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ABSTRACT 
 

Task Scheduling deals with the set of tasks assigned to parallel multiprocessor system and the 
execution order of the schedule so that the total execution time is minimized. The role of a good 
scheduling algorithm is to efficiently assign each task to a processor depending on the resources 
needed, the communication overhead between related tasks is reduced and the precedence 
relations among tasks are satisfied. It can be efficiently used for tasks that have a large calculation, 
and have time constraints to complete the schedule. The efficient execution of the task scheduling 
on parallel system takes the structure of the task and the performance characteristics of the 
proposed genetic algorithm. It falls in the category of NP-complete problem. This study proposes a 
parallel genetic algorithm-based approach to schedule tasks on parallel system with task 
duplication heuristics. Task duplication can minimize inter-processor communication and hence 
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results in shorter finish times. Its performance is measured in comparison with the Round Robin 
(RR), First Come First Serve (FCFS), and Multi-level queue scheduling (MQS), Shortest Job First 
(SJF), Largest Job First (LJF) and Priority scheduling methods. 
 

 
Keywords: Parallel Multiprocessor Systems; Task Duplication Heuristics; Directed acyclic graph 

(DAG); Task Scheduling; Simultaneous Optimization; Genetic Algorithm. 
 

1. INTRODUCTION 
 
Task scheduling for parallel systems can become 
a quagmire of heuristics, models, and methods 
that have been developed over the past 
decades. The computing demand has increased 
exponentially in the past decades and there are 
many applications that require more processing 
power than a uni-processor can provide. To 
respond this demand, multi-processing units 
employed simultaneously to collaborate on the 
execution of the single application. Computer 
systems that employed multiple processing units 
are known as parallel systems [1-5]. Their aim is 
to speed up the execution of an application 
through the collaboration of the processing units. 
Even though the area of parallel computing has 
existed for many decades, programming a 
parallel system for the execution of a single 
application is still a challenging problem. Fig. 1 
illustrates the process of parallelization; the 
application must be divided into subtasks to allow 
the distribution of the application’s computational 
load among the processors. 
 

In many practical approaches to parallel 
programming [6], the steps of parallelization are 

not clearly separable. For example the 
decomposition into subtasks determines the 
precedence constraints among them, which in 
turn restrict the scheduling on the processors. In 
other words, different decompositions into 
subtasks can lead to different precedence 
constraints and schedules with different 
efficiencies. Summarizing, three main areas of 
the parallelization process are identified: 
 
 Subtask decomposition 
 Dependence analysis 
 Scheduling 

 
Subtask decomposition and dependence 
analysis build the foundation for scheduling. 
 

2. PROBLEM DEFINITION 
 
Task scheduling [7],[8] can be defined as 
allocating the tasks onto parallel systems and 
determining the sequence of task execution on 
each processor. The total completion time of the 
schedule is determined by the performance of 
the parallel system and the execution sequence 
of the tasks. 

 
 

 
Fig. 1. Process of parallelization 
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Therefore, task scheduling on parallel system 
consists of three components:- 

 

• Optimal mapping of the task on parallel 
system. 

• Their sequence of execution. 
• Optimal configuration of the parallel 

systems, in case when the parallel 
systems consist of heterogeneous 
processors, which vary in factors like 
processor's speed, available memory, 
operating system, etc. 
 

All these three components of the simultaneous 
optimization [9,10] for scheduling problem are 
highly dependent on each other. Therefore, 
these should not be optimized separately.  
 

A GA approach is used to handle the task 
scheduling problem on parallel system. A GA 
[11,12] starts with the generation of individuals. 
Individuals are encoded as strings called 
chromosomes. A chromosome refers to a 
solution to the given problem. Individuals are 
evaluated using fitness function. In general, GAs 
consists of crossover, selection, and mutation 
operations based on key parameters such as 
crossover probability, fitness function, and 
mutation probability. 
 

