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An effective tumor detection in MR brain images based on 
deep CNN approach: i-YOLOV5
Sivapathi Arunachalam and Gopalakrishnan Sethumathavan

School of Computing, SASTRA Deemed University, Tamil Nadu, Thanjavur, India

ABSTRACT
With the advent of computer technology, Artificial Intelligence 
(AI) aids radiologists to diagnosis the Brain Tumor (BT). Early 
detection of diseases can be increased in health care leads to 
further treatments, wherein the typical application of AI systems 
performs a vital role in terms of time and money savings. 
Magnetic Resonance (MR) images are enhanced with image 
enhancement techniques to improve contrast and color accu
racy. Besides, traditional methods uncompensated for problems 
with the several types of MR imaging for BT. Deep learning 
techniques can be extended to help overcome the common 
problems encountered in conventional tumor detection meth
ods. Therefore, in this work, an improvised YOLOV5 technique 
have been proposed for BT detection based on MR images. 
Eventually, the idea of Hyperparameter Optimization (HPO) is 
applied using Hybrid Grid Search Optimizer Algorithm (HGSOA) 
to enhance the performance of the tumor detection viz tuning 
of hyper parameters in proposed deep neural network. To eval
uate the effectiveness of proposed model, McCulloch’s algo
rithm is used to localize images for tumor region 
segmentation, and the segmentation result is also checked 
with truth annotated images. Various experiments were con
ducted to measure the accuracy of proposed fine-tuned model 
using MW brain test images. Finally, classification metrics includ
ing, MSE, PSNR, SSIM, FSIM, and CPU time are compared with 
existing state-of-the-art techniques to prove the effectiveness of 
the proposed model. In the taxonomy of MRI-BT, greater preci
sion was achieved by CNN.
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Introduction

The improvement in people’s standard of living is drastic with fast economic 
development. Moreover, there is a significant reinforcement of healthcare 
systems’ proportion and a gradual increase of health awareness camps in 
societies. There has been an exponential expansion and promotion of health
care technology in the past few years. The future of healthcare and enhanced 
public health has been molded by state-of-the-art technologies (Dosovitskiy 
et al. 2020). For instance, by possessing image processing as a significant 
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component, patients’ healthcare has been improved by successfully applying 
Computer Vision (CV) technology in medical imaging. It is a great challenge 
to detect BT in humans as the brain is susceptible organ. Generally, radiologist 
find difficult to identify the BT from MR images which may consume more 
time. A second opinion on the existence (or) nonexistence of a tumor happens 
in the mind of the radiologist with the help of a Computer-Aided Diagnostic 
(CAD) system, which has to be boosted for effective performance.

BT refers to the aggregation of abnormal cells in some tissues of the brain. 
Primary and metastatic BT are the two groups that are separated based on the 
origin of the tumors. Even benign tumors can disable the brain and have 
permanent repercussions since BT are present in the center of the human 
neurological system. The accumulation of aberrant cells in some brain areas 
was referred to as a BT. Primary and metastatic BT are the two groups that are 
separated based on the origin of the tumors. Even benign tumors can disable 
the brain and have permanent repercussions since BT are present in the center 
of the human neurological system. The study of brain images is facilitated by 
Magnetic Resonance Imaging (MRI) which plays a significant role in research 
in neuroscience. The prevailing segmentation techniques require a massive 
amount of precise data that is difficult to obtain in the medical field. Some of 
the research studies deal with inaccurate data in medical images. Moreover, 
the modeling of healthy brain distributions at high resolution for detection 
and delineation, especially of small brain lesions with greater accuracy, has 
been emphasized in this research work. The goal is to assist radiologists with 
more targeted and accurate disease detection, like BT using enhanced AI to 
implement unique tools for analyzing medical images.

Recently, in image classification, significant success has been achieved by 
Deep Learning (DL) (Dosovitskiy et al. 2021; Mitani et al. 2020), a kind of AI 
in which the patterns are learned by Neural Networks (NN) directly from raw 
data. The detection and classification of tumors into glioma, pituitary, and 
meningioma are done with the help of a technique based on DL. From the 
segmented images, the features are mined regarding tumor region, texture, 
color, edge, and location. From the segmented images, the classification 
techniques are used classifying to obtain a conclusion on whether the patient 
is having or not having a tumor. The issues confronted in the previous 
research have been overcome in this paper by introducing YOLOV5.

