I or CMA : X → [0, 1]→ N,

where I = [0, 1] and N = N∪ {0}.
It follows that CMA(x) for x ∈ X is given as

CMA(x) =
{

µ1
A(x), µ2

A(x), ..., µn
A(x), ...

}
,
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where µ1
A(x), µ2

A(x), ..., µn
A(x), ... ∈ [0, 1] such that µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µn

A(x) ≥ ..., whereas in a finite case,
we write

CMA(x) =
{

µ1
A(x), µ2

A(x), ..., µn
A(x)

}
,

for µ1
A(x) ≥ µ2

A(x) ≥ ... ≥ µn
A(x).

A fuzzy multiset A can be represented in the form

A =

{〈
CMA(x)

x

〉
| x ∈ X

}
or A = {〈x, CMA(x)〉 | x ∈ X} .

2.3. Intuitionistic fuzzy sets

Definition 3. [5] Let a nonempty set X be fixed. An IFS A of X is an object having the form

A = {〈x, µA(x), νA(x)〉 | x ∈ X}

or

A =

{〈
µA(x), νA(x)

x

〉
| x ∈ X

}
,

where the functions
µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of non-membership, respectively of the element x ∈ X to A,
which is a subset of X, and for every x ∈ X,

0 ≤ µA(x) + νA(x) ≤ 1.

For each A in X,
πA(x) = 1− µA(x)− νA(x)

is the intuitionistic fuzzy set index or hesitation margin of x in X. The hesitation margin πA(x) is the degree of
non-determinacy of x ∈ X, to A and πA(x) ∈ [0, 1]. The hesitation margin is the function that expresses lack
of knowledge of whether x ∈ X or x /∈ X. Thus,

µA(x) + νA(x) + πA(x) = 1.

2.4. Intuitionistic fuzzy multisets

Definition 4. [16] Let X be a nonempty set. An IFMS A drawn from X is of the form

A =

{〈
CMA(x)

x
,

CNA(x)
x

〉
|x ∈ X

}
where

CMA(x) = µ1
A(x), ..., µn

A(x), ...

and
CNA(x) = ν1

A(x), ..., νn
A(x), ...

are the count membership and count non-membership degrees defined by the functions

CMA : X → N[0,1] and CNA : X → N[0,1]

such that 0 ≤ CMA(x) + CNA(x) ≤ 1, where N = N∪ {0}.

If the count membership functions and count non-membership functions have only n−terms (i.e. finite),
then n is called the dimension of A. Consequently
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A =

{〈
µ1

A(x), ..., µn
A(x)

x
,

ν1
A(x), ..., νn

A(x)
x

〉
| x ∈ X

}
for i = 1, ..., n.

For each IFMS A of X,
CHA(x) = 1− CMA(x)− CNA(x)

is the intuitionistic fuzzy multisets index or count hesitation margin of x in A, where

CHA(x) = π1
A(x), ..., πn

A.

The hesitation margin πi
A(x) for each i = 1, ..., n is the degree of non-determinacy of x ∈ X to A and

πi
A(x) ∈ [0, 1]. The count hesitation margin is the function that expresses lack of knowledge of whether x ∈ A

or x /∈ A. Thus,
µi

A(x) + νi
A(x) + πi

A(x) = 1

for each i = 1, ..., n.

2.5. Pythagorean fuzzy sets

Definition 5. [14] Let X be a universal set. Then, an PFS A of X is a set of ordered pairs defined by

A = {〈x, µA(x), νA(x)〉 | x ∈ X}

or

A =

{〈
µA(x), νA(x)

x

〉
| x ∈ X

}
,

where the functions
µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of non-membership, respectively of the element x ∈ X to A,
which is a subset of X, and for every x ∈ X,

0 ≤ (µA(x))2 + (νA(x))2 ≤ 1.

Supposing (µA(x))2 + (νA(x))2 ≤ 1, then there is a degree of indeterminacy of x ∈ X to A defined by
πA(x) =

√
1− [(µA(x))2 + (νA(x))2] and πA(x) ∈ [0, 1]. In what follows, (µA(x))2 + (νA(x))2 + (πA(x))2 =

1. Otherwise, πA(x) = 0 whenever (µA(x))2 + (νA(x))2 = 1.

3. Pythagorean fuzzy multisets

Definition 6. Let X be a nonempty set. Then, an PFMS A drawn from X is of the form

A =

{〈
CMA(x)

x
,

CNA(x)
x

〉
|x ∈ X

}
or

A = {〈x, CMA(x), CNA(x)〉 |x ∈ X}

where
CMA(x) = µ1

A(x), ..., µn
A(x)

and
CNA(x) = ν1

A(x), ..., νn
A(x)

are the count membership and count non-membership degrees defined by the functions

CMA : X → N[0,1] and CNA : X → N[0,1]
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such that 0 ≤ [CMA(x)]2 + [CNA(x)]2 ≤ 1, where N = N∪ {0}.

For each PFMS A of X,

CHA(x) =
√

1− [CMA(x)]2 − [CNA(x)]2

is the count hesitation margin of x in A, where

CHA(x) = π1
A(x), ..., πn

A.

The count hesitation margin CHA(x) is the degree of non-determinacy of x ∈ X to A and CHA(x) ∈ [0, 1].
The count hesitation margin is the function that expresses lack of knowledge of whether x ∈ A or x /∈ A. Thus,

[CMA(x)]2 + [CNA(x)]2 + [CHA(x)]2 = 1.

We denote the set of all PFMS over X by PFMS(X). Table 1 explains the difference between IFMS and
PFMS.

Table 1. IFMS and PFMS

IFMS PFMS
CM + CN ≤ 1 CM + CN ≤ 1 or CM + CN ≥ 1

0 ≤ CM + CN ≤ 1 0 ≤ CM2 + CN2 ≤ 1
CH = 1− (CM + CN) CH =

√
1− [CM2 + CN2]

CM + CN + CH = 1 CM2 + CN2 + CH2 = 1

Example 1. Let A be an PFMS of X = {x, y} such that

CMA(x) = 0.7, 0.5, 0.4

CNA(x) = 0.3, 0.5, 0.6

CMA(y) = 0.8, 0.6, 0.4

CNA(y) = 0.4, 0.5, 0.5.

