
*Corresponding author: E-mail: jasbir2gill@gmail.com;

British Journal of Applied Science & Technology
10(1): 1-12, 2015, Article no.BJAST.17171

ISSN: 2231-0843

SCIENCEDOMAIN international

 www.sciencedomain.org

An Optimized Genetic Approach for Scheduling
Task Duplication in Parallel Systems

Jasbir Singh1* and Gurvinder Singh2

1Department of Computer Science, Guru Gobind Singh Khalsa College, Sarhali (Tarn Taran), Punjab,

India.
2Department of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, Punjab,

India.

Authors’ contributions

This work was carried out in collaboration between both authors. Author JS designed the study,
performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript and

managed literature searches. Authors GS managed the analyses of the study and literature searches.
Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJAST/2015/17171

Editor(s):
(1) Xu Jianhua, Depertment of Geography, East China Normal University, China.

(2) Orlando Manuel da Costa Gomes, Professor of Economics, Lisbon Accounting and Business School (ISCAL),
Lisbon Polytechnic Institute, Portugal.

Reviewers:
(1) Anonymous, Xi’an University of Science and Technology, China.

(2) Anonymous, University of Helwan, Egypt.
(3) Anonymous, Roma Tre University, Italy.

(4) Anonymous, University of Turkish Aeronautical Association, Turkey.
Complete Peer review History: http://sciencedomain.org/review-history/9802

Received 1
st

 March 2015
Accepted 1st June 2015

Published 17
th

 June 2015

ABSTRACT

Task Scheduling deals with the set of tasks assigned to parallel multiprocessor system and the
execution order of the schedule so that the total execution time is minimized. The role of a good
scheduling algorithm is to efficiently assign each task to a processor depending on the resources
needed, the communication overhead between related tasks is reduced and the precedence
relations among tasks are satisfied. It can be efficiently used for tasks that have a large calculation,
and have time constraints to complete the schedule. The efficient execution of the task scheduling
on parallel system takes the structure of the task and the performance characteristics of the
proposed genetic algorithm. It falls in the category of NP-complete problem. This study proposes a
parallel genetic algorithm-based approach to schedule tasks on parallel system with task
duplication heuristics. Task duplication can minimize inter-processor communication and hence

Original Research Article

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

2

results in shorter finish times. Its performance is measured in comparison with the Round Robin
(RR), First Come First Serve (FCFS), and Multi-level queue scheduling (MQS), Shortest Job First
(SJF), Largest Job First (LJF) and Priority scheduling methods.

Keywords: Parallel Multiprocessor Systems; Task Duplication Heuristics; Directed acyclic graph

(DAG); Task Scheduling; Simultaneous Optimization; Genetic Algorithm.

1. INTRODUCTION

Task scheduling for parallel systems can become
a quagmire of heuristics, models, and methods
that have been developed over the past
decades. The computing demand has increased
exponentially in the past decades and there are
many applications that require more processing
power than a uni-processor can provide. To
respond this demand, multi-processing units
employed simultaneously to collaborate on the
execution of the single application. Computer
systems that employed multiple processing units
are known as parallel systems [1-5]. Their aim is
to speed up the execution of an application
through the collaboration of the processing units.
Even though the area of parallel computing has
existed for many decades, programming a
parallel system for the execution of a single
application is still a challenging problem. Fig. 1
illustrates the process of parallelization; the
application must be divided into subtasks to allow
the distribution of the application’s computational
load among the processors.

In many practical approaches to parallel
programming [6], the steps of parallelization are

not clearly separable. For example the
decomposition into subtasks determines the
precedence constraints among them, which in
turn restrict the scheduling on the processors. In
other words, different decompositions into
subtasks can lead to different precedence
constraints and schedules with different
efficiencies. Summarizing, three main areas of
the parallelization process are identified:

 Subtask decomposition
 Dependence analysis
 Scheduling

Subtask decomposition and dependence
analysis build the foundation for scheduling.

2. PROBLEM DEFINITION

Task scheduling [7],[8] can be defined as
allocating the tasks onto parallel systems and
determining the sequence of task execution on
each processor. The total completion time of the
schedule is determined by the performance of
the parallel system and the execution sequence
of the tasks.

Fig. 1. Process of parallelization

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

3

Therefore, task scheduling on parallel system
consists of three components:-

• Optimal mapping of the task on parallel
system.

• Their sequence of execution.
• Optimal configuration of the parallel

systems, in case when the parallel
systems consist of heterogeneous
processors, which vary in factors like
processor's speed, available memory,
operating system, etc.

All these three components of the simultaneous
optimization [9,10] for scheduling problem are
highly dependent on each other. Therefore,
these should not be optimized separately.

A GA approach is used to handle the task
scheduling problem on parallel system. A GA
[11,12] starts with the generation of individuals.
Individuals are encoded as strings called
chromosomes. A chromosome refers to a
solution to the given problem. Individuals are
evaluated using fitness function. In general, GAs
consists of crossover, selection, and mutation
operations based on key parameters such as
crossover probability, fitness function, and
mutation probability.