Nevertheless, high-level training skills are required for skilled engineers. 
Human beings are prone to making mistakes, even after training for many 
years. Hence, to a certain extent, DL can mitigate such errors. Hard-to-detect 
diseases can be verified with the help of programmed machines, especially 
using DL algorithms. Building a trainable model that can automatically mine 
the features that belong to particular tasks has been made feasible due to the 
enhanced DL (Anaraki, Ayati, and Kazemi 2019). When compared to con
ventional, ML and DL can perform better in various domains, like medical 
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image segmentation. The segmentation of tumors using DL techniques can be 
time effective for hospitals and patients. Besides, the diagnosis is also very 
accurate with the application of this technique. This author presents fully- 
automated CNN models for multi-level classification of BT that have used 
open-access datasets.

The quality of digital imaging has been projected to be improved by using 
a different modified Anisotropic Diffusion (AD) models using other methods 
(Malarvel et al. 2017). The level of noise is reduced by spatial information. 
A standard method known as linear diffusion is used in spatial information to 
smooth an image under the control of kernel tricks. The benign and malignant 
BT that grow at a slow pace are not very hazardous to the human body. As 
a result, cells and other organs in the body find proof of general and specific 
cell spread in BT. The result of various Image Quality metrics, MSE, PSNR, 
SSIM, and FSIM, is achieved by the proposed method compared with the 
previous research.

Moreover, minimum computation time is taken (Menze et al. 2015). To 
solve the problem of tumor classification, ML algorithms like Support Vector 
Machine (SVM), Approximate Nearest Neighbor (ANN), and K-Nearest 
Neighbor (KNN) are applied in this work. In the taxonomy of MRI-BT, 
greater precision was achieved by CNN, like the accuracy of 91% obtained 
by benign/malicious scans (Bahadure, Ray, and Tethi 2017). Moreover, the 
binary classification systems are assessed by applying this. 90.19% and 91.26% 
are the CNN accuracy and F1-score, respectively. An i-YOLOV5 object detec
tion model based on DL, which can categorize the abnormalities in the BT, 
(i.e.,) as benign (or) malignant, and detect their exact location in the rebuilt 
brain images, is presented in this research. To achieve brilliant accuracy, 
several techniques of You-Only-Look-Once (YOLO) are applied to research
ers. The assessed results explicitly show the less memory size of 22.989 MB 
possessed by i-YOLOV5. Because of its weird attributes, such as Mosaic data 
improvement and computation of adaptive anchor frames, among the rest of 
object detection algorithms YOLOV5 (Bochkovskiy 2020) outperforms its 
counterparts. The outperformance of i-YOLOV5 is in terms of speed and 
smaller size, apart from its well-planned architecture.

The overall contribution of the proposed work has been given as follows:

● The proposed deep CNN-based i-YOLOV5 model is extended for classi
fication of benign and malignant tumors. To handle the imbalanced 
dataset of MR brain images, the idea of Bounding Box (BB) techniques 
have been extended. It has been fine-tuned to work optimally and run 
appropriately for most cases with reliable performance. MR brain image 
testing datasets were used to measure tumor classification and detection 
ability.
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● According to the experimental results, the multi-classification of the brain 
from the existing MRI images has been tried as preliminary work. It is 
implemented using CNN for Hyper Parameters Optimization (HPO), 
which is automatically modified with the support of the Hybrid Grid 
Search Optimizer Algorithm (HGSOA).

● To evaluate the method’s effectiveness, McCulloch’s Algorithm is used to 
localize images for tumor region segmentation, and the segmentation 
result is also checked with truth annotated images.