That is

A =

{
〈0.7, 0.5, 0.4〉 , 〈0.3, 0.5, 0.6〉

x
,
〈0.8, 0.6, 0.4〉 , 〈0.4, 0.5, 0.5〉

y

}
.

Then
CHA(x) = 0.6481, 0.7071, 0.6928

CHA(y) = 0.4472, 0.6245, 0.7681.

For easy computational purpose, an PFMS can be converted to PFS by taking the mean values of the count
membership degrees, count non-membership degrees and count hesitation margin, respectively. That is, an
PFMS A in Example 1 becomes an PFS

A =

{
〈0.5333, 0.4667〉

x
,
〈0.6, 0.4667〉

y

}
.

Definition 7. Two PFMSs A and B are said to be equal or comparable if

CMA(x) = CMB(x), CNA(x) = CNB(x)

∀x ∈ X.
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Definition 8. Let A, B ∈ PFMS(X), then A is contained in B denoted by A ⊆ B if

CMA(x) ≤ CMB(x) and CNA(x) ≥ CNB(x) ∀x ∈ X.

We say A is properly contained in B, that is, A ⊂ B if A ⊆ B and A 6= B. It means CMA(x) ≤ CMB(x)
and CNA(x) ≥ CNB(x) but CMA(x) 6= CMB(x) and CNA(x) 6= CNB(x) ∀x ∈ X.

Definition 9. Let X and Y be nonempty sets and let f : X → Y be a mapping. Suppose A ∈ PFMS(X) and
B ∈ PFMS(Y), respectively. Then

(i) the inverse image of B under f , denoted by f−1(B), is an PFMS of X defined by

f−1(B) =

{〈
CM f−1(B)(x)

x
,

CN f−1(B)(x)

x

〉
| x ∈ X

}
,

where CM f−1(B)(x) = CMB( f (x)) and CN f−1(B)(x) = CNB( f (x))
∀x ∈ X.

(ii) the image of A under f , denoted by f (A), is an PFMS of Y defined by

f (A) =

{〈
CM f (A)(y)

y
,

CN f (A)(y)
y

〉
| y ∈ Y

}
,

where

CM f (A)(y) =

{ ∨
x∈ f−1(y) CMA(x), f−1(y) 6= ∅

0, otherwise,

and

CN f (A)(y) =

{ ∧
x∈ f−1(y) CNA(x), f−1(y) 6= ∅

0, otherwise,

for each y ∈ Y. This is called the extension principle of PFMS.

Theorem 10. Let A ∈ PFMS(X). Suppose that CHA(x) = 0, then the following hold:

(i) |CMA(x)| =
√
|(CNA(x) + 1)(CNA(x)− 1)|.

(ii) |CNA(x)| =
√
|(CMA(x) + 1)(CMA(x)− 1)|.

Proof. Suppose x ∈ X and A ∈ PFMS(X). Then we prove (i) and (ii). Since CHA(x) = 0 for every x ∈ X, we
have
(CMA(x))2 + (CNA(x))2 = 1
⇒ −(CMA(x))2 = (CNA(x))2 − 1
⇒ −(CMA(x))2 = (CNA(x) + 1)(CNA(x)− 1)
⇒ |(CMA(x))2| = |(CNA(x) + 1)(CNA(x)− 1)|
⇒ |CMA(x)|2 = |(CNA(x) + 1)(CNA(x)− 1)|
⇒ |CMA(x)| =

√
|(CNA(x) + 1)(CNA(x)− 1)|,

which proves (i). The proof of (ii) is similar to that of (i).

3.1. Some operations under PFMSs

Definition 11. For any two PFMSs A and B drawn from X, the following operations hold.

(i) Complement

Ac =

{〈
CNA(x)

x
,

CMA(x)
x

〉
| x ∈ X

}
(ii) Union

A ∪ B =

{〈
max(CMA(x), CMB(x))

x
,

min(CNA(x), CNB(x))
x

〉
| x ∈ X

}



Open J. Discret. Appl. Math. 2020, 3(1), 55-74 61

(iii) Intersection

A ∪ B =

{〈
min(CMA(x), CMB(x))

x
,

max(CNA(x), CNB(x))
x

〉
| x ∈ X

}
.

Definition 12. Let A, B ∈ PFMS(X). Then, the addition of A and B is defined as

A⊕ B =

{〈√
(CMA(x))2 + (CMB(x))2 − (CMA(x))2(CMB(x))2

x
,

CNA(x)CNB(x)
x

〉
|x ∈ X

}
,

and the multiplication of A and B is defined as

A⊗ B =

{〈
CMA(x)CMB(x)

x
,

√
(CNA(x))2 + (CNB(x))2 − (CNA(x))2(CNB(x))2

x

〉
|x ∈ X

}
.

Proposition 1. Let A, B, C ∈ PFMS(X), then the following properties follow.

(i) Complementary law
(Ac)c = A

(ii) Idempotent laws

A ∪ A = A

A ∩ A = A

(iii) Commutative laws

A ∪ B = B ∪ A

A ∩ B = B ∩ A

A⊕ B = B⊕ A

A⊗ B = B⊗ A

(iv) Associative laws

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

(A⊕ B)⊕ C = A⊕ (B⊕ C)

(A⊗ B)⊗ C = A⊗ (B⊗ C)

(v) Distributive laws

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A⊕ (B ∪ C) = (A⊕ B) ∪ (A⊕ C)

A⊕ (B ∩ C) = (A⊕ B) ∩ (A⊕ C)

A⊗ (B ∪ C) = (A⊗ B) ∪ (A⊗ C)

A⊗ (B ∩ C) = (A⊗ B) ∩ (A⊗ C)

Distributive laws hold for both sides (right and left).
(vi) DeMorgan laws

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

(A⊕ B)c = Ac ⊗ Bc

(A⊗ B)c = Ac ⊕ Bc
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(vii) Absorption laws

A ∩ (A ∪ B) = A

A ∪ (A ∩ B) = A

Proof. Straightforward, so we omit.