Parallel Multiprocessor system scheduling [13-
17] is based on the characteristics of the
multiprocessor system, the tasks to be
scheduled, and the information availability. The
strategy behind the schedule execution on
parallel multiprocessor system is the partitioning
of the huge task, into set of sub-tasks of
appropriate gain size. The abstract model of the
partitioned tasks can be represented by Directed
Acyclic Graph (DAG). The multiprocessor system
consists of a set of m- parallel processor and can
be represented as

P = {pi: i =1, 2 …m}

They are connected with each other through
identical links. Eight parallel systems connected
with identical links, shown in Fig. 2.

The application can be represented by a DAG
(directed acyclic graph) G as shown in Fig. 2(b):

G= (T, E, W, C)

Where set T is the vertices and consists of n
tasks as:-

T={ tj: j =1, 2…n}

The set E is the directed edges consist of k
edges:

E = {ek: k =1, 2…r}

This shows the precedence relationships
between tasks. For example consider any two
tasks ti, ti+1 Є T, and having directed edge ek

(such that edge from task ti to ti+1). It means that
task ti+1 cannot be scheduled until the task ti has
been completed. Task ti is a predecessor of task
ti+1 and task ti+1 is a successor of task ti i.e. task ti
sends some information to task ti+1, whose
contents are needed by ti+1 to start execution.

The set W be the weights of the vertices:

W = {wi,j: i =1, 2…m, and j: 1, 2…n}

This shows the execution time of the ith task on jth
processor, and are varies from processor to
processor because of the processor environment
is heterogeneous.

The following Table 1 shows a matrix of the
sample space for 140 tasks, executed on 12
parallel multiprocessor systems, here task t1
shows execution time of 4 time units for
processor p1, 5 time units for processor p3 and 6
time units for processor p4 and so on. This is
because, processors are of heterogeneous
nature and have different processing capabilities
and speed.

The set C be the communication weight of the
edges:

C = {ck: k =1, 2…r}

This shows the data communication weights
between the two tasks, if the tasks are scheduled
on different Processors. When both tasks are
scheduled on the same processor, the weight
associated to the edge become null.

3. OBJECTIVE AND SCOPE

The objective of this paper is to design an
optimization algorithm, which minimize the
overall execution time of the schedule. The
proposed genetic algorithm-based scheduling
technique generates a task graph [18] using set
of computing resources or processors and maps
the sub-tasks onto the available parallel
processors, and also orders (or sequence) the
execution of the tasks so that:

 The task precedence constraints are
satisfied.

 The resource constraints are satisfied.
 A minimum schedule length is achieved.

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

4

Fig. 2. Fully connected 12 parallel systems

Fig. 2(b). A directed acyclic graph with task precedence. Where wi, j = execution time of
different tasks on different processors as shown in Table 1

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

5

Table 1. Shows a tasks execution matrix on different processors with task size is 140 tasks

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35

p1 4 3 6 5 2 8 7 4 9 10 11 6 12 13 10 16 10 7 6 3 9 12 13 15 7 10 6 8 4 5 6 7 10 13 9
 p2 4 4 7 6 3 9 8 5 10 11 12 6 13 13 11 17 10 8 7 4 10 13 13 15 8 10 6 9 5 6 6 8 11 14 10
p3 5 5 7 7 3 9 9 5 10 11 12 7 15 14 12 18 11 8 8 5 10 13 14 17 8 11 7 9 6 6 7 8 12 14 10
p4 6 5 8 7 4 10 9 6 11 12 14 8 16 15 13 18 11 9 8 5 11 14 14 17 9 12 8 10 7 7 8 9 14 16 11
p5 7 6 9 8 4 11 10 6 11 13 14 9 17 16 14 20 12 10 9 6 12 15 15 18 10 13 9 11 7 8 9 10 14 17 12
p6 7 7 10 8 5 11 10 7 12 14 15 10 19 18 15 20 13 11 10 6 13 16 15 18 11 14 10 12 8 8 10 11 15 18 13
p7 8 7 10 9 5 12 11 8 13 14 16 10 19 19 15 22 14 12 10 7 14 16 16 20 12 15 10 13 8 9 11 12 16 19 14
p8 9 8 11 10 6 12 11 9 13 15 16 11 20 19 16 22 14 13 11 7 14 17 17 20 13 15 11 14 9 10 12 13 17 20 15
p9 9 8 12 10 6 13 12 9 14 15 17 12 21 20 17 23 15 14 12 8 15 17 18 21 14 16 12 14 10 11 12 13 17 21 16
p10 10 9 12 11 7 13 13 9 15 16 18 12 22 21 17 24 16 15 12 9 16 18 18 22 14 17 12 15 10 11 13 14 18 21 16
p11 10 9 12 11 7 14 13 9 15 16 18 13 22 22 18 24 16 15 13 9 16 18 18 22 15 17 13 15 11 11 14 14 18 21 17
p12 11 9 13 12 8 14 14 9 16 17 18 13 23 22 18 25 17 16 13 9 17 19 19 23 15 18 13 16 12 12 14 15 19 22 18

