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ABSTRACT 
 

In this paper, we investigate the influence of an electric field on the ground state energy of a 
polaron in a spherical semiconductor quantum dot (QD) using the modified Lee Low Pines (LLP) 
method. The numerical results show an increase of the ground state energy with the increase of 
the electric field and the confinement lengths. The modulation of the electric and the confinement 
lengths enables the control of the decoherence of the system. It is also seen that the temperature is 
a decreasing function of the electron-phonon coupling constant and the longitudinal confinement 
length, whereas it increases with the electric field strength.   
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1. INTRODUCTION 
 
Due to the recent progress achieved in 
nanotechnology, it has become possible to 
fabricate low dimensional semiconductor 
structures. Special interest is being devoted to 
the quasi zero dimensional structures, usually 
referred to as quantum dots (QD) [1-9]. In such 
nanometer QDs, some novel physical 
phenomena and potential electronic device 
applications have generated a great deal of 
interest. A great challenge has thus been laid on 
theoretical physicists that of developing the 
theory based on the quantum mechanical 
regime. Recently, much effort [10-12] has been 
focused on exploring the polaron effect of QDs. 
Roussignol et al. [10] have shown experimentally 
and explained theoretically that the phonon 
broadening is very significant in very small 
semiconductor QD's. It has also been observed 
[11,12] that the polaron effect is more important if 
the dot sizes are reduced to a few nanometers. 
More recently, the related problem of an optical 
polaron bound to a Coulomb impurity in a QD 
has also been considered in the presence of a 
magnetic field. 
 
The theoretical investigation of the polaron 
properties has been performed using standard 
perturbation techniques [13], the variational Lee-
Low-Pines method [14,15] the modified LLP 
approach [16,17], the Feynman path integral 
method [18], numerical diagonalization [19], and 
Green’s function methods [20]. The experimental 
data [21] showed, in particular, a large splitting 
width near the one-phonon and two-phonon 
resonance in a InAs/GaAs QD. This was 
accounted for by the theoretical model via a 
numerical diagonalization of the Fröhlich 
interaction [19]. The required value of the 
Fröhlich constant was much larger (by a factor of 
two [19]), than that measured in bulk. In [18] 
using the Feynman path integral method, the 
authors observed that the quadratic dependence 
of the magnetopolaron energy is modulated by a 
logarithmic function and strongly depends on the 
Fröhlich electron–phonon coupling constant 
structure and the cyclotron radius. Furthermore, 
the effective electron-phonon coupling is 
enhanced by high confinement or a strong 
magnetic field. In [21] the polaron energy in a QD 
was calculated using a LLP approach and it was 
found that the polaronic effect is more 
pronounced for small dot sizes. In [16], using a 
modified LLP approach, the number of phonons 

around the electron, and the size of the polaron 
for the ground state, and for the first two excited 
states is calculated via the adiabatic approach. 
 
It is important to note that the modified LLP 
method has not been used in any of the 
aforementioned works to solve the problem of a 
polaron subjected to an electric field. It is also 
instructive from the works presented above, to 
recall that polarons are often classified according 
to the Fröhlich electron-phonon coupling 
constant. Because it recovers simultaneously all 
types of coupling which characterize the Fröhlich 
electron-phonon coupling, the Feynman path 
integral method [19] has been seen as one of the 
best. The main feature of the method presented 
here is the modification of the LLP approach [17] 
by introducing new parameters 

21
bandb  in 

the traditional LLP approach, which permits us to 
obtain an “all coupling” polaron theory. Here the 
coupling is weak if 1bb

21
 , strong if 

0bb
21

  and intermediate  between these 

ranges.  
 

In this work, we study the influence of the electric 
field on the polaron ground state energy. It has 
the following structure: In section two, we 
describe the Hamiltonian of the system while in 
section 3, the modified LLP method is presented 
and the analytical results of the ground state 
energy and the polaron’s effective mass are 
obtained. In section 4, the temperature effect on 
the   average number of bulk LO phonons is 
evaluated according to the quantum statistics 

theory. In section 5, we present numerical results 

and discussions. Section 6 is devoted to the 
conclusion. 
 