Theorem 13. Let A, B ∈ PFMS(X) such that A = Bc and B = Ac, then

(i) (Ac ∪ B) ∩ (A ∪ Bc) = (Ac ∩ Bc) ∪ (A ∩ B),
(ii) (Ac ∩ B) ∪ (A ∩ Bc) = (Ac ∪ Bc) ∩ (A ∪ B).

Proof. Since A = Bc and B = Ac, we show that the left hand side (LHS) is equal to the right hand side (RHS).
Now,

(Ac ∪ B) ∩ (A ∪ Bc) = (B ∪ B) ∩ (A ∪ A)

= A ∩ B.

Similarly,

(Ac ∩ Bc) ∪ (A ∩ B) = (B ∩ A) ∪ (A ∩ B)

= A ∩ B.

Thus, LHS=RHS, and hence (i) is proved. The proof of (ii) is similar to (i), so we omit.

Definition 14. Let A ∈ PFMS(X). Then, the level/ground set of A is defined by

A∗ = {x ∈ X|CMA(x) > 0, CNA(x) < 1} .

Certainly, A∗ is a subset of X.

Proposition 2. Suppose A and B are PFMSs of a non-empty set X, then

(i) (A ∩ B)∗ = A∗ ∩ B∗,
(ii) (A ∪ B)∗ = A∗ ∪ B∗.

Proof. Straightforward, so we omit.

3.2. Accuracy and score functions of PFMS

Definition 15. Let A ∈ PFMS(X). Then the score function, s of A is defined by s(A) = Σn
i=1[(CMA(xi))

2 −
(CNA(xi))

2], where s(A) ∈ [−1, 1].

Definition 16. Let A ∈ PFMS(X). Then the accuracy function, a of A is defined by a(A) = Σn
i=1[(CMA(xi))

2 +

(CNA(xi))
2] for a(A) ∈ [0, 1].

Theorem 17. Let A ∈ PFMS(X). Then the following hold ∀x ∈ X:

(i) s(A) = 0⇔ CMA(xi) = CNA(xi).
(ii) s(A) = 1⇔ |CNA(xi)| =

√
|(1 + CMA(xi))(1− CMA(xi))|.

(iii) s(A) = −1⇔ CMA(xi) =
√
(CNA(xi) + 1)(CNA(xi)− 1).

Proof. (i) Suppose s(A) = 0. Then (CMA(xi))
2 = (CNA(xi))

2 implies CMA(xi) = CNA(xi) ∀xi ∈ X.

Conversely, assume CMA(xi) = CNA(xi). Then (CMA(xi))
2 = (CNA(xi))

2 ∀xi ∈ X. Thus (CMA(xi))
2−

(CNA(xi))
2 = 0. Hence s(A) = 0.
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(ii) Suppose s(A) = 1. Then
1− (CMA(xi))

2 = −(CNA(xi))
2

⇒ (1 + CMA(xi))(1− CMA(xi)) = −(CNA(xi))
2

⇒ |(1 + CMA(xi))(1− CMA(xi))| = |CNA(xi)|2
⇒ |CNA(xi)| =

√
|(1 + CMA(xi))(1− CMA(xi))| ∀xi ∈ X.

Conversely, assume |CNA(xi)| =
√
|(1 + CMA(xi))(1− CMA(xi))|. So we get

|CNA(xi)|2 =
√
|1− (CMA(xi))2|

⇒ (CNA(xi))
2 = 1− (CMA(xi))

2 or |CNA(xi)|2 =
√
|1− (CMA(xi))2|

⇒ −(CNA(xi))
2 = 1 − (CMA(xi))

2. Take −(CNA(xi))
2 = 1 − (CMA(xi))

2 ⇒ (CMA(xi))
2 −

(CNA(xi))
2 = 1⇒ s(A) = 1.

(iii) Suppose s(A) = −1. Then
(CNA(xi))

2 − 1 = (CMA(xi))
2

⇒ (CNA(xi)− 1)(CNA(xi) + 1) = (CMA(xi))
2

⇒ CMA(xi) =
√
(CNA(xi)− 1)(CNA(xi) + 1).

Conversely, suppose CMA(xi) =
√
(CNA(xi)− 1)(CNA(xi) + 1). Then

(CMA(xi))
2 = (CNA(xi))

2 − 1⇒ (CMA(xi))
2 − (CNA(xi))

2 = −1⇒ s(A) = −1.

Theorem 18. Let A ∈ PFMS(X). Then the following statements hold ∀x ∈ X:

(i) a(A) = 1⇔ CHA(xi) = 0.
(ii) a(A) = 0⇔ |CMA(xi)| = |CNA(xi)|.

Proof. (i) Suppose a(A) = 1. So we have (CMA(xi))
2 + (CNA(xi))

2 = 1, that is, CHA(xi) = 0 since
CHA(xi) =

√
1− [(CMA(xi))2 + (CNA(xi))2].

Conversely, assume that CHA(xi) = 0. Then it follows that

(CMA(xi))
2 + (CNA(xi))

2 = 1⇒ a(A) = 1.

(ii) Suppose a(A) = 0. Then (CMA(xi))
2 = −(CNA(xi))

2 or (CNA(xi))
2 = −(CMA(xi))

2 ⇔ |CMA(xi)|2 =

|CNA(xi)|2 ⇔ |CMA(xi)| = |CNA(xi)|.

3.3. Some properties of PFMSs

3.3.1. (α, β)−cuts of PFMS

Definition 19. Let A ∈ PFMS(X). Then for α, β ∈ [0, 1], the sets A[α,β] and A(α,β) defined by

A[α,β] = {x ∈ X | CMA(x) ≥ α, CNA(x) ≤ β}

and
A(α,β) = {x ∈ X | CMA(x) > α, CNA(x) < β}

are called strong and weak upper α, β−cuts of A.
Similarly, the sets A[α,β] and A(α,β) defined by

A[α,β] = {x ∈ X | CMA(x) ≤ α, CNA(x) ≥ β}

and
A(α,β) = {x ∈ X | CMA(x) < α, CNA(x) > β}

are called strong and weak lower α, β−cuts of A.