t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53 t54 t55 t56 t57 t58 t59 t60 t61 t62 t63 t64 t65 t66 t67 t68 t69 t70
p1 12 10 4 3 8 11 9 12 2 14 13 9 7 10 9 6 15 18 19 20 7 10 13 12 18 8 11 17 15 6 27 23 16 13 27
 p2 12 10 5 4 9 12 10 13 2 14 13 10 8 11 10 6 15 18 19 20 7 10 13 12 18 8 11 17 16 6 27 23 16 13 27
p3 13 11 5 4 9 12 11 13 3 16 14 11 9 11 11 7 16 19 20 21 8 11 14 13 19 9 12 18 16 6 28 24 17 14 28
p4 15 12 6 5 10 13 12 14 3 16 14 11 10 12 12 8 16 19 21 21 8 11 15 14 19 9 12 18 16 7 28 24 17 14 28
p5 15 13 6 5 10 15 13 15 4 17 16 13 11 13 13 8 17 20 22 22 9 12 16 15 20 9 13 18 17 7 29 25 18 15 29
p6 16 13 7 6 11 15 14 15 4 17 16 14 11 14 13 8 18 20 23 23 9 12 16 15 20 10 13 19 17 7 29 25 18 15 29
p7 17 14 8 6 12 16 15 16 5 18 17 15 12 15 14 9 1 21 24 24 9 13 16 15 21 10 14 19 18 7 30 25 19 15 29
p8 18 15 8 7 13 16 16 17 5 19 18 16 13 15 15 9 19 22 24 25 10 14 17 16 21 11 14 20 19 8 30 26 19 16 30
p9 18 16 9 7 14 17 16 18 6 20 18 17 14 16 15 10 19 23 25 26 10 15 17 16 22 12 15 20 19 8 31 26 20 16 30
p10 19 16 9 8 14 18 17 18 6 21 19 17 15 16 16 10 20 23 25 26 10 15 18 17 23 12 15 21 20 9 31 27 20 17 31
p11 19 17 9 8 15 18 17 19 7 21 20 18 15 16 17 11 20 24 26 27 11 16 18 17 23 13 16 21 20 9 32 28 21 18 31
p12 20 17 9 9 16 18 18 20 8 22 21 19 16 17 18 11 21 25 26 28 11 17 19 18 24 14 17 22 20 10 33 29 22 18 32

Continue…………

Continue…………

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

6

 t71 t72 t73 t74 t75 t76 t77 t78 t79 t80 t81 t82 t83 t84 t85 t86 t87 t88 t89 t90 t91 t92 t93 t94 t95 t96 t97 t98 t99 t100 t101 t102 t103 t104 t105
p1 5 10 3 6 14 2 5 8 20 18 19 14 11 7 12 20 6 10 9 4 13 3 8 15 3 12 14 9 6 12 9 5 4 15 8
p2 5 10 3 7 14 2 6 8 20 18 20 15 12 7 12 21 6 11 9 4 13 3 8 15 3 12 15 9 6 13 10 6 4 15 8
p3 6 11 4 7 15 2 6 9 21 19 20 16 12 8 13 22 7 11 10 5 14 3 9 16 4 13 15 10 7 13 10 6 4 16 9
p4 7 12 4 8 16 3 7 9 22 19 21 16 13 8 14 23 7 12 10 5 14 4 9 16 4 13 15 10 7 13 11 7 5 17 9
p5 8 12 4 9 17 3 7 10 23 20 21 17 14 9 15 24 8 13 11 6 15 4 9 17 4 14 16 10 7 14 11 7 5 17 9
p6 9 13 5 9 17 4 8 11 23 21 22 18 15 10 16 25 8 14 12 6 16 4 10 17 5 15 16 11 8 14 12 7 5 18 10
p7 9 14 5 9 18 4 8 11 24 21 23 18 15 10 16 25 9 15 13 6 17 4 10 18 5 16 17 11 8 15 12 8 6 18 10
p8 10 14 5 10 18 5 9 12 25 22 24 19 16 11 17 26 10 16 14 7 18 5 10 19 5 17 18 11 8 16 12 8 6 19 11
p9 10 15 6 10 19 5 10 13 26 23 25 19 16 12 18 27 11 17 14 7 19 5 11 19 6 17 18 12 9 17 13 9 6 19 11
p10 11 16 6 10 20 5 11 13 27 23 26 20 17 13 19 30 11 18 15 7 20 5 12 20 6 18 19 13 9 18 14 9 7 20 12
p11 12 17 7 11 20 6 11 14 27 24 26 20 18 14 20 31 12 18 16 8 21 6 12 21 7 18 20 13 9 18 15 9 8 21 12
p12 12 17 8 12 21 7 12 15 28 25 27 21 19 15 21 31 12 19 16 9 22 7 13 21 8 19 20 14 9 19 16 9 8 21 13