Parallel Multiprocessor system scheduling [13-
17] is based on the characteristics of the 
multiprocessor system, the tasks to be 
scheduled, and the information availability. The 
strategy behind the schedule execution on 
parallel multiprocessor system is the partitioning 
of the huge task, into set of sub-tasks of 
appropriate gain size. The abstract model of the 
partitioned tasks can be represented by Directed 
Acyclic Graph (DAG). The multiprocessor system 
consists of a set of m- parallel processor and can 
be represented as  
 

P = {pi: i =1, 2 …m} 
 

They are connected with each other through 
identical links. Eight parallel systems connected 
with identical links, shown in Fig. 2. 
 

The application can be represented by a DAG 
(directed acyclic graph) G as shown in Fig. 2(b): 
 

G= (T, E, W, C) 
 

Where set T is the vertices and consists of n 
tasks as:- 
 

T={ tj: j =1, 2…n} 

 

The set E is the directed edges consist of k 
edges: 

E = {ek: k =1, 2…r} 
 

This shows the precedence relationships 
between tasks. For example consider any two 
tasks ti, ti+1 Є T, and having directed edge ek 

(such that edge from task ti to ti+1). It means that 
task ti+1 cannot be scheduled until the task ti has 
been completed. Task ti is a predecessor of task 
ti+1 and task ti+1 is a successor of task ti i.e. task ti 
sends some information to task ti+1, whose 
contents are needed by ti+1 to start execution.  
 

The set W be the weights of the vertices:     
   

W = {wi,j: i =1, 2…m, and j: 1, 2…n} 
 

This shows the execution time of the ith task on jth 
processor, and are varies from processor to 
processor because of the processor environment 
is heterogeneous. 
 

The following Table 1 shows a matrix of the 
sample space for 140 tasks, executed on 12 
parallel multiprocessor systems, here task t1 
shows execution time of 4 time units for 
processor p1, 5 time units for processor p3 and 6 
time units for processor p4 and so on. This is 
because, processors are of heterogeneous 
nature and have different processing capabilities 
and speed.  
 

The set C be the communication weight of the 
edges: 
 

C = {ck: k =1, 2…r} 
 

This shows the data communication weights 
between the two tasks, if the tasks are scheduled 
on different Processors. When both tasks are 
scheduled on the same processor, the weight 
associated to the edge become null. 
 

3. OBJECTIVE AND SCOPE 
 

The objective of this paper is to design an 
optimization algorithm, which minimize the 
overall execution time of the schedule. The 
proposed genetic algorithm-based scheduling 
technique generates a task graph [18] using set 
of computing resources or processors and maps 
the sub-tasks onto the available parallel 
processors, and also orders (or sequence) the 
execution of the tasks so that: 
 

 The task precedence constraints are 
satisfied. 

 The resource constraints are satisfied.  
 A minimum schedule length is achieved. 
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Fig. 2. Fully connected 12 parallel systems 
 

 
 

Fig. 2(b). A directed acyclic graph with task precedence. Where wi, j = execution time of 
different tasks on different processors as shown in Table 1
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Table 1. Shows a tasks execution matrix on different processors with task size is 140 tasks 

 
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 

p1 4 3 6 5 2 8 7 4 9 10 11 6 12 13 10 16 10 7 6 3 9 12 13 15 7 10 6 8 4 5 6 7 10 13 9 
 p2 4 4 7 6 3 9 8 5 10 11 12 6 13 13 11 17 10 8 7 4 10 13 13 15 8 10 6 9 5 6 6 8 11 14 10 
p3 5 5 7 7 3 9 9 5 10 11 12 7 15 14 12 18 11 8 8 5 10 13 14 17 8 11 7 9 6 6 7 8 12 14 10 
p4 6 5 8 7 4 10 9 6 11 12 14 8 16 15 13 18 11 9 8 5 11 14 14 17 9 12 8 10 7 7 8 9 14 16 11 
p5 7 6 9 8 4 11 10 6 11 13 14 9 17 16 14 20 12 10 9 6 12 15 15 18 10 13 9 11 7 8 9 10 14 17 12 
p6 7 7 10 8 5 11 10 7 12 14 15 10 19 18 15 20 13 11 10 6 13 16 15 18 11 14 10 12 8 8 10 11 15 18 13 
p7 8 7 10 9 5 12 11 8 13 14 16 10 19 19 15 22 14 12 10 7 14 16 16 20 12 15 10 13 8 9 11 12 16 19 14 
p8 9 8 11 10 6 12 11 9 13 15 16 11 20 19 16 22 14 13 11 7 14 17 17 20 13 15 11 14 9 10 12 13 17 20 15 
p9 9 8 12 10 6 13 12 9 14 15 17 12 21 20 17 23 15 14 12 8 15 17 18 21 14 16 12 14 10 11 12 13 17 21 16 
p10 10 9 12 11 7 13 13 9 15 16 18 12 22 21 17 24 16 15 12 9 16 18 18 22 14 17 12 15 10 11 13 14 18 21 16 
p11 10 9 12 11 7 14 13 9 15 16 18 13 22 22 18 24 16 15 13 9 16 18 18 22 15 17 13 15 11 11 14 14 18 21 17 
p12 11 9 13 12 8 14 14 9 16 17 18 13 23 22 18 25 17 16 13 9 17 19 19 23 15 18 13 16 12 12 14 15 19 22 18 