Remark 1. Let A ∈ PFMS(X) and take any α, β ∈ [0, 1] such that A[α,β] and A[α,β] exist. Then, it follows that
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(i) A(α,β) ⊆ A[α,β] and A(α,β) ⊆ A[α,β].
(ii) A[α,β] = B[α,β], A(α,β) = B(α,β), A[α,β] = B[α,β] and A(α,β) = B(α,β) iff A = B.

For the purpose of this work, we shall be restricted to strong cuts of PFMS since A(α,β) ⊆ A[α,β] and
A(α,β) ⊆ A[α,β].

Proposition 3. Let A, B ∈ PFMS(X) and α, β, α1, α2, β1, β2 ∈ [0, 1]. Then we have

(i) A[α1,β1]
⊆ A[α2,β2]

iff α1 ≥ α2 and β1 ≤ β2,
(ii) A ⊆ B iff A[α,β] ⊆ B[α,β].

Proof. (i) Let x ∈ A[α1,β1]
⇒ CMA(x) ≥ α1 and CNA(x) ≤ β1. Since α1 ≥ α2 ⇒ CMA(x) ≥ α1 ≥ α2. Also,

β1 ≤ β2 ⇒ CNA(x) ≤ β1 ≤ β2. Hence, A[α1,β1]
⊆ A[α2,β2]

.

Conversely, for A[α1,β1]
⊆ A[α2,β2]

, it is clear that α1 ≥ α2 and β1 ≤ β2.

(ii) We know that A ⊆ B ⇒ CMA(x) ≤ CMB(x) and CNA(x) ≥ CNB(x) ∀x ∈ X. For x ∈ A[α,β] and
x ∈ B[α,β] ⇒ CMB(x) ≥ CMA(x) ≥ α and CNB(x) ≤ CNA(x) ≤ β. So, A[α,β] ⊆ B[α,β].

The converse is straightforward.

Corollary 1. Let A, B ∈ PFMS(X) and α, β, α1, α2, β1, β2 ∈ [0, 1]. Then the following hold.

(i) A[α1,β1] ⊆ A[α2,β2] iff α1 ≥ α2 and β1 ≤ β2.
(ii) A ⊆ B iff A[α,β] ⊆ B[α,β].

Proof. It follows from Proposition 3.

Proposition 4. Let A ∈ PFMS(X). For any α1, β1α2, β2 ∈ [0, 1] such that α1 ≤ α2 and β1 ≥ β2, we have

(i) A(α2,β2)
⊆ A[α2,β2]

⊆ A(α1,β1)
and

(ii) A(α1,β1) ⊆ A(α2,β2) ⊆ A[α2,β2].

Proof. Combining Definition 19 and Remark 1, the proof follows.

Proposition 5. Let A, B ∈ PFMS(X) and α, β ∈ [0, 1]. Then

(i) (A ∩ B)[α,β] = A[α,β] ∩ B[α,β],
(ii) (A ∪ B)[α,β] = A[α,β] ∪ B[α,β].

Proof. (i) If A, B ∈ PFMS(X) ⇒ A ∩ B ⊆ A and A ∩ B ⊆ B. By Proposition 3, (A ∩ B)[α,β] ⊆ A[α,β] and
(A ∩ B)[α,β] ⊆ B[α,β] ⇒ (A ∩ B)[α,β] ⊆ A[α,β] ∩ B[α,β].

Again, suppose x ∈ A[α,β] ∩ B[α,β] ⇒ x ∈ A[α,β] and x ∈ B[α,β], then

A[α,β] ∩ B[α,β] = {x ∈ X | CMA(x) ≥ α, CNA(x) ≤ β} ∩ {x ∈ X | CMB(x) ≥ α, CNB(x) ≤ β}
= {x ∈ X | min[CMA(x) ≥ α, CMB(x) ≥ α], max[CNA(x) ≤ β, CNB(x) ≤ β]}
= {x ∈ X | min[CMA(x), CMB(x)] ≥ α, max[CNA(x), CNB(x)] ≤ β}
= {x ∈ X | CMA∩B(x) ≥ α, CNA∩B(x) ≤ β}
⊆ (A ∩ B)[α,β].

Consequently, x ∈ A[α,β] ∩ B[α,β] ⇒ x ∈ (A ∩ B)[α,β]. Hence (A ∩ B)[α,β] = A[α,β] ∩ B[α,β].
(ii) For A, B ∈ PFMS(X), it is clear that A ⊆ A ∪ B and B ⊆ A ∪ B. By Proposition 3, implies A[α,β] ⊆

(A ∪ B)[α,β] and B[α,β] ⊆ (A ∪ B)[α,β], that is, A[α,β] ∪ B[α,β] ⊆ (A ∪ B)[α,β].

Also, x ∈ (A ∪ B)[α,β] ⇒ CM(A∪B)(x) ≥ α and CN(A∪B)(x) ≤ β, that is,
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(A ∪ B)[α,β] =
{

x ∈ X | CM(A∪B)(x) ≥ α, CN(A∪B)(x) ≤ β
}

= {x ∈ X | max[CMA(x), CMB(x)] ≥ α, min[CNA(x), CNB(x)] ≤ β}
= {x ∈ X | max[CMA(x), CMB(x)] ≥ α, min[CNA(x), CNB(x)] ≤ β}
= {x ∈ X | CMA(x) ≥ α, CNA(x) ≤ β} ∪ {x ∈ X | CMB(x) ≥ α, CNB(x) ≤ β}
⊆ A[α,β] ∪ B[α,β].

Thus x ∈ A[α,β] and x ∈ B[α,β]. Hence (A ∪ B)[α,β] = A[α,β] ∪ B[α,β].

Corollary 2. Let A, B ∈ PFMS(X) and α, β ∈ [0, 1]. Then

(i) (A ∩ B)[α,β] = A[α,β] ∩ B[α,β],
(ii) (A ∪ B)[α,β] = A[α,β] ∪ B[α,β].