 t106 t107 t108 t109 t110 t101 t112 t113 t114 t115 t116 t117 t118 t119 t120 t121 t122 t123 t124 t125 t126 t127 t128 t129 t130 t131 t132 t133 t134 t135 t136 t137 t138 t139 t140
p1 22 20 17 15 9 18 7 6 21 16 18 17 15 17 19 17 18 9 16 11 8 2 15 10 21 10 18 15 15 10 6 3 10 10 20
p2 22 21 17 16 9 19 7 6 21 16 18 17 15 18 20 18 19 10 17 12 8 2 15 10 22 10 19 15 16 11 6 4 11 10 20
p3 23 22 18 16 10 19 7 7 22 17 19 18 16 18 20 18 19 11 17 12 8 2 16 11 22 11 19 16 16 11 7 4 11 11 21
p4 24 22 18 17 10 20 8 7 23 18 19 18 17 19 21 19 20 11 18 12 9 3 16 11 23 11 20 16 16 12 8 5 12 12 22
p5 25 23 18 17 11 20 8 7 24 19 20 19 18 19 21 19 20 12 19 13 10 3 17 12 24 12 20 16 17 13 8 6 13 13 22
p6 26 23 19 18 11 21 8 8 25 20 21 19 19 20 22 19 21 13 20 1 10 3 17 12 25 12 21 17 17 14 8 6 14 14 23
p7 27 24 19 18 12 21 9 8 26 21 21 20 19 20 23 20 21 13 20 14 11 4 18 13 25 13 21 17 18 15 9 6 15 14 24
p8 28 24 20 19 13 22 9 8 26 21 22 21 20 21 24 21 21 14 21 14 12 4 18 13 26 14 22 18 19 16 9 7 16 15 25
p9 29 25 21 20 13 23 10 9 27 22 23 21 20 21 24 22 22 15 22 15 13 4 18 14 27 15 23 19 19 17 10 7 17 16 26
p10 30 26 21 21 14 23 10 10 28 23 24 22 21 22 25 22 22 15 23 16 14 5 19 15 28 15 24 19 20 18 10 8 18 17 27
p11 30 26 22 22 14 24 10 11 28 24 25 23 22 23 25 23 23 16 24 16 15 6 19 15 29 16 24 20 20 19 11 8 19 17 28
p12 30 27 23 23 15 25 11 11 29 25 25 23 22 23 26 23 23 17 24 17 16 6 20 15 30 16 25 21 21 19 11 9 19 18 29

Continue…………

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

7

While considering the above constraints, the
design of the scheduler depends upon the
following issues:-

 The scheduling algorithm can be
deterministic or nondeterministic. In a
nondeterministic problem, all or some of
factors like knowledge about the task,
relation between tasks (dependent or non-
dependent), number of processors etc. can
be input-dependent and change according
to run time conditions. Where as in
deterministic task scheduling problem,
knowledge related to tasks, relations
among each other, timing and the
availability of the number of processors are
all a-prior knowledge.

 The tasks can be either preemptive or non-
preemptive. In a non-preemptive task
scheduling problem, task must be
completely executed before another task to
be scheduled. Where as in a preemptive
task scheduling problem, the tasks to be
cut off from execution and another task to
start its execution cycle.

 The processors either are homogenous or
heterogeneous. In a homogenous
processor environment, all processors are
assumed to have equal processing
capabilities. Where as in heterogeneity of
processors, all processors have different
processing capabilities or speeds.

Proposed Genetic Algorithm is an efficient
scheduling of a parallel task onto the parallel
heterogeneous system that minimizes the overall
execution time and achieve a high performance.

4. SIGNIFICANCE

Parallel computing has made a tremendous
impact on a variety of areas ranging from
computational simulations for scientific and
engineering applications to commercial
applications. The cost benefits of parallelism
coupled with the performance requirements of
applications present compelling arguments in
favor of parallel computing. Parallel computers
have been used to solve a variety of discrete and
continue optimization problems. Algorithms such
as Simplex, Interior Point Method for linear
optimization and branch and bound and genetic
programming for discrete optimization have been
efficiently parallelized and are frequently used.

5. GENETIC ALGORITHM

A Genetic Algorithm is an optimization search
technique and is a part of a class of evolutionary
algorithms (EA) which use the mechanism and
concept inspired by evolutionary biology such as
selection, mutation, inheritance, and crossover. It
requires an abstract representation (known as
genotype) of candidate solutions (known as
phenotypes). A fitness function evaluates how
well each solution satisfies the search or
optimization objectives. It starts with a group of
randomly generated solutions; recombines
results of existing solutions (known as crossover)
and makes random changes (known as
mutation). GA generates a new solution using
fitness function and the evolutionary operators,
which are increasingly closer to an optimal
solution.