 
 
 
 

t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53 t54 t55 t56 t57 t58 t59 t60 t61 t62 t63 t64 t65 t66 t67 t68 t69 t70 
p1 12 10 4 3 8 11 9 12 2 14 13 9 7 10 9 6 15 18 19 20 7 10 13 12 18 8 11 17 15 6 27 23 16 13 27 
 p2 12 10 5 4 9 12 10 13 2 14 13 10 8 11 10 6 15 18 19 20 7 10 13 12 18 8 11 17 16 6 27 23 16 13 27 
p3 13 11 5 4 9 12 11 13 3 16 14 11 9 11 11 7 16 19 20 21 8 11 14 13 19 9 12 18 16 6 28 24 17 14 28 
p4 15 12 6 5 10 13 12 14 3 16 14 11 10 12 12 8 16 19 21 21 8 11 15 14 19 9 12 18 16 7 28 24 17 14 28 
p5 15 13 6 5 10 15 13 15 4 17 16 13 11 13 13 8 17 20 22 22 9 12 16 15 20 9 13 18 17 7 29 25 18 15 29 
p6 16 13 7 6 11 15 14 15 4 17 16 14 11 14 13 8 18 20 23 23 9 12 16 15 20 10 13 19 17 7 29 25 18 15 29 
p7 17 14 8 6 12 16 15 16 5 18 17 15 12 15 14 9 1 21 24 24 9 13 16 15 21 10 14 19 18 7 30 25 19 15 29 
p8 18 15 8 7 13 16 16 17 5 19 18 16 13 15 15 9 19 22 24 25 10 14 17 16 21 11 14 20 19 8 30 26 19 16 30 
p9 18 16 9 7 14 17 16 18 6 20 18 17 14 16 15 10 19 23 25 26 10 15 17 16 22 12 15 20 19 8 31 26 20 16 30 
p10 19 16 9 8 14 18 17 18 6 21 19 17 15 16 16 10 20 23 25 26 10 15 18 17 23 12 15 21 20 9 31 27 20 17 31 
p11 19 17 9 8 15 18 17 19 7 21 20 18 15 16 17 11 20 24 26 27 11 16 18 17 23 13 16 21 20 9 32 28 21 18 31 
p12 20 17 9 9 16 18 18 20 8 22 21 19 16 17 18 11 21 25 26 28 11 17 19 18 24 14 17 22 20 10 33 29 22 18 32 
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  t71 t72 t73 t74 t75 t76 t77 t78 t79 t80 t81 t82 t83 t84 t85 t86 t87 t88 t89 t90 t91 t92 t93 t94 t95 t96 t97 t98 t99 t100 t101 t102 t103 t104 t105 
p1 5 10 3 6 14 2 5 8 20 18 19 14 11 7 12 20 6 10 9 4 13 3 8 15 3 12 14 9 6 12 9 5 4 15 8 
p2 5 10 3 7 14 2 6 8 20 18 20 15 12 7 12 21 6 11 9 4 13 3 8 15 3 12 15 9 6 13 10 6 4 15 8 
p3 6 11 4 7 15 2 6 9 21 19 20 16 12 8 13 22 7 11 10 5 14 3 9 16 4 13 15 10 7 13 10 6 4 16 9 
p4 7 12 4 8 16 3 7 9 22 19 21 16 13 8 14 23 7 12 10 5 14 4 9 16 4 13 15 10 7 13 11 7 5 17 9 
p5 8 12 4 9 17 3 7 10 23 20 21 17 14 9 15 24 8 13 11 6 15 4 9 17 4 14 16 10 7 14 11 7 5 17 9 
p6 9 13 5 9 17 4 8 11 23 21 22 18 15 10 16 25 8 14 12 6 16 4 10 17 5 15 16 11 8 14 12 7 5 18 10 
p7 9 14 5 9 18 4 8 11 24 21 23 18 15 10 16 25 9 15 13 6 17 4 10 18 5 16 17 11 8 15 12 8 6 18 10 
p8 10 14 5 10 18 5 9 12 25 22 24 19 16 11 17 26 10 16 14 7 18 5 10 19 5 17 18 11 8 16 12 8 6 19 11 
p9 10 15 6 10 19 5 10 13 26 23 25 19 16 12 18 27 11 17 14 7 19 5 11 19 6 17 18 12 9 17 13 9 6 19 11 
p10 11 16 6 10 20 5 11 13 27 23 26 20 17 13 19 30 11 18 15 7 20 5 12 20 6 18 19 13 9 18 14 9 7 20 12 
p11 12 17 7 11 20 6 11 14 27 24 26 20 18 14 20 31 12 18 16 8 21 6 12 21 7 18 20 13 9 18 15 9 8 21 12 
p12 12 17 8 12 21 7 12 15 28 25 27 21 19 15 21 31 12 19 16 9 22 7 13 21 8 19 20 14 9 19 16 9 8 21 13 