Related Works

In economically developed nations, tumors are the most significant cause of 
mortality, while in developing economies, they are the second major cause of 
death. Malignant neoplasms are heterogeneous multifactorial diseases primar
ily defined by auto-immune diseases. They are caused when abnormal lym
phocytes growth outside their normal boundaries and occur in different 
human body parts, such as the brain or the liver (Chen et al. 2019). When 
cancer spreads to other parts of the body, it is known as metastasizing. Other 
standard terms for cancer include neoplasm and malignant tumor. Cancer was 
the second leading cause of death around the world in 2018. It was responsible 
for about 9.5 million deaths, or one in six.

Classification of BT using organizational approaches has been investigated 
by many researchers in the past, particularly in recent years. New technologies 
based on AI and DL have significantly impacted medical image segmentation, 
primarily in the disease diagnosis system. As a side note, many types of 
research have been published on detecting BT using CNN (Destrempes, 
Mignotte, and Angers 2005) and classifying BT. A survey of CNN-based 
multi-classification of brain tumors is included in this section. Regarding BT 
classification, some authors have used their own CNN models and those using 
the transfer learning model. CNN models developed by the following investi
gators have been used to classify BT.

High-dimensional cartesian spaces are common in CV and medical ima
ging classification. Convolutional Layers (CLs) have had an enormous impact 
in the field of DL regarding statistical image information (Destrempes, 
Mignotte, and Angers 2005). When neurons are densely connected, ANNs, 
like vanilla ANNs, strain computers to the snapping point because of the 
massive magnitude of weights they create. In this building block, explicit 
geometric information is collected while a lot cuts down the number of 
parameters.

The researchers previously mentioned that they used a pre-trained model of 
CNN and a transfer learning method to classify BT. It was discovered that 
a ResNet-50 model with eight additional layers was effective in detecting BT 
when removed in the last five years. MRI images and this adapted CNN model 
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achieved 97.2% accuracy (Feng et al. 2020). Like AlexNet, the author proposed 
a modified CNN model to order BT images into good health, low-and high- 
quality tumors (glioma and astrocytes). Using 4069 brain MRI images, 
achieved an overall accuracy of 91.16%. The study was developed using the 
pre-trained ResNet-34 CNN detection method based on BT in MRI images. 
Despite detecting 99.35%, the DL model was trained on 613 images, which is 
not a substantial percentage for ML studies. To classify BT into glioma, 
meningioma, and central nervous system, the author proposed AlexNet, 
GoogleNet, and VGG16 CNN models. The VGG-16 accomplished 
a classification accuracy of 98.69% in this transfer learning method. They 
studied 3064 MRI-BT diagnostic tests from 233 patients (Chenjie et al. 2018).

A total of 696 T1-weighted MRI images were used to classify BT images as 
malignant or benign using a DL-based transfer learning technique. The most 
successful CNN models, including ResNet-101, ResNet-50, GoogleNet, 
AlexNet, and SqueezeNet, were implemented and compared for the classifica
tion experiment. The accuracy was enhanced by 99.04% using transfer learn
ing and a pre-trained AlexNet CNN model (Ghiasi, Lin, and Le 2019). 
A researcher distinguishes between glioma, meningioma, and pituitary brain 
tumors. The average classification accuracy was 98% in this three-class binary 
classification using MRI images (Mårtensson et al. 2020).

Expanding the dataset increases the model’s robustness to images captured 
in various environments, which is the primary objective of data augmentation. 
Researchers frequently utilize photometric and geometric distortions (He et al.  
2015). Regarding photometric distortion, researchers transformed the images’ 
hue, saturation, and value. The authors add random scaling, resizing, transla
tion, clipping, and angle to empathize with image distortion. Some other 
unique data optimization algorithms are in addition to those already refer
enced for global pixel augmentation: MixUp, CutMix, and Mosaic are exam
ples of data augmentation techniques that combine multiple images, as 
introduced by a group of studies. MixUp selects random tests from the 
training dataset to demonstrate random weighted factors, and the labels of 
the testing methods also necessarily correlate to the weighted sum.

In comparison to pixel-zero “black cloth,” CutMix has been using 
a percentage of another image to cover the optic disc area of an image. The 
detected object’s history is significantly enhanced by combining four images 
(Banerjee et al. 2018). The activation statistics of four multiple images on each 
layer are also measured by batch normalization.