6. METHODOLOGY

The nature of the scheduling problem depends
on the type of tasks to be scheduled, on the
platform architecture, and on the aim of the
scheduling policy. The tasks may be independent
(e.g., they represent jobs submitted by different
users to a same system, or they represent
occurrences of the same program run on
independent inputs), or the tasks may be
dependent (e.g., they represent the different
phases of a same processing and they form a
task graph). The platform may or may not have a
hierarchical architecture (clusters of clusters vs.
a single cluster); it may or may not be dedicated.
Resources may be added to or may disappear
from the platform at any time, or the platform
may have a stable composition. The processing
units may have the same characteristics (e.g.,
computational power, amount of memory, multi-
port or only single-port communications support,
etc.) or not. The communication links may have
the same characteristics (e.g., bandwidths,
latency, routing policy, etc.) or not. The aim of
the scheduling policy can be to minimize the
overall finish time (makespan minimization), the
throughput of processed tasks, etc. Finally, the
set of all tasks to be scheduled may be known
from the beginning, or new tasks may arrive all
along the execution of the system.

Task scheduling on parallel multiprocessor
system can be categorized into different classes
based on the characteristics and type of the
tasks to be scheduled, type of the multiprocessor
systems i.e. either homogeneous or
heterogeneous [19-21] and the availability of
information. The focus is on the deterministic

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

8

scheduling problem in which all information about
the tasks such as precedence relation and
execution time are known to the scheduler in
advance, the application tasks should be non
preemptive i.e. the execution of the task must be
completely done before another application task
takes control of the processor, type of the
processor is heterogeneous i.e. processors have
different processing capabilities and speed.

This study will try to assess the impact of the
heterogeneity and volatility of the resources onto
the scheduling strategies. When sets of
computational tasks are scheduled, the
traditional objective is to minimize the overall
finish time also called the makespan.

The main objective of the proposed scheduling
algorithm is to minimize the total schedule finish
time of the tasks which includes execution time
and waiting time or idle time on deterministic and
non-preemptive tasks in a heterogeneous
multiprocessor environment.

The procedure of the proposed genetic algorithm
is:

Step 1: Setting the parameter
Read directed acyclic graph i.e. task
execution matrix which include number
of tasks n, number of processors m and
communication cost c, population size,
probability pm, mutation, crossover
probability pc, and maximum generation
max_gen.

 Set generation gen = 0, maxeval = 0
Step 2: Initialization

Generate randomly population size
chromosomes.

Step 3: Evaluate
Step 3.1: Evaluate the fitness function of
each chromosomes

 Step 3.2: Evaluate task fitness
Step 3.2: Evaluate processor fitness

Step 4: Compute
Perform crossover operation on the
chromosomes, having probability pc.

Step 5: Compute
Perform mutation operation on
chromosomes, having probability pm.

Step 6: Selection
Select population size chromosomes
from offspring for the next generation
and parents.

Step 7: Check Condition
Test: If gen = max_gen, then output
best-solution and stop.

 Else

Compute: gen = gen + 1 and return to
step 3

The problem of optimal scheduling of the tasks
on parallel multiprocessor systems with m
processors is to allocate all the computational
tasks to the available processors, so that the
precedence relations among the tasks are
maintained and all the tasks are executed in
shortest possible time.

7. PROPOSED GENETIC ALGORITHM
FOR THE OPTIMAL SOLUTION

Genetic Algorithm operates through a simple
cycle of stages:

 Create population string
 Evaluate each string
 Select the best string
 Reproduction to create a new population.

The individuals are encoded in the population
string known as chromosomes. Once the
chromosome has been coded, it is possible to
evaluate the performance or fitness of individuals
in a population. A good coding scheme [22],[23]
will benefit operators and make the object
function easy to calculate. During selection, each
individual is assigned a fitness value given by the
objective function and choose the fittest
individual of the current population to serve as
parent of the next generation. Reproduction
involves two types of operators namely crossover
& mutation. The crossover operator chooses
randomly a pair of individuals among those
selected previously and exchange some part of
the information. The mutation operator takes an
individual randomly and alters it.

7.1 Population Initialization

The first step in the genetic algorithm is to create
initial population, number of processors; number
of tasks and population size is needed to
generate initial population. The initial population
is initialized with randomly generated individuals
whereas the length of the individuals is equal to
the number of application tasks in the directed
acyclic graph. Each task is randomly assigned to
a processor.

7.2 Fitness Evaluation

The fitness function used for proposed parallel
genetic algorithm is based on the total finishing
time of the schedule, which includes execution

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

9

time and communication delay time. The fitness
function separates the evaluation into two parts:

7.2.1 Task fitness

The task fitness focus that all tasks are
performed and scheduled in a valid order. A valid
order means that pair of tasks is independent
and no any task get data output from the other
task for execution. The task scheduling of a pair
of tasks to a single processor is valid, if the pair
is independent or the order in which they are
assigned to the processor matches the order of
their dependency.