Proof. Straightforward from Proposition 5.

Proposition 6. Suppose {Ai}i∈I ∈ PFMS(X) and α, β ∈ [0, 1], then

(i) (
⋂

i∈I Ai)[α,β] =
⋂

i∈I(Ai)[α,β],
(ii) (

⋃
i∈I Ai)[α,β] =

⋃
i∈I(Ai)[α,β],

(iii) (
⋂

i∈I Ai)
[α,β] =

⋂
i∈I(Ai)

[α,β],
(iv) (

⋃
i∈I Ai)

[α,β] =
⋃

i∈I(Ai)
[α,β].

Proof. (i) Let C =
⋂

i∈I Ai, then CMC(x) =
∧

i∈I CMAi (x) and CNC(x) =
∨

i∈I CNAi (x) ∀x ∈ X. Thus

C[α,β] = {x ∈ X | CMC(x) ≥ α, CNC(x) ≤ β}

=

{
x ∈ X | (

∧
i∈I

CMAi (x)) ≥ α, (
∨
i∈I

CNAi (x)) ≤ β

}

=

{
x ∈ X |

∧
i∈I

CMAi (x) ≥ α,
∨
i∈I

CNAi (x) ≤ β

}
=

⋂
i∈I

(Ai)[α,β].

Hence (
⋂

i∈I Ai)[α,β] =
⋂

i∈I(Ai)[α,β].
(ii)-(iv) follow similarly.

Remark 2. Suppose A, B, C ∈ PFMS(X) such that B ⊆ C. Then for α, β ∈ [0, 1], we have

(i) (A ∩ B)[α,β] ⊆ (A ∩ C)[α,β],
(ii) (A ∪ B)[α,β] ⊆ (A ∪ C)[α,β],

(iii) (A ∩ B)[α,β] ⊆ (A ∩ C)[α,β],
(iv) (A ∪ B)[α,β] ⊆ (A ∪ C)[α,β].

Proposition 7. Let f be a function from X to Y, A ∈ PFMS(X) and B ∈ PFMS(Y), respectively. Then, for any
α, β ∈ [0, 1], we have

(i) f (A[α,β]) ⊆ ( f (A))[α,β],
(ii) f−1(B[α,β]) = ( f−1(B))[α,β],

(iii) f (A(α,β)) ⊆ f (A[α,β]) ⊆ ( f (A))[α,β],
(iv) f−1(B(α,β)) ⊆ f−1(B[α,β]) = ( f−1(B))[α,β].
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Proof. (i) Let y ∈ f (A[α,β]), then ∃ x ∈ A[α,β] such that f (x) = y and CMA(x) ≥ α, CNA(x) ≤ β.
Consequently, we get

CMA( f−1(y)) ≥ α, α ∈ [0, 1] implies CM f (A)(y) ≥ α, α ∈ [0, 1],

Similarly,
CNA( f−1(y)) ≤ β, β ∈ [0, 1] implies CN f (A)(y) ≤ β, β ∈ [0, 1],

and so, y ∈ ( f (A))[α,β]. Hence, f (A[α]) ⊆ ( f (A))[α].

(ii) For every x, x ∈ f−1(B[α,β]) ⇔ f (x) ∈ B[α,β] ⇔ CMB( f (x)) ≥ α and CNB( f (x)) ≤ β. Thus
CM f−1(B)(x) = CMB( f (x)) ≥ α and CN f−1(B)(x) = CNB( f (x)) ≤ β that is, x ∈ ( f−1(B))[α,β]. Hence,
f−1(B[α,β]) = ( f−1(B))[α,β].

(iii) Since A(α,β) ⊆ A[α,β], then f (A(α,β)) ⊆ f (A[α,β]). Hence, the result follows from (i).
(iv) Also, B(α,β) ⊆ B[α,β] and so, f−1(A(α,β)) ⊆ f−1(A[α,β]) by the same reasons as in (iii). The proof is

completed by (ii).

Corollary 3. Suppose f is a function from X to Y. If A ∈ PFMS(X) and B ∈ PFMS(Y), respectively, then for at least
one α, β ∈ [0, 1],

(i) f (A[α,β]) ⊆ ( f (A))[α,β],
(ii) f−1(B[α,β]) = ( f−1(B))[α,β],

(iii) f (A(α,β)) ⊆ f (A[α,β]) ⊆ ( f (A))[α,β],
(iv) f−1(B(α,β)) ⊆ f−1(B[α,β]) = ( f−1(B))[α,β].

Proof. Similar to Proposition 7.

3.3.2. Some modal operators on PFMS

Now, we propose and explicate some modal operators on PFMS, which transform every PFMS to fuzzy
multiset. These modal operators are similar to the operators necessity and possibility defined in some modal
logics.

Definition 20. Let A ∈ PFMS(X). Then we define the following operators:

(i) the necessity operator

�A =

{〈
x, CMA(x),

√
1− (CMA(x))2

〉
|x ∈ X

}
(ii) the possibility operator

♦A =

{〈
x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
.

Remark 3. If A is an ordinary fuzzy multiset, then �A = A = ♦A. An ordinary fuzzy multiset A can also be
written in PFMS setting as

A =

{〈
x, CMA(x),

√
1− (CMA(x))2

〉
|x ∈ X

}
or

A =

{〈
x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
.

Theorem 21. Let A ∈ PFMS(X). Then the following properties hold:

(i) �Ā = ♦A
(ii) ♦Ā = �A
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(iii) ��A = �A
(iv) ♦♦A = ♦A
(v) �♦A = ♦A

(vi) ♦�A = �A.

Proof. Let x ∈ X. Using Definition 20, we have

(i)

�Ā = �{〈x, CMA(x), CNA(x)〉 |x ∈ X}
= � {〈x, CNA(x), CMA(x)〉 |x ∈ X}

=

{〈
x, CNA(x),

√
1− (CNA(x))2

〉
|x ∈ X

}
=

{〈
x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
= ♦A.