Many statistical properties have been recently employed to select 
a threshold based on histograms like Otsu, entropy (Kapur), and a moment- 
based approach for methods (or Tsallis). The author proposed a practical 
analysis of thresholding-based methods (Apostolopoulos and Mpesiana  
2020). The technique of Kapur relies on the maximization of entropy through 
gray-level histogram probability scattering. When determining the optimum 

e2151180-3986 S. ARUNACHALAM AND G. SETHUMATHAVAN



threshold value, the Otsu method maximizes between-class variance. In the 
case of general images, the work and performance of Otsu’s methodology are 
more efficient when compared to conventional techniques for adaptive thresh
olding (Iqbal, S. et al. 2018).

In this article, we’ll look into how machine learning can be used to identify 
fastener faults automatically. A detector based on the i-YOLOV5 model is 
coupled to an observation system representing the challenge to overcome. 
i-YOLOV5 is more accurate than other models with modified hyperpara
meters. It can produce results considered on the cutting edge in the object 
detection field. Improved YOLOV5 is a precise and highly reliable Deep 
Learning architecture, particularly when contrasted with different methods 
[Table 1].

Proposed Methodology: I-YOLOV5 Model

The i-YOLOV5 model was chosen for this work because of the following 
advantages:

(i) The model has the benefits of being able to classify objects accurately, 
find the location of tumors, and find them quickly and accurately (ii) The 
model can identify small tumor objects in noisy, blurry, and foggy images.

Figure 1 shows the i-YOLOV5 architectural model (Bernal et al. 2019). 
Three parts together make up the architecture: (i) Backbone, (ii) Neck, and 
(iii) Prediction.

(i) Backbone: VGG, ResNet, DenseNet, MobileNet, EfficientNet, 
CSPDarknet53, Swin Transformer, and other backbones are frequently 
utilized instead of our networks. Since these networks have demon
strated that they can extract useful features for classification and other 
tasks, researchers will fine-tune the Backbone to better suit various 
jobs.

(ii) Neck: The neck is intended to increase the benefits of the Backbone’s 
qualities. It reprocesses and utilizes the feature maps extracted by 
Backbone at various stages intelligently. A neck is typically processed 
by many top-down and bottom-up approaches. The target detection 
architecture relies heavily on the neck. The usage of an up-and-down 
sampling block is the first neck. The advantage of this strategy is that 
no feature layer aggregation process, such as SSD, follows the multi- 
level feature map straight after the head. FPN, PANet, NAS-FPN, 
BiFPN, ASFF, and SFAM are the most used path-aggregation blocks 
in the neck. The employment of diverse up-and-down sampling, spli
cing, dot sum, and the dot product to construct aggregation algorithms 
is similar to these methods. SPP, ASPP, RFB, and CBAM are some 
other blocks utilized in the neck.
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Table 1. Analysis of YOLOV5 about related studies.

Methodology and Algorithms Findings
Advantages of the Proposed 

YOLOV5 Model

826 test datasets applied to Object 
detection using Remote sensing 
images collected from GF-1 and 
GF-2 satellites; 275 Images used 
for the study; Input Pixels of 
[300×300, 416×416], [500×500] 
[800×800], [1000×1000]; 
Methodology implemented Faster 
R-CNN, YOLO 3, Single Shot Multi- 
Box Detector (SSMBD) ([Li et al.  
2020])

When contrasted to SSD and Faster 
R-CNN methods, YOLO3 
outperforms in terms of mAP and 
FPS

It performs much faster than other 
networks while requiring much 
less computational power, as 
demonstrated by its similarity to 
other models in terms of 
performance [Table 1]. Training 
with more than 1500 images per 
class and more than 10,000 
instances per class is proposed to 
achieve a i-YOLOV5 model. Using 
up to 10% background images is 
also proposed to cut down on 
FPR. In the taxonomy of MRI-BT, 
greater precision was achieved by 
CNN than the accuracy of 90.24% 
obtained by benign or malicious 
scans.