2. HAMILTONIAN OF THE SYSTEM  
 

The motion of the electron under consideration is 
taking place in a polar crystal with a three 
dimensional anisotropic harmonic potential, and 
interacting with the bulk LO phonons, under the 
influence of an electric field along the   

direction. The Hamiltonian of the electron-
phonon interaction system can be written as [22] 
 

  
Q

Qr
Q

iQr
QQphe eaeaVHHH       (2.1) 

 

where eH  represents the electronic 

Hamiltonian and is given by 
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 Fezmm
m

p
He

*22
2

22
1

2

2

1

2

1

2
   (2.2) 

 

where p  is the momentum while 
21

and   

measure the confinement in the   direction 

and z  direction respectively.  
 

ph
H

 
is the phonon Hamiltonian defined as 

 

 
Q

QQph aaH                                         (2.3) 

 

Where )a(a
QQ

   are the creation (annihilation) 

operators for LO phonons of wave vector

),( zqqQ  ,  

 

andVQ    are the amplitude of the electron-

phonon interaction and the coupling constant 
respectively  given by  
 

 

 
(2.4) 

 
 
(2.5) 

 

3. MODIFIED LLP METHOD AND 
ANALYTICAL RESULTS OF THE 
GROUND STATE ENERGY OF THE 
POLARON 

 

Adopting the mixed-coupling approximation of 
[23], we propose a modification to the first Lee-
Low-Pines (LLP)-transformation by inserting two 
variational parameters 

21
bandb .  

 
Our new unitary transformation is now   
 

  211 )()(exp zbPbPi z   PPU       (3.1) 

 
With 

 

Q
QQ
aapP                                      (3.2) 

 

 being the total momentum of the polaron and 

 

 

Q
QQ
aQaP                                              (3.3) 

 

 the momentum of the phonon.  
 

The two new variational parameters are 
supposed to trace the problem from the strong 
coupling case to the weak coupling limit and to 
interpolate between all possible geometries.  
The second transformation is of the form [1] 
 

)(2 Q
Q

QQ aau  U

                             

 (3.4)  

 

where 
Q

u  is a variational function. This 

transformation is called the displaced oscillator 
which is related to the phonon operators via the 
phonon wave vector  by the relation 
 

phph 02U                                            (3.5)       

 

where ph0  is the phonon vacuum state since 

at low temperatures there will be no effective 
phonons. 
 

Applying the transformation in (3.1) on the 
Hamiltonian (2.1), we obtain 
 
 
 
 

 riQzqbqbi
Q

riQzqbqbi
Q

Q
Q

Q
QQ

zzzzz

eeaeeaVaa

PpbPbPpb

PbFezmm
m

p

HH

zz .)(.).(

2
22

21

22
1

*22
2

22
1

2

1
1

1
)1(

2121

)(2)()(2

)(
2

1

2

1

2













 





PPP

P

UU

                (3.6)   

     
Applying the transformation (3.4) on (3.6), and expressing in Fröhlich units i.e. 12  

LO
m  ,   

we obtain the ground state energy g  

2

2

4

2

2/12

2/14/1













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
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



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
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q
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Where 
 

    
Q

QQQ aaQu1P                                                                                                          (3.8) 

 
And 
 

  

Q

2
Q

0 QuP                                                                                                                        (3.9) 

 
To evaluate this expression, we introduce the linear combination operators of the position and 
momentum of the electron by the following relation: 
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Where the index  refers to the x and y  directions, 1
  and 2

 are variational parameters, and 

  and  


 are respectively the  annihilation and creation operators for the electron. Using the 

following commutator,  
 ipx ,  and performing the required calculations, we may write the 

ground state energy as: 
 

    

       ∑∑ 221

22
4242

202
2

02
2

22
2

22
2

22
1

2

202
1

02
1
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1

1

*
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2
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2
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Q

QQQzzzz

Q

zQ

g

SuVbPbPbqbqbu

bPbPb
Fe
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PP

PP 









                            (3.11) 

With 
 

     ezeQ riQzqbqbiS 0.exp.exp0 21                                                                     (3.12) 

 
this expression can be written as 

    


















2

2
2

2

1

2
2

1
2

1exp
2

1exp

z

Q

q
b

q
bS                                                                    (3.13) 
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Minimizing (3.11) with respect to the variational function 
Q
u we obtain 

 
       QQQzzzz SVuPqbPqbqbqb  02

2
02

1
22

2
22

1 221 PP                                  (3.14) 

 

Solving (3.14) with respect to 
Q

u , with the assumption that  0P  differs from the total momentum by 

a scalar factor 
  P 0P , we get 

 

    


12121 2
2

2
1
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2
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1 zzz

QQ

Q
PqbqPbqbqb

SV
u                                                         (3.15) 

 
Substituting (3.15) into (3.11) we obtain 
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2
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2

1

2
121

                                      (3.16) 

 

But  Pg  may be well represented by the first two terms of a power series expansion in 2P  as in 

[23] 
 

      ...0
2

0 4
2

 P
P

P gg                                                                                           (3.17) 

 

where 1  gives the effective mass of the polaron. Comparing (3.16) and (3.17) we obtain for the 

ground state energy 
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Substituting  (3.13) in the ground state energy (3.18), we obtain 
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                                                          (3.19) 

and re-arranging this expression, we finally obtain the ground state energy  
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where 
2

2

1

1
 m

land
m

l


 are the confinement length in  yx plane and z  direction 

respectively 

 
4. TEMPERATURE EFFECT  
 
The polaron is no longer considered to be in the 
ground state when it is at a non-zero 
temperature. The properties of the polaron are 
then described by the statistical average of the 
phonon number. The average number of bulk LO 
phonons is given according to the quantum 
statistics theory as 
 

1
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
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where B
K  is the Boltzmann constant and T is 

the temperature of the system. 
 