(ii)

♦Ā = ♦{〈x, CMA(x), CNA(x)〉 |x ∈ X}
= ♦ {〈x, CNA(x), CMA(x)〉 |x ∈ X}

=

{〈
x,
√

1− (CMA(x))2, CMA(x)
〉
|x ∈ X

}
=

{〈
x, CMA(x),

√
1− (CMA(x))2

〉
|x ∈ X

}
= �A.

(iii)

��A = �� {〈x, CMA(x), CNA(x)〉 |x ∈ X}

= �
{〈

x, CMA(x),
√

1− (CMA(x))2
〉
|x ∈ X

}
=

{〈
x, CMA(x),

√
1− (CMA(x))2

〉
|x ∈ X

}
= �A.

(iv)

♦♦A = ♦♦ {〈x, CMA(x), CNA(x)〉 |x ∈ X}

= ♦
{〈

x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
=

{〈
x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
= ♦A.

(v)

�♦A = �♦ {〈x, CMA(x), CNA(x)〉 |x ∈ X}

= �
{〈

x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
=

{〈
x,
√

1− (CNA(x))2,

√
1− (

√
1− (CNA(x))2))2

〉
|x ∈ X

}

=

{〈
x,
√

1− (CNA(x))2,
√

1− (1− (CNA(x))2)

〉
|x ∈ X

}
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=

{〈
x,
√

1− (CNA(x))2,
√
(CNA(x))2)

〉
|x ∈ X

}
=

{〈
x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
= ♦A.

(vi)

♦�A = ♦� {〈x, CMA(x), CNA(x)〉 |x ∈ X}

= ♦
{〈

x, CMA(x)),
√

1− (CMA(x))2
〉
|x ∈ X

}
=

{〈
x,

√
1− (

√
1− (CMA(x))2))2,

√
1− (CMA(x))2

〉
|x ∈ X

}

=

{〈
x,
√

1− (1− (CMA(x))2),
√

1− (CMA(x))2
〉
|x ∈ X

}
=

{〈
x,
√
(CMA(x))2,

√
1− (CMA(x))2)

〉
|x ∈ X

}
=

{〈
x, CMA(x),

√
1− (CMA(x))2

〉
|x ∈ X

}
= �A.

Corollary 4. Let A ∈ PFMS(X). Then the following properties hold:

(i) �Ā = �♦A = ♦♦A
(ii) ♦Ā = ♦�A = ��A.

Proof. Straightforward from Theorem 21.

Theorem 22. Let A, B ∈ PFMS(X). Then the following properties hold:

(i) �(A ∩ B) = �A ∩�B
(ii) ♦(A ∩ B) = ♦A ∩♦B

(iii) �(A ∪ B) = �A ∪�B
(iv) ♦(A ∪ B) = ♦A ∪♦B.

Proof. The results are straightforward from Definitions 11 and 20, so we omit the proofs.

Theorem 23. Let A, B ∈ PFMS(X). Then the following properties hold:

(i) �(A ∩ B) = ♦(A ∩ B)
(ii) ♦(A ∩ B) = �(A ∩ B)

(iii) �(A ∪ B) = ♦(A ∪ B)
(iv) ♦(A ∪ B) = �(A ∪ B)
(v) ��(A ∩ B) = �(A ∩ B)

(vi) ♦♦(A ∩ B) = ♦(A ∩ B)
(vii) ��(A ∪ B) = �(A ∪ B)

(viii) ♦♦(A ∪ B) = ♦(A ∪ B)
(ix) �♦(A ∩ B) = ♦(A ∩ B)
(x) ♦�(A ∩ B) = �(A ∩ B)

(xi) �♦(A ∪ B) = ♦(A ∪ B)
(xii) ♦�(A ∪ B) = �(A ∪ B).

Proof. Synthesizing Theorems 21 and 22, the proofs follow.
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Corollary 5. Let A, B ∈ PFMS(X). Then the following properties hold:

(i) �(A ∩ B) = ♦♦(A ∩ B) = �♦(A ∩ B)
(ii) ♦(A ∩ B) = ��(A ∩ B) = ♦�(A ∩ B)

(iii) �(A ∪ B) = ♦♦(A ∪ B) = �♦(A ∪ B)
(iv) ♦(A ∪ B) = ��(A ∪ B) = ♦�(A ∪ B).

Proof. Straightforward from Theorem 23.

Theorem 24. Let A ∈ PFMS(X). Then �A ⊂ A ⊂ ♦A.

Proof. Recall that for A = {〈x, CMA(x), CNA(x)〉 |x ∈ X}, we have

�A =

{〈
x, CMA(x),

√
1− (CMA(x))2

〉
|x ∈ X

}
and

♦A =

{〈
x,
√

1− (CNA(x))2, CNA(x)
〉
|x ∈ X

}
.

Also, A ⊂ B ⇔ A ⊆ B and A 6= B, and A ⊆ B ⇔ CMA(x) ≤ CMB(x) and either CNA(x) ≥ CNB(x) (or
CNA(x) ≤ CNB(x)) ∀x ∈ X.

To prove that �A ⊂ A, it is sufficient to show that√
1− (CMA(x))2 ≥ CNA(x).

From Definition 6, we have

(CMA(x))2 + (CNA(x))2 ≤ 1 ⇒ (CNA(x))2 ≤ 1− (CMA(x))2

⇒ CNA(x) ≤
√

1− (CMA(x))2,

that is
√

1− (CMA(x))2 ≥ CNA(x) ∀x ∈ X. Thus �A ⊂ A.
Again, we show that A ⊂ ♦A. To see this, it is enough to prove that

CMA(x) ≤
√

1− (CNA(x))2.

By Definition 6, We get

(CMA(x))2 + (CNA(x))2 ≤ 1 ⇒ (CMA(x))2 ≤ 1− (CNA(x))2

⇒ CMA(x) ≤
√

1− (CNA(x))2 ∀x ∈ X.

Hence, A ⊂ ♦A, and the proof is complete.

4. Composite relation on PFMS and its application in course placements

4.1. Composite relation defined on PFMS

In what follows, we define the composite relation on PFMS.