 
 
 
 

  t106 t107 t108 t109 t110 t101 t112 t113 t114 t115 t116 t117 t118 t119 t120 t121 t122 t123 t124 t125 t126 t127 t128 t129 t130 t131 t132 t133 t134 t135 t136 t137 t138 t139 t140 
p1 22 20 17 15 9 18 7 6 21 16 18 17 15 17 19 17 18 9 16 11 8 2 15 10 21 10 18 15 15 10 6 3 10 10 20 
p2 22 21 17 16 9 19 7 6 21 16 18 17 15 18 20 18 19 10 17 12 8 2 15 10 22 10 19 15 16 11 6 4 11 10 20 
p3 23 22 18 16 10 19 7 7 22 17 19 18 16 18 20 18 19 11 17 12 8 2 16 11 22 11 19 16 16 11 7 4 11 11 21 
p4 24 22 18 17 10 20 8 7 23 18 19 18 17 19 21 19 20 11 18 12 9 3 16 11 23 11 20 16 16 12 8 5 12 12 22 
p5 25 23 18 17 11 20 8 7 24 19 20 19 18 19 21 19 20 12 19 13 10 3 17 12 24 12 20 16 17 13 8 6 13 13 22 
p6 26 23 19 18 11 21 8 8 25 20 21 19 19 20 22 19 21 13 20 1 10 3 17 12 25 12 21 17 17 14 8 6 14 14 23 
p7 27 24 19 18 12 21 9 8 26 21 21 20 19 20 23 20 21 13 20 14 11 4 18 13 25 13 21 17 18 15 9 6 15 14 24 
p8 28 24 20 19 13 22 9 8 26 21 22 21 20 21 24 21 21 14 21 14 12 4 18 13 26 14 22 18 19 16 9 7 16 15 25 
p9 29 25 21 20 13 23 10 9 27 22 23 21 20 21 24 22 22 15 22 15 13 4 18 14 27 15 23 19 19 17 10 7 17 16 26 
p10 30 26 21 21 14 23 10 10 28 23 24 22 21 22 25 22 22 15 23 16 14 5 19 15 28 15 24 19 20 18 10 8 18 17 27 
p11 30 26 22 22 14 24 10 11 28 24 25 23 22 23 25 23 23 16 24 16 15 6 19 15 29 16 24 20 20 19 11 8 19 17 28 
p12 30 27 23 23 15 25 11 11 29 25 25 23 22 23 26 23 23 17 24 17 16 6 20 15 30 16 25 21 21 19 11 9 19 18 29 
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While considering the above constraints, the 
design of the scheduler depends upon the 
following issues:- 
 

 The scheduling algorithm can be 
deterministic or nondeterministic. In a 
nondeterministic problem, all or some of 
factors like knowledge about the task, 
relation between tasks (dependent or non-
dependent), number of processors etc. can 
be input-dependent and change according 
to run time conditions. Where as in 
deterministic task scheduling problem, 
knowledge related to tasks, relations 
among each other, timing and the 
availability of the number of processors are 
all a-prior knowledge.  