5. NUMERICAL RESULTS AND 
DISCUSSIONS 

 
For the numerical results, we consider the weak 
coupling case, i.e. 1bb

21
 . In this part, 

we show the numerical results of the ground 
state energy versus the electron-phonon 
coupling strength, the cyclotron frequency and 
the confinement lengths with the following 
polaron units:  
 

  2
1

LO
*

0LO
* m2randR   

 
 
In Fig. 1, we have plotted the ground state 
energy g  of the polaron as a function of the 

electric field, F for 
75.0land35.0l,15.0l,5.6

221


 (Fig.(1a)) and 
75.0land35.0l,25.0l,5.6

221


(Fig. (1b)). The ground state energy is an 
increasing function of the electric field. This is 

because the electric field brings about an 
increase in the electron energy and makes the 
electrons to interact with more phonons. This is a 
novel approach to controlling the QD energies 
via the electric field. In fact, the electric field 
plays an important role in low-dimensional 
materials. For example, it affects both the 
quantum decoherence process and the 
electron’s probability density are affected.Thus, 
here we find a suitable two-state system by 
adjusting the electric field, which is crucial in 
constructing a qubit [24-26]. 
 

In Fig. 2, we have plotted the ground state 
energy g  as a function of the electron-phonon 

coupling constant   for                                 
(a) 25.0land5.2F

1
 ;  

(b) 45.0land0.10F
2

 ;  

(c) 75.0land25.0l
21

 . These figures 

show that the ground state energy increases with 
the electron-phonon coupling constant and  
decreases with an increase in the confinement 
length. With the increase of the harmonic 

potential( 21
and 

), the energy of the electron 
and the interaction between the electron and the 
phonons, which take phonons as the medium, 
are enhanced because of the smaller particle 
motion range.The larger the electron-phonon 
coupling constant, the stronger the ground state 
energy of the polaron. This result is similar to that 
obtained in [27,28]. 
 

In Fig. 3, we have plotted the Temperature as a 
function of the electron-phonon coupling constant 

 for  
 

(a) ; 

(b) ; 



35.0land0.10F
1



35.0land0.10F
2


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(c)   

 
In the weak coupling range, the temperature is a 
decreasing function of the electron-phonon 
coupling constant and a decreasing function of 
the confinement length strength as well.When 
the electron motion range decreases, the energy 
of interaction increases. As such, the motion of 
electrons and phonons heats up the medium. 
The temperature is an increasing function of the 
electric field strength; this is because the electric 
field is an external perturbation source which 
accelerates the motion of particles (electron and 
phonons) in the QD. The mesoscopic 
phenomena have gained more importance as a 

basis for novel electronic and optical devices. It 
is necessary to formulate models that describe 
physical phenomena associated with Nano 
crystals. This study is in accordance with this 
philosophy. Therefore, from our study and 
results, it is clear that the coupling between the 
electron and the phonon can explain properties 
of novel electric and optical devices. 
Temperature effect and the application of the 
electric field enhance the polaron ground state 
energy and the polaron tends to a highly 
localized state. This gives the possibility for the 
most favorable condition for a stable bipolaron 
and bipolaron superconductivity [29-34].The 
result is in in accordance with that obtained by 
Jing-Lin Xiao [35,36]. 

 

 
 

Fig. 1. Ground state energy g  as a function of the electric field, F  for 
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Fig. 2. Ground state energy g  as a function of the electron-phonon coupling constant   for 
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Fig. 3.  Temperature as a function of the electron-phonon coupling constant   for 
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6. CONCLUSION 
 
With the use of the modified LLP method, we 
have studied the energy levels of a weak 
coupling polaron in a spherical quantum dot (QD) 
and a weak coupling polaron in an anisotropic 
QD subjected to an electric field. It is found that 
the ground state energy of the polaron is an 
increasing function of the electric field; this is 
because the presence of the electric field makes 
phonons to interact more with the electrons. It is 
also seen that, with a good control of the 
confinement length and the electron coupling 
constant, we can control the decoherence of the 
system. The enhancement of the coupling 
strength is very important in the construction of 
quantum computers since it leads to the 
conservation of its internal properties such as  
the superposition states against the influence of 
its environment, which can induce the 
construction of coherent states and cause 
coherence quenching. The temperature is an 
increasing function of the electric field and a 
decreasing function of the confinement length. 
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