Definition 25. Let X and Y be two non-empty sets. A Pythagorean fuzzy multi-relation (PFMR), R from X
to Y is a PFMS of X × Y characterised by the count membership function, CMR and count non-membership
function, CNR. A PF multi-relation or PFMR from X to Y is denoted by R(X → Y).

Definition 26. Let A ∈ PFMS(X). Then the max-min-max composition of R(X → Y) with A is a PFMS B of Y
denoted by B = R ◦ A, such that its count membership and count non-membership functions are defined by
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CMB(y) =
∨
x
(min[CMA(x), CMR(x, y)])

and
CNB(y) =

∧
x
(max[CNA(x), CNR(x, y)])

∀x ∈ X and y ∈ Y, where
∨

=maximum,
∧

=minimum.

Definition 27. Let Q(X → Y) and R(Y → Z) be two PFMRs. Then the max-min-max composition R ◦ Q is a
PFMR from X to Z such that its count membership and count non-membership functions are defined by

CMR◦Q(x, z) =
∨
y
(min[CMQ(x, y), CMR(y, z)])

and
CNR◦Q(x, z) =

∧
y
(max[CNQ(x, y), CNR(y, z)])

∀(x, z) ∈ X× Z and ∀y ∈ Y.

Remark 4. From Definitions 26 and 27, the max-min-max composition B or R ◦Q is calculated by

B = CMB(y)− CNB(y)CHB(y)

∀y ∈ Y or
R ◦Q = CMR◦Q(x, z)− CNR◦Q(x, z)CHR◦Q(x, z)

∀(x, z) ∈ X× Z.

Proposition 8. If R and S are two PFMRs on X×Y and Y× Z, respectively. Then

(i) (R−1)−1 = R,
(ii) (S ◦ R)−1 = R−1 ◦ S−1.

4.2. Composite relation on PFMS in course placement

We apply the notion of PFMR as follows. Let

S = {s1, ..., sl} , C = {c1, ..., cm} and A = {a1, ..., an}

be finite set of subjects related to the courses, finite set of courses and finite set of applicants, respectively.
Assume there are two PFMRs, R(A→ S) and U(S→ C) such that

R = {〈(a, s), CMR(a, s), CNR(a, s)〉 |(a, s) ∈ A× S}

and
U = {〈(s, c), CMU(s, c), CNU(s, c)〉 |(s, c) ∈ S× C} ,

where CMR(a, s) signifies the grade to which the applicant, a passes the related subject requirement, s, and
CNR(a, s) signifies the grade to which the applicant, a does not pass the related subject requirement, s.

Similarly, CMU(s, c) signifies the grade to which the related subject requirement, s determines the course,
c, and CNU(s, c) signifies the grade to which the related subject requirement, s does not determine the course,
c.

The composition, T of R and U is given as T = R ◦U. This describes the state in which the applicants, ai
with respect to the related subjects requirement, sj fit the courses, ck. Thus:

CMT(ai, ck) =
∨

sj∈S

{
min[CMR(ai, sj), CMU(sj, ck)]

}
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and
CNT(ai, ck) =

∧
sj∈S

{
max[CNR(ai, sj), CNU(sj, ck)]

}
∀ai ∈ A and ck ∈ C, where i, j and k take values from 1, ..., n. The career placement can be attained if the value
of T given by

T = CMT(ai, ck)− CNT(ai, ck)CHT(ai, ck),

as calculated from R and U for the placements of ai into any ck with respect to sj is the greatest, greater than
0.5.

4.2.1. Case study

Let A = {Eli, Ella, Avi, Joe, Jones} be the set of applicants for the course placements,

C = {medicine, pharmacy, surgery, anatomy, physiology}

be the set of courses the applicants are competing for, and

S = {English Lang., Maths, Biology, Physics, Chemistry, Health Sci.}

be the set of subjects’ requirement to the set of courses.
Suppose the PFMR, R(A → S) is given in Table 3. This data in Pythagorean fuzzy multi-values are

supposedly drawn after the applicants sat for a multiple choice qualification assessments on the listed subjects
within a specified time, for two different times where the first and second assessments are closely related to
checkmate the effect of test contingencies.

The first entries are the membership values signifying the Pythagorean fuzzy multi-values of the marks
allocated to the questions the applicants answered, and the second entries are the non-membership values
signifying the Pythagorean fuzzy multi-values of the marks allocated to the questions failed. Converting the
PFMSs in Table 2 to PFSs for easy computation, the results in Table 3 are obtained.

Table 2. R(A→ S)

R English Maths Biology Physics Chemistry Health

Eli 〈0.6, 0.3〉
〈0.5, 0.3〉

〈0.5, 0.4〉
〈0.7, 0.2〉

〈0.6, 0.3〉
〈0.6, 0.3〉

〈0.5, 0.3〉
〈0.5, 0.4〉

〈0.5, 0.5〉
〈0.5, 0.3〉

〈0.6, 0.2〉
〈0.5, 0.1〉

Ella 〈0.5, 0.3〉
〈0.4, 0.3〉

〈0.6, 0.3〉
〈0.8, 0.2〉

〈0.5, 0.3〉
〈0.7, 0.3〉

〈0.4, 0.5〉
〈0.6, 0.2〉

〈0.7, 0.2〉
〈0.7, 0.2〉

〈0.7, 0.1〉
〈0.7, 0.3〉

Avi 〈0.7, 0.3〉
〈0.6, 0.2〉

〈0.7, 0.2〉
〈0.7, 0.2〉

〈0.7, 0.3〉
〈0.5, 0.2〉

〈0.5, 0.4〉
〈0.4, 0.5〉

〈0.4, 0.5〉
〈0.5, 0.5〉

〈0.6, 0.3〉
〈0.7, 0.3〉

Joe 〈0.6, 0.4〉
〈0.6, 0.3〉

〈0.8, 0.2〉
〈0.6, 0.1〉

〈0.6, 0.3〉
〈0.6, 0.3〉

〈0.6, 0.3〉
〈0.5, 0.2〉

〈0.6, 0.3〉
〈0.7, 0.2〉

〈0.7, 0.2〉
〈0.7, 0.2〉

Jones 〈0.8, 0.1〉
〈0.6, 0.2〉

〈0.7, 0.2〉
〈0.5, 0.1〉

〈0.8, 0.2〉
〈0.5, 0.4〉

〈0.7, 0.1〉
〈0.7, 0.1〉

〈0.6, 0.1〉
〈0.4, 0.2〉

〈0.8, 0.1〉
〈0.8, 0.1〉

Table 3. R(A→ S)