 The tasks can be either preemptive or non-
preemptive. In a non-preemptive task 
scheduling problem, task must be 
completely executed before another task to 
be scheduled. Where as in a preemptive 
task scheduling problem, the tasks to be 
cut off from execution and another task to 
start its execution cycle.  

 The processors either are homogenous or 
heterogeneous. In a homogenous 
processor environment, all processors are 
assumed to have equal processing 
capabilities. Where as in heterogeneity of 
processors, all processors have different 
processing capabilities or speeds. 

 
Proposed Genetic Algorithm is an efficient 
scheduling of a parallel task onto the parallel 
heterogeneous system that minimizes the overall 
execution time and achieve a high performance.  
 

4. SIGNIFICANCE 
 
Parallel computing has made a tremendous 
impact on a variety of areas ranging from 
computational simulations for scientific and 
engineering applications to commercial 
applications. The cost benefits of parallelism 
coupled with the performance requirements of 
applications present compelling arguments in 
favor of parallel computing. Parallel computers 
have been used to solve a variety of discrete and 
continue optimization problems. Algorithms such 
as Simplex, Interior Point Method for linear 
optimization and branch and bound and genetic 
programming for discrete optimization have been 
efficiently parallelized and are frequently used. 
 

 
 

5. GENETIC ALGORITHM  
 

A Genetic Algorithm is an optimization search 
technique and is a part of a class of evolutionary 
algorithms (EA) which use the mechanism and 
concept inspired by evolutionary biology such as 
selection, mutation, inheritance, and crossover. It 
requires an abstract representation (known as 
genotype) of candidate solutions (known as 
phenotypes). A fitness function evaluates how 
well each solution satisfies the search or 
optimization objectives. It starts with a group of 
randomly generated solutions; recombines 
results of existing solutions (known as crossover) 
and makes random changes (known as 
mutation). GA generates a new solution using 
fitness function and the evolutionary operators, 
which are increasingly closer to an optimal 
solution. 
 

6. METHODOLOGY 
 

The nature of the scheduling problem depends 
on the type of tasks to be scheduled, on the 
platform architecture, and on the aim of the 
scheduling policy. The tasks may be independent 
(e.g., they represent jobs submitted by different 
users to a same system, or they represent 
occurrences of the same program run on 
independent inputs), or the tasks may be 
dependent (e.g., they represent the different 
phases of a same processing and they form a 
task graph). The platform may or may not have a 
hierarchical architecture (clusters of clusters vs. 
a single cluster); it may or may not be dedicated. 
Resources may be added to or may disappear 
from the platform at any time, or the platform 
may have a stable composition. The processing 
units may have the same characteristics (e.g., 
computational power, amount of memory, multi-
port or only single-port communications support, 
etc.) or not. The communication links may have 
the same characteristics (e.g., bandwidths, 
latency, routing policy, etc.) or not. The aim of 
the scheduling policy can be to minimize the 
overall finish time (makespan minimization), the 
throughput of processed tasks, etc. Finally, the 
set of all tasks to be scheduled may be known 
from the beginning, or new tasks may arrive all 
along the execution of the system. 
 

Task scheduling on parallel multiprocessor 
system can be categorized into different classes 
based on the characteristics and type of the 
tasks to be scheduled, type of the multiprocessor 
systems i.e. either homogeneous or 
heterogeneous [19-21] and the availability of 
information. The focus is on the deterministic 
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scheduling problem in which all information about 
the tasks such as precedence relation and 
execution time are known to the scheduler in 
advance, the application tasks should be non 
preemptive i.e. the execution of the task must be 
completely done before another application task 
takes control of the processor, type of the 
processor is heterogeneous i.e. processors have 
different processing capabilities and speed. 
 