218 test dataset used from UAV; 
Input size is 52; Images Pixel of 
[600×600] to [1024×1024]; 
Technique used Faster R-CNN; 
YOLO3 [Benjdira, B. et al. 2019,]

Compared to Faster R-CNN, YOLO3 
succeeds in an improved F1 score 
and shape rate

224 dataset for testing purposes 
from Google Earth and DOTA; 56 
of Input; Pixel of [600×600] 
[1500×1500]; Technique used for 
SSMBD, Faster R-CNN, YOLO3 
[Zhao K, Ren X 2019]

The mAP and FPS for YOLO3 are 
superior compared to Faster 
R-CNN and SSD

Test dataset of 2260 considered 
from Korea Expressway; Image 
count 568; Pixel of 600×600; 
Methodology used YOLO4, SSD 
Faster, R-CNN ([Kim, Sung, and 
Park 2020])

SSD has a faster detection speed, 
while YOLO4 has greater accuracy

Sample dataset of 800 from Custom 
Refrigerator for training purpose; 
Input of 70 images; Pixel of 
[800×800] for images; Method 
used for Mask RCNN; YOLO3 
([Dorrer and Tolmacheva 2020])

However, the accuracy of the Mask 
RCNN was more significant based 
on the assumption that the 
detection of YOLO3 was higher

Test image of 5939 considered from 
Custom Electrical dataset; input 
images of 1400; Resolution of 
images [600×600]; Technique 
used : YOLO4; YOLOV5 ([Rahman 
et al. 2021])

When compared to YOLOV5 
machine learning, YOLO4 has 
a higher mAP value

Training dataset of 1,18000 from MS 
COCO, images 5000; image pixel 
is 1500×1500; Method used 
YOLO3, YOLO4 [Long et al., 2020]

When compared to YOLO3, the mAP 
of YOLO4 is dramatically higher

Training dataset of 1,18000 from MS 
COCO, images used:5000; image 
pixel is 1500×1500; Method: 
YOLO3, YOLO4 ([Bochkovskiy  
2020])

When compared to YOLO3, YOLO4 
demonstrates better results in 
terms of both mAP and fps

Training dataset of 1,18,000 from MS 
COCO; 5000 images are used for 
texting purpose; image pixel size 
is 1024×1024; Method used 
YOLO3, YOLO4 [Ge et al., 2021]

FPS is higher in YOLO3 than it is in 
YOLO4 and YOLOV5
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(iii) Prediction: Because the backbone cannot fulfil the positioning task as 
a classification network, the head is designed to detect the object’s 
location and category using feature maps acquired from the backbone. 
There are two object detector heads: one-stage and two-stage object 
detectors. The RCNN series is representative of two-stage detectors, 
which have long been the dominating method in object detection. The 
one-stage detector, as compared to the two-stage detector, forecasts the 
BB and object class at the same time. The one-stage detector has a clear 
speed advantage, but its accuracy is reduced. The most prominent 
models for one-stage detectors are the YOLO series, SSD, and 
RetinaNet. i-YOLOV5 is also significantly faster than prior YOLO 
versions. Furthermore, when compared to YOLO4, i-YOLO-5 is 
roughly lesser than 90.24%. This makes it much easier to deploy 
i-YOLOV5 to embedded devices.

Mosaic Data Enhancement

The same Mosaic Data Enhancement approach is used at the input end of 
i-YOLOV5 (Figure 2).

Arithmetic progression with tiny targets is part of the formal project train
ing. Goals are often smaller than medium-to-big goals (Fu et al. 2020). The 
data collected by us has a wide range of small objectives. However, the 
allocation of small targets is uneven, which is more problematic. Numerous 
features such as random distribution for splicing, random scaling, random 
utilization images, and rich data sets considerably enhance the data set in 
performing detection. In particular, random scaling is used to turn the 

Figure 1. A Proposed i-YOLOV5 Model for BT Detection to Feature Extraction.
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network into a highly durable one. This adds a few small targets. There is 
a possibility that a few people argue that random scaling or simple data 
enhancements could be performed while lowering GPU. However, because 
many individuals may own a GPU, the data associated with four photographs 
could be quickly computed using Mosaic enhancement training by reducing 
the Mini-batch size to a manageable level. As a result, a GPU can produce 
better outcomes.