R English Maths Biology Physics Chemistry Health

Eli 〈0.55, 0.30〉 〈0.60, 0.30〉 〈0.60, 0.30〉 〈0.50, 0.35〉 〈0.50, 0.40〉 〈0.55, 0.15〉
Ella 〈0.45, 0.30〉 〈0.70, 0.25〉 〈0.60, 0.30〉 〈0.50, 0.35〉 〈0.70, 0.20〉 〈0.70, 0.20〉
Avi 〈0.65, 0.25〉 〈0.70, 0.20〉 〈0.60, 0.25〉 〈0.45, 0.45〉 〈0.45, 0.50〉 〈0.65, 0.30〉
Joe 〈0.60, 0.35〉 〈0.70, 0.15〉 〈0.60, 0.30〉 〈0.55, 0.25〉 〈0.65, 0.25〉 〈0.70, 0.20〉
Jones 〈0.70, 0.15〉 〈0.60, 0.15〉 〈0.65, 0.30〉 〈0.70, 0.10〉 〈0.50, 0.15〉 〈0.80, 0.10〉

PFMR, U(S → C) is the School bench-mark for admission into the mentioned courses in Pythagorean
fuzzy values. The data is in Table 4.
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Table 4. U(S→ C)

U medicine pharmacy surgery anatomy physiology

English 〈0.8, 0.1〉 〈0.9, 0.1〉 〈0.5, 0.4〉 〈0.7, 0.3〉 〈0.8, 0.2〉
Maths 〈0.7, 0.2〉 〈0.8, 0.1〉 〈0.5, 0.3〉 〈0.5, 0.4〉 〈0.5, 0.3〉
Biology 〈0.9, 0.1〉 〈0.8, 0.2〉 〈0.9, 0.1〉 〈0.8, 0.2〉 〈0.9, 0.1〉
Physics 〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.6, 0.2〉
Chemistry 〈0.8, 0.2〉 〈0.7, 0.2〉 〈0.7, 0.3〉 〈0.8, 0.2〉 〈0.7, 0.2〉
Health 〈0.8, 0.1〉 〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.9, 0.1〉 〈0.8, 0.2〉

The values of CMR◦U(ai, ck) and CNR◦U(ai, ck) of the composition T = R ◦U follow:

Table 5. CMR◦U(ai, ck) and CNR◦U(ai, ck)

CM, CN medicine pharmacy surgery anatomy physiology

Eli 〈0.60, 0.15〉 〈0.60, 0.20〉 〈0.60, 0.30〉 〈0.60, 0.15〉 〈0.60, 0.20〉
Ella 〈0.70, 0.20〉 〈0.70, 0.20〉 〈0.70, 0.30〉 〈0.70, 0.20〉 〈0.70, 0.20〉
Avi 〈0.70, 0.20〉 〈0.70, 0.20〉 〈0.65, 0.25〉 〈0.65, 0.25〉 〈0.65, 0.25〉
Joe 〈0.70, 0.20〉 〈0.70, 0.15〉 〈0.70, 0.30〉 〈0.70, 0.20〉 〈0.70, 0.20〉
Jones 〈0.80, 0.10〉 〈0.80, 0.15〉 〈0.70, 0.30〉 〈0.80, 0.10〉 〈0.80, 0.20〉

After computing the values of the count of hesitation margins which signify the marks loss due to the
hesitation in answering questions within the specified time, T is calculated as show in Table 6.

Table 6. T = CMT − CNTCHT

T medicine pharmacy surgery anatomy physiology

Eli 0.4821 0.4451 0.3775 0.4821 0.4451
Ella 0.5629 0.5629 0.5056 0.5629 0.5629
Avi 0.5629 0.5629 0.4706 0.4706 0.4706
Joe 0.5629 0.5953 0.5056 0.5629 0.5629
Jones 0.7408 0.7129 0.5056 0.7408 0.6869

The course placements are carried out on the basis of which of the applicant has the greatest T such that
T > 0.5. However, if an applicant is suitable to study more than one courses based on the value of T, then the
applicant would be allowed to make a personal choice within the range of the courses he/she has the greatest
T such that T > 0.5.

From Table 6, the following placements are made: Eli is not suitable to read any of the courses; Ella is
suitable to read any of medicine, pharmacy, anatomy and physiology; Avi is suitable to read either medicine or
pharmacy; Joe is suitable to read pharmacy and Jones is suitable to read either medicine or anatomy. Suppose
there is only one slot for medicine, it would be given to Jones. Also, if one applicant is to ready pharmacy, it
would be Joe. Notwithstanding, Jones is very suitable to read any of the courses ahead of all the applicants.

5. Conclusion

We have proposed the idea of PFMSs as the generalization of PFSs such that each of membership
degree, non-membership degree and hesitation margin of PFS, are allowed to repeat as count membership
degrees, count non-membership degrees and count hesitation degrees. It was shown that PFMS is either the
incorporation of IFMS into PFS setting or PFS in multiset framework. We have discussed some algebraic
properties of PFMS and proposed the analogs of the modal logic operators "necessity" and "possibility" with
some results. Also the ideas of level sets, cuts, accuracy and score functions were established in the setting
of PFMS with a number of results. The notion of composite relation is proposed in PFMSs and applied to
practical decision-making problem of course placements in higher institution. PFMS as a soft computing
technique can find expression in image enhancement techniques for better image quality, other multi-criteria
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decision-making (MCDM) problems or multi-attribute decision-making (MADM) problems among other
potential applications.
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