This study will try to assess the impact of the 
heterogeneity and volatility of the resources onto 
the scheduling strategies. When sets of 
computational tasks are scheduled, the 
traditional objective is to minimize the overall 
finish time also called the makespan.  
 

The main objective of the proposed scheduling 
algorithm is to minimize the total schedule finish 
time of the tasks which includes execution time 
and waiting time or idle time on deterministic and 
non-preemptive tasks in a heterogeneous 
multiprocessor environment. 
 

The procedure of the proposed genetic algorithm 
is: 
 

Step 1:  Setting the parameter 
Read directed acyclic graph i.e. task 
execution matrix which include number 
of tasks n, number of processors m and 
communication cost c, population size, 
probability pm, mutation, crossover 
probability pc, and maximum generation 
max_gen.  

 Set generation gen = 0, maxeval = 0  
Step 2:  Initialization  

Generate randomly population size 
chromosomes.  

Step 3:  Evaluate  
Step 3.1: Evaluate the fitness function of 
each chromosomes  

             Step 3.2: Evaluate task fitness 
Step 3.2: Evaluate processor fitness 

Step 4:  Compute  
Perform crossover operation on the 
chromosomes, having probability pc.  

Step 5:  Compute  
Perform mutation operation on 
chromosomes, having probability pm.  

Step 6:  Selection  
Select population size chromosomes 
from offspring for the next generation 
and parents.  

Step 7:  Check Condition   
Test: If gen = max_gen, then output 
best-solution and stop. 

          Else  

Compute: gen = gen + 1 and return to 
step 3 
 

The problem of optimal scheduling of the tasks 
on parallel multiprocessor systems with m 
processors is to allocate all the computational 
tasks to the available processors, so that the 
precedence relations among the tasks are 
maintained and all the tasks are executed in 
shortest possible time.  
 

7. PROPOSED GENETIC ALGORITHM 
FOR THE OPTIMAL SOLUTION 

 

Genetic Algorithm operates through a simple 
cycle of stages: 
 

 Create  population string 
 Evaluate  each string 
 Select  the best string 
 Reproduction to create a new population.  

 

The individuals are encoded in the population 
string known as chromosomes. Once the 
chromosome has been coded, it is possible to 
evaluate the performance or fitness of individuals 
in a population. A good coding scheme [22],[23] 
will benefit operators and make the object 
function easy to calculate. During selection, each 
individual is assigned a fitness value given by the 
objective function and choose the fittest 
individual of the current population to serve as 
parent of the next generation. Reproduction 
involves two types of operators namely crossover 
& mutation. The crossover operator chooses 
randomly a pair of individuals among those 
selected previously and exchange some part of 
the information. The mutation operator takes an 
individual randomly and alters it.   
 

7.1 Population Initialization  
 

The first step in the genetic algorithm is to create 
initial population, number of processors; number 
of tasks and population size is needed to 
generate initial population. The initial population 
is initialized with randomly generated individuals 
whereas the length of the individuals is equal to 
the number of application tasks in the directed 
acyclic graph. Each task is randomly assigned to 
a processor. 
 

7.2 Fitness Evaluation 
 
The fitness function used for proposed parallel 
genetic algorithm is based on the total finishing 
time of the schedule, which includes execution 
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time and communication delay time. The fitness 
function separates the evaluation into two parts: 
  
7.2.1 Task fitness 
 

The task fitness focus that all tasks are 
performed and scheduled in a valid order. A valid 
order means that pair of tasks is independent 
and no any task get data output from the other 
task for execution. The task scheduling of a pair 
of tasks to a single processor is valid, if the pair 
is independent or the order in which they are 
assigned to the processor matches the order of 
their dependency. 
  