7.2.2 Processor fitness

The processor fitness component of the fitness
function attempts to minimize processing time.
Let us consider the following scheduler S1 & S2
for single processor and multiprocessor tasks
schedule respectively (here, we consider the
case when fitness function assigned all tasks to a
single processor and randomly generated tasks
to heterogeneous parallel system.) The
processor chosen for schedule S1 is p1 and the
processors chosen for scheduler S2 are same as
given in Table 1 and proposed genetic algorithm
uses node duplication heuristics to reduce the
data response time of its descendant nodes and
permitting them to start as earlier as possible.
The total finish time of schedule S1 & S2 is

S1: t1 t2 t3 ----------------------------t139 t140

Total Finish Time = Execution time + Comm.
Time =
4+3+6+5+2+8+7+4+9+10+11+6+12+13+10+16+
10+7+6+3+9+12+13+15+7+10+6+8+4+5+6+7+1
0+13+9+12+10+4+3+8+11+9+12+2+14+13+9+7
+10+9+6+15+18+19+20+7+10+13+12+18+8+11
+17+15+6+27+23+16+13+27+5+10+3+6+14+2+
5+8+20+18+19+14+11+7+12+20+6+10+9+4+13
+3+8+15+3+12+14+9+6+12+9+5+4+15+8+22+2
0+17+15+9+18+7+6+21+16+18+17+15+17+19+
17+18+9+16+11+8+2+15+10+21+10+18+15+15
+10+6+3+10+10+20 = 1540 time units

Here communication time = 0, because all tasks
are executed on processor p1.

S2: Total finish time = Execution time +
Communication Time = 319 time units.

The scheduler S1 shows a total finish time of
1540 time units, where scheduler S2 shows a
total finish time of just 319 time units. Hence
proper fitness function reduces the total finish
time very well.

Thus, the fitness values (task & processor
fitness) have been evaluated for all
chromosomes and the probability of higher
fitness is to be selected for reproduction from
current generation to the next generation.

7.3 Selection Operator

The fitness function is the base of selection
operator. The performance of genetic algorithm
is affect by the design of the fitness function.
Selection operator selects the superior and
eliminates the inferior. Individual are selected as
per their fitness value. When the fitness values
have been computed for all chromosomes, we
can select good chromosomes through rotating
roulette wheel strategy. The selection operator
produces next generation through selecting the
best chromosomes from offspring and parents.

7.4 Crossover Operator

It randomly selects two parent chromosomes,
with higher values of chromosomes have more
chance for the selection and randomly choose
their crossover points, and mate them to produce
two child (known as offspring) chromosomes. We
examine one and two point crossover operators.
In one point crossover operation, the right
segments of the crossover points are swapped to
produce two offspring as shown in Fig. 3 (a) and
in two point crossover [24,25], the central
portions of the crossover points are swapped to
produce two offspring as shown in Fig. 3 (b).

Fig. 3 (a). One point crossover

t3 t3

Randomly selects parent 1 & 2, crossover points

Fig. 3 (b). Two point crossover

7.4 Mutation Operator

A mutation operation is designed to reduce the
idle time of a processor waiting for the data from
other processors. It works by randomly selecting
two tasks and swapping them. Firstly, it randomly
selects a processor, and then randomly selects a
task [26,27] on that processor. This task is the
first task of the pair to be swapped. Secondly, it
randomly selects a second processor (it may be
the same as the first), and randomly selects a
task. If the two selected tasks are the same task
the search continues on. If the two tasks are
different then they are swapped over (provided
that the precedence relations must satisfy).
Consider the following example of six tasks DAG
with tasks precedence and the execution times of
tasks t1 to t6 on processor p1 and p
Table 1. Fig. 4(a), (b), (c) and (d) demonstrates
the mutation operation.

Fig. 4 (a). A DAG with tasks prece

Fig. 4 (b). A Gantt chart before mutation
operation, which takes 67 time units to

complete the schedule

Fig. 4 (c). A Gantt chart after mutation
operation, which takes 36 time units to

complete the schedule

Fig. 4 (d). A Gantt chart after
operation with task duplication, which takes

28 time units

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.

10

A mutation operation is designed to reduce the
idle time of a processor waiting for the data from

orks by randomly selecting
two tasks and swapping them. Firstly, it randomly
selects a processor, and then randomly selects a

on that processor. This task is the
first task of the pair to be swapped. Secondly, it

cessor (it may be
the same as the first), and randomly selects a
task. If the two selected tasks are the same task
the search continues on. If the two tasks are
different then they are swapped over (provided
that the precedence relations must satisfy).

sider the following example of six tasks DAG
with tasks precedence and the execution times of

and p2 are given in
(a), (b), (c) and (d) demonstrates

A DAG with tasks precedence

A Gantt chart before mutation
operation, which takes 67 time units to

complete the schedule

A Gantt chart after mutation
operation, which takes 36 time units to

complete the schedule

 mutation
with task duplication, which takes

Here the mutation operation swaps application
task t2 on processor p1 to application task t
processor p2.

8. EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

The simulation of the proposed algorithm was
performed on simulation environment that was
developed using MATLAB programming
environment. To find the best solution, we use
different values of population (50 to 500
generations), crossover rate (0.1 to 0.5) and
mutation rate (0.01 to 0.03) and varying task
size. Simulation results using genetic algorithm
are based on the test runs and study the effects
of changing these parameters. We have studied
the effect of genetic based approach for
scheduling tasks on parallel multiprocessor
systems that can minimize the total finish time
compared to the other traditional approaches. In
this experiment, we have shown a sample (In this
case of 140 task size) of task execution time on
different processor (In this case 12 processor) in
Table 1. Fig. 5, 6 and 7 shows the time taken to
complete the schedule as well performance and
efficiency of the proposed GA with other
algorithms.

The final best application-task schedule is
obtained by applying the Genetic Algorithm (GA)
to the directed acyclic graph with execution time
shown in the above Table 1 onto the twelve
parallel multiprocessor systems is shown in
6 for task size is 140 tasks. We also compare the
results with Round Robin (RR), First Come First
Serve (FCFS), and Multi-level queue sched
(MQS), Shortest Job First (SJF), Largest Job
First (LJF) and Priority scheduling
parallel systems.

8.1 Performance Analysis

The performance of the proposed parallel genetic
algorithm is carried out by evaluating the
speedups and efficiency, compared with the
Round Robin (RR), First Come First Serve
(FCFS), Multi-level queue scheduling (MQS),
Shortest Job First (SJF), Largest Job First (LJF)
and Priority scheduling algorithms.

8.1.1 Speed up (TSP)

Speed up [28] is defined as the finish time on a
single processor divided by finish time on a
multiprocessor system. It is denoted as T
case of homogeneous multiprocessor system as:

12, 2015; Article no.BJAST.17171

Here the mutation operation swaps application
to application task t3 on

EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

osed algorithm was
performed on simulation environment that was
developed using MATLAB programming
environment. To find the best solution, we use
different values of population (50 to 500
generations), crossover rate (0.1 to 0.5) and

0.03) and varying task
size. Simulation results using genetic algorithm
are based on the test runs and study the effects
of changing these parameters. We have studied
the effect of genetic based approach for
scheduling tasks on parallel multiprocessor

stems that can minimize the total finish time
compared to the other traditional approaches. In
this experiment, we have shown a sample (In this
case of 140 task size) of task execution time on
different processor (In this case 12 processor) in

shows the time taken to
complete the schedule as well performance and
efficiency of the proposed GA with other

task schedule is
obtained by applying the Genetic Algorithm (GA)

raph with execution time
1 onto the twelve

parallel multiprocessor systems is shown in Fig.
6 for task size is 140 tasks. We also compare the

Round Robin (RR), First Come First
level queue scheduling

(MQS), Shortest Job First (SJF), Largest Job
First (LJF) and Priority scheduling methods on

The performance of the proposed parallel genetic
algorithm is carried out by evaluating the

ency, compared with the with
Round Robin (RR), First Come First Serve

level queue scheduling (MQS),
Shortest Job First (SJF), Largest Job First (LJF)
and Priority scheduling algorithms.

inish time on a
single processor divided by finish time on a
multiprocessor system. It is denoted as Tsp in
case of homogeneous multiprocessor system as:

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

11

Tsp = p(1)/p(m)
But, in case of heterogeneous multiprocessor
system. It will be:

Tsp= (min (p(1)) / p(m)

That is the best single processor finish time
divided by the finish time on a heterogeneous
multiprocessor system. The speedup shows the
finish time of 1540 units of the 140 tasks
assigned on single processor, divided by finish
time units on GA, Round Robin (RR), First Come
First Serve (FCFS), Multi-level queue scheduling
(MQS), Shortest Job First (SJF), Largest Job
First (LJF) and Priority scheduling algorithms as
shown in Fig. 6.

Fig. 5. Time taken to complete the schedule

Fig. 6. Speedup v/s number of parallel
multiprocessor system

Fig. 7. Performance comparisons

8.1.2 Efficiency (¢) (Tsp / m)

During the past 30 years, the trend indicates that
ever faster networks, multi-processor computer
architectures, and distributed systems, clearly
show that parallelism is the future of computing.
In this paper, we give successful examples of
this approach i.e. successful examples
correspond to problems where optimal
throughput is determined and reconstructing the
final schedule.

We have considered scheduling techniques that
maps a set of application graphs onto parallel
multiprocessor platforms. We have shown that
the general instance of this problem is NP-
complete. However, in many situations, it is
amenable to be optimal.

9. CONCLUSION

In this study we have proposed a genetic
algorithm for task scheduling in heterogeneous
parallel multiprocessor systems with task
duplication heuristics to minimize the finish time
of the schedule including waiting or idle time and
execution time, increase the throughput of the
system and method found a better solution for
assigning the tasks to the parallel multiprocessor
system. Experimental results and performance
analysis of the proposed genetic algorithm is
compared with Round Robin (RR), First Come
First Serve (FCFS), Multi-level queue scheduling
(MQS), Shortest Job First (SJF), Largest Job
First (LJF) and Priority scheduling algorithms
methods. The results are based on the best
randomly generated schedule by the proposed
algorithm.