Adaptive Anchor Frame Calculation

The YOLO consists of an Anchor frame with a starting length and width in the 
YOLO method for different data sets. During the network training stage, the 
primary anchor frame prediction frame is nothing but the network outputs. 
Then, the Ground Truth (GT) comparison is determined (Jocher 2020) per
formance improvements. Later, the modification of iterative network para
meters is carried out in reverse. While training various data sets in YOLO3 and 
YOLO4, calculating the initial anchor box value is performed using a different 
application. In i-YOLOV5, however, this method is built into the code. As 
a result, during each step in training, the best anchor box value is calculated 
and changed adaptively.

Adaptive Image Scaling

The size and shape of a target object can be proven in varying methods, but the 
most common technique is to scale the actual images to regular size before 
feeding them to the detection network (Kaur, Saini, and Gupta 2019). After 
zooming and filling, many defective images may significantly impact the 
effectiveness and black image boundaries. Information redundancy will 
occur if more fills are required, slowing down reasoning speed. As a result, 
in the i-YOLOV5 code, the letterbox function in the YOLOV5 code is 

Figure 2. Enhancement approach of Mosaic Image Processing.

e2151180-3990 S. ARUNACHALAM AND G. SETHUMATHAVAN



adaptively adapted to the input images, and the most miniature black border 
differs from our prior research work. The black edges at both ends of the image 
height have been lowered, resulting in fewer calculations during inference and 
faster target detection. The inference speed was already enhanced by 40% due 
to this simple change, which is quite successful.

The Detection Approach

Using CV to detect minor flaws in noisy images of BT is quite challenging. In 
a noisy image’s feature space, the presence of high gradient magnitude and 
short duration are the main traits of BT. The following qualities might be 
considered to improve and get noise-free images for identifying brain tumors.

Anisotropic Diffusion Filter

In enhancing image applications, an anisotropic diffusion filter is commonly 
utilized. Once again, the edges from the brain image are eliminated, and 
a mask is built using the filtration method to detect the precise tissue location 
(Van Leemput et al. 2001). It uses spatial information to filter, lowering the 
noise level. Equation (1) gives the discrete function of an anisotropic filter 
where “S” denotes the pixel “Pxl” test case “i” based strength level. 

Siþ1
Pxl¼ 1i

Pxlþ
α

αPxld e

X

koαPxl

funð ΔSi
Pxl;k

�
�
�

�
�
�; λÞΔSi

Pxl;k (1) 

In this case, funð ΔSi
Pxl;k

�
�
�

�
�
�; λÞit is the scalar diffusion function. ’Pxl ‘is ΔSi

Pxl;k 
the smoothing level of various pixels. The forward and backward differences 
are performed to estimate the value using the diffusion coefficient. Equation 
(2) is provided by, 

DCðSi
x;k� Si

y;lÞ ¼
ðImgbx; kþ Imgby; lÞ

2
(2) 

The variables represent the noisy brain image that consists of four different 
neighborhood pixels x, y, k, and l. The weak pixels are used to accomplish the 
diffusion action. The diffusion coefficient has been applied to the marked 
segmented region. The diffused image is transformed into a binary image, 
and the brain region is separated. Before accepting the threshold value that 
maps out where the tissue is, the enhanced filtering method reduces the 
number of pixels that come after it. Equation (3) and Equation (4) are the 
eigenvalues of “De” and their corresponding eigenvectors.

ðcosψ; sinψÞandðcos� 1ψ; sin� 1ψÞ, where y½� p=2
p=2� (3) 

DivðDe;
00

uÞ ¼ abða0dbuÞ (4) 
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Here the partition � π=2
π=2 will be followed as Equation (5) and Equation (6) 

�
π
2
;
π
2

h i
¼ ð�

π
2
; 0Þ&ð

π
2
; 0Þ (5) 

�
π
2
;
π
2

h i
¼ � S & S (6) 

The weight function of the tumor region is mapped using the grid angle of 
a probability distribution function. Equation (7) is a nonnegative approxima
tion value. 