7.2.2 Processor fitness 
 

The processor fitness component of the fitness 
function attempts to minimize processing time. 
Let us consider the following scheduler S1 & S2 
for single processor and multiprocessor tasks 
schedule respectively (here, we consider the 
case when fitness function assigned all tasks to a 
single processor and randomly generated tasks 
to heterogeneous parallel system.) The 
processor chosen for schedule S1 is p1 and the 
processors chosen for scheduler S2 are same as 
given in Table 1 and proposed genetic algorithm 
uses node duplication heuristics to reduce the 
data response time of its descendant nodes and 
permitting them to start as earlier as possible. 
The total finish time of schedule S1 & S2 is  
 

S1:  t1 t2 t3 ----------------------------t139 t140 
 

Total Finish Time = Execution time + Comm. 
Time = 
4+3+6+5+2+8+7+4+9+10+11+6+12+13+10+16+
10+7+6+3+9+12+13+15+7+10+6+8+4+5+6+7+1
0+13+9+12+10+4+3+8+11+9+12+2+14+13+9+7
+10+9+6+15+18+19+20+7+10+13+12+18+8+11
+17+15+6+27+23+16+13+27+5+10+3+6+14+2+
5+8+20+18+19+14+11+7+12+20+6+10+9+4+13
+3+8+15+3+12+14+9+6+12+9+5+4+15+8+22+2
0+17+15+9+18+7+6+21+16+18+17+15+17+19+
17+18+9+16+11+8+2+15+10+21+10+18+15+15
+10+6+3+10+10+20 =   1540 time units 
 

Here communication time = 0, because all tasks 
are executed on processor p1.  
 

S2: Total finish time = Execution time + 
Communication Time = 319 time units.  
 

The scheduler S1 shows a total finish time of 
1540 time units, where scheduler S2 shows a 
total finish time of just 319 time units. Hence 
proper fitness function reduces the total finish 
time very well.  

Thus, the fitness values (task & processor 
fitness) have been evaluated for all 
chromosomes and the probability of higher 
fitness is to be selected for reproduction from 
current generation to the next generation. 
 

7.3 Selection Operator 
 

The fitness function is the base of selection 
operator. The performance of genetic algorithm 
is affect by the design of the fitness function. 
Selection operator selects the superior and 
eliminates the inferior. Individual are selected as 
per their fitness value. When the fitness values 
have been computed for all chromosomes, we 
can select good chromosomes through rotating 
roulette wheel strategy. The selection operator 
produces next generation through selecting the 
best chromosomes from offspring and parents.   
 

7.4 Crossover Operator 
 

It randomly selects two parent chromosomes, 
with higher values of chromosomes have more 
chance for the selection and randomly choose 
their crossover points, and mate them to produce 
two child (known as offspring) chromosomes. We 
examine one and two point crossover operators. 
In one point crossover operation, the right 
segments of the crossover points are swapped to 
produce two offspring as shown in Fig. 3 (a) and 
in two point crossover [24,25], the central 
portions of the crossover points are swapped to 
produce two offspring as shown in Fig. 3 (b). 

 
Fig. 3 (a).  One point crossover 

 

 

t3 t3 

Randomly selects parent 1 & 2, crossover points 

Fig. 3 (b). Two point crossover 



 

7.4 Mutation Operator 
 

A mutation operation is designed to reduce the 
idle time of a processor waiting for the data from 
other processors. It works by randomly selecting 
two tasks and swapping them. Firstly, it randomly 
selects a processor, and then randomly selects a 
task [26,27] on that processor. This task is the 
first task of the pair to be swapped.  Secondly, it 
randomly selects a second processor (it may be 
the same as the first), and randomly selects a 
task. If the two selected tasks are the same task 
the search continues on. If the two tasks are 
different then they are swapped over (provided 
that the precedence relations must satisfy). 
Consider the following example of six tasks DAG 
with tasks precedence and the execution times of 
tasks t1 to t6 on processor p1 and p
Table 1. Fig. 4(a), (b), (c) and (d) demonstrates 
the mutation operation. 
 

 
Fig. 4 (a). A DAG with tasks prece

 

 

Fig. 4 (b). A Gantt chart before mutation 
operation, which takes 67 time units to 

complete the schedule
 

 

Fig. 4 (c). A Gantt chart after mutation 
operation, which takes 36 time units to 

complete the schedule
 

 

Fig. 4 (d). A Gantt chart after 
operation with task duplication, which takes 

28 time units 
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A Gantt chart before mutation 
operation, which takes 67 time units to 

complete the schedule 

 

A Gantt chart after mutation 
operation, which takes 36 time units to 

complete the schedule 

 

 mutation 
with task duplication, which takes 

Here the mutation operation swaps application 
task t2 on processor p1 to application task t
processor p2. 
 