COMPETING INTERESTS

Authors have declared that no competing
interests exist

REFERENCES

1. Qumn MJ. Parallel computing theory and

practices. 2nd ed. Tata McGraw Hill
Education Private Ltd. 2002;346-364.

2. David A Pattern, Hennessy JL. Computer
Architecture 3

rd
 ed. Morgan Kaufmann &

Elsevier India. 2011;528-590.
3. Culler DE. Parallel Computer Architecture.

Morgan Kaufmann & Elsevier India; 2010.

Singh and Singh; BJAST, 10(1): 1-12, 2015; Article no.BJAST.17171

12

4. Hayes JP. Computer Architecture and
Organization. McGraw Hill International
Edition; 1996.

5. Carpinalli JD. Computer System
Organization & Architecture. Pearson
Education; 2006.

6. Sara Baase, Allen Van Gelder. Computer
Algorithms. Addison Wesley; 2000.

7. Sartaj Sahni. Algorithms Analysis and
Design. Galgotia Publications Pvt. Ltd.,
New Delhi; 1996.

8. George Karypis, Ananth Grama, Vipin
Kumar, Anshul Gupta. Introduction to
parallel computing. Pearson Education;
2009.

9. Kalyanmoy Deb. Optimization for
engineering design. PHI; 2003.

10. Terence Fountain, Peter Kacsuk, Dezso
Sima. Advanced computer architectures.
Pearson Education; 2009.

11. Goldberg DE. Genetic algorithms in
search, optimization and machine learning.
Pearson Education. 2004;60-83.

12. Ishraq Ahmad, Yu-Kwong. Static
scheduling algorithms for allocating
directed task graphs to multiprocessors.
ACM Computing Surveys. 1999;31(4).

13. Tack-Don Han, Sung-Bong Yang, Sung-Ho
Woo, Shin-Dug Kim. Task scheduling in
distributed computed system with a genetic
algorithm. IEEE Trans on parallel System.
1997;301-305.

14. Ahmadabadi N, Fakhraie SN, Salmani
Jelodar M, Fakharie SM. A representaion
for genetic–algorithm-based
multiprocessor task scheduling. IEEE
Proceeding. 2006;340-347.

15. Arif Ghafoor, Muhammad K Dhodhi, Imtiaz
Ahmad. Task assignment in distributed
computing systems. IEEE Proceeding.
1995;49-53.

16. Fikret Ercan M, Ceyda Oguz. A genetic
algorithm for multi-layer multiprocessor
task scheduling. IEEE Proceeding.
2004;168-170.

17. Heng-Nlan QI, Jian-Gang Yang, YI-Wen
Zhong. A hybrid genetic algorithm for task

scheduling in heterogeneous computing
system. IEEE Proceeding. 2004;2463-
2468.

18. Mitchell, Melanie. An introduction to
genetic algorithm Bu. MIT Press; 1996.

19. page J, Naughton TJ. Framework for task
scheduling in heterogeneous distributed
computing system using genetic algorithm.
Kluwer Academic Publisher, Printed in the
Netherlands; 2005.

20. Chi-Kwong Li, Wai-Yip Cha. Proceeding
IEEE scheduling tasks in DAG to
heterogeneous processor system; 1998.

21. Wojciech Cencek. High-Performance
computing on heterogeneous systems;
Computational Methods in Science and
Technology; 1999.

22. Arjan JC. van Gemund, Andrei R. Fast and
effective task scheduling in heterogeneous
systems. IEEE Proceeding; 2000.

23. Frank Moore, Pan Yi, Michael Bohler.
Improved multiprocessor task scheduling
using genetic algorithms. Proceedings of
the Twelfth International FLAIRS
Conference; 1999.

24. Laurence tianruo Yang, Man Lin. Hybrid
genetic algorithm for scheduling partially
ordered tasks in a multi-processor
environment. IEEE Proceeding. 1999;382-
387.

25. Maode Ma, Rongbo Zhu, Yajun Li, Yuhang
yang. A Problem-Specific genetic algorithm
for multiprocessor real-time task
scheduling. IEEE Proceeding; 2008.

26. Hong Jiang, Jameela Al-Jaroodi, David
Swanson, Nader Mohamed. Modeling
parallel applications performance on
heterogeneous systems; Proceedings of
the International Parallel and Distributed
Processing Symposium (IPDPS’03); 2003.

27. M. J Qumn. Parallel Programming. Tata
McGraw Hill Education Private Ltd; 63-89.

28. Faye A Briggs, Kai Hwang. Computer
architecture and parallel processing.
McGraw Hill. 1985;445-47,612.

© 2015 Singh and Singh; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/9802