8. EXPERIMENTAL RESULTS AND 
PERFORMANCE ANALYSIS

 

The simulation of the proposed algorithm was 
performed on simulation environment that was 
developed using MATLAB programming 
environment. To find the best solution, we use 
different values of population (50 to 500 
generations), crossover rate (0.1 to 0.5) and 
mutation rate (0.01 to 0.03) and varying task 
size. Simulation results using genetic algorithm 
are based on the test runs and study the effects 
of changing these parameters.  We have studied 
the effect of genetic based approach for 
scheduling tasks on parallel multiprocessor 
systems that can minimize the total finish time 
compared to the other traditional approaches.  In 
this experiment, we have shown a sample (In this 
case of 140 task size) of task execution time on 
different processor (In this case 12 processor) in 
Table 1. Fig. 5, 6 and 7 shows the time taken to 
complete the schedule as well performance and 
efficiency of the proposed GA with other 
algorithms. 
  
The final best application-task schedule is 
obtained by applying the Genetic Algorithm (GA) 
to the directed acyclic graph with execution time 
shown in the above Table 1 onto the twelve 
parallel multiprocessor systems is shown in 
6 for task size is 140 tasks. We also compare the 
results with Round Robin (RR), First Come First 
Serve (FCFS), and Multi-level queue sched
(MQS), Shortest Job First (SJF), Largest Job 
First (LJF) and Priority scheduling
parallel systems.  
 

8.1 Performance Analysis  
 

The performance of the proposed parallel genetic 
algorithm is carried out by evaluating the 
speedups and efficiency, compared with the 
Round Robin (RR), First Come First Serve 
(FCFS), Multi-level queue scheduling (MQS), 
Shortest Job First (SJF), Largest Job First (LJF) 
and Priority scheduling algorithms.
 

8.1.1 Speed up (TSP) 
 

Speed up [28] is defined as the finish time on a 
single processor divided by finish time on a 
multiprocessor system. It is denoted as T
case of homogeneous multiprocessor system as: 
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Tsp = p(1)/p(m) 
But, in case of heterogeneous multiprocessor 
system. It will be:  
 

Tsp= (min (p(1)) / p(m) 
 

That is the best single processor finish time 
divided by the finish time on a heterogeneous 
multiprocessor system. The speedup shows the 
finish time of 1540 units of the 140 tasks 
assigned on single processor, divided by finish 
time units on GA, Round Robin (RR), First Come 
First Serve (FCFS), Multi-level queue scheduling 
(MQS), Shortest Job First (SJF), Largest Job 
First (LJF) and Priority scheduling algorithms as 
shown in Fig. 6. 
 

 
 

Fig. 5. Time taken to complete the schedule 
 

 
 

Fig. 6. Speedup v/s number of parallel 
multiprocessor system 

 

 
 

Fig. 7. Performance comparisons 

8.1.2 Efficiency (¢) (Tsp / m)  
 
During the past 30 years, the trend indicates that 
ever faster networks, multi-processor computer 
architectures, and distributed systems, clearly 
show that parallelism is the future of computing. 
In this paper, we give successful examples of 
this approach i.e. successful examples 
correspond to problems where optimal 
throughput is determined and reconstructing the 
final schedule.  
 
We have considered scheduling techniques that 
maps a set of application graphs onto parallel 
multiprocessor platforms. We have shown that 
the general instance of this problem is NP-
complete. However, in many situations, it is 
amenable to be optimal.  
 

9. CONCLUSION 
 
In this study we have proposed a genetic 
algorithm  for task scheduling in heterogeneous 
parallel multiprocessor systems with task 
duplication heuristics to minimize the finish time 
of the schedule including waiting or idle time and 
execution time, increase the throughput of the 
system and method found a better solution for 
assigning the tasks to the parallel multiprocessor 
system. Experimental results and performance 
analysis of the proposed genetic algorithm  is 
compared with Round Robin (RR), First Come 
First Serve (FCFS), Multi-level queue scheduling 
(MQS), Shortest Job First (SJF), Largest Job 
First (LJF) and Priority scheduling algorithms 
methods. The results are based on the best 
randomly generated schedule by the proposed 
algorithm. 
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