Pðx; yÞaxuþ 2Qðx; yÞayuþ Rðx; yÞazu (7) 

In the filtering procedure, the discrete diffusion function is used. The symme
trical property is added to the discrete image after grayscale scaling. To smooth 
the image, the average gray value, which is given by Equation (8), is chosen. 

GrayValueavg ¼
1
T

X
i¼j f ðiÞ (8) 

The mathematical model is represented as Equation (9) after the anisotropic 
filter is filtered by diffusion, 

1
T

X
i¼jujðiÞ ¼ GrayValueavg (9) 

The tumor size is tiny here on the MRI brain image; the specific tumor 
location is determined based on firmness and area. The area of the tumor 
can be found by comparing the image with the black-and-white image.

The detection method of the i-YOLOV5-based model is briefly described in 
this section. The model begins by analyzing an image and calculating 
a probability on a cell area using logical SxS grids and weighted feature sets. 
If the center of a possible item falls into one of the cells, a preliminary BB is 
generated using the prediction probability provided by the trained model in                      

Equation (10).ProbðObjÞ ¼ 0WithPotential
1WithoutPotential

� �

(10) 

The model following forecasts multiple scaled boxes using “K” and extracts 
a 3D tensor using Equation (11), where C is the defined number of classes, four 
denotes the Tx,Ty,Tw,Tℎ BB prediction coordinates, and one denotes the 
confidence of prediction for each BB. 

S� S� ðk� ð2þ 1þ cÞ (11) 

The BB prediction is based on the width Pxlw and height Pxlℎ in Figure 3 with 
Cx and Cy offsets from the cluster centroid. The prediction corresponds to the 
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BB model when the cell is offset from the upper left by (cx, cy) and the BB has 
values of Pxlw and Pxlh.

During the generation of BB, the Intersection Over Union (IoU) in 
Equation (12) represents whether the prediction nearly maps a GT image 
from a dataset. When the first predicted object doesn’t closely match the 
GT, the confidence score drops, resulting in a dissatisfied prediction. 
According to Equation (13), Figure 4 gives a graphic example of how the 
IoU evaluates an object, with the Ground Truth (GT) and a probable detection 
outcome from the algorithm surrounded by a BB.

Intersection Over UnionTrue
Predicted ¼

Area of ImageðBTrue \ BPredictedÞ

Area of ImageðBTrue \ BPredictedÞ

(12) 

ConfidenceðObjÞ ¼ Predicate ValueðObjÞ � Intersection Over UnionTrue
Predicted (13) 

Figure 3. Bounding Box Prediction with tumor specifications.

Figure 4. Ground Truth Test for Brain Tumor Detection.
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Predicted_Value (Classi |Obj) is used to determine “C” for each grid cell. Only 
objects that fulfil the provided threshold will receive an initial BB, even if 
several predictions are made for the same object. The following is presented 
precisely by Equation (14). 

Predicate ValueðClassijObjÞ � Intersection Over UnionTrue
Predicted

¼ Predicate ValueðClassiÞ � Intersection Over UnionTrue
Predicted

(14) 

Numerous possible object predictions can arise in most circumstances during 
the initial detection. Using the Non-Maximum Suppression technique, the 
detection model could keep just the prediction with the most significant 
confidence score and efficiently eliminate any redundant boxes. The proposed 
YOLOV5-based model’s detection method is depicted in Figure 5.

Localization

The i- YOLOV5 model with 174 layers have 1 input, 50 conv, 50 bn, 50 linear 
activations ReLU, 7 mixed (depth concatenation), 4 max-pooling, 6 average 
pooling, and 10 layers of the i-YOLOV5 model are proposed to localize tumor 
region. Table 2 shows the optimal hyper-parameters.

The tumor location is localized by the proposed model in a more precise 
manner, as seen in Figure 4, with the help of the i-YOLOV5 model, optimizing 
the MSE loss between due bounds and GT boxes.

Localization, confidence, and classification are the three main kinds of 
losses utilized for training. The prediction of box size, error utilizing location, 
and GT between the anticipated and GT boxes are computed using localiza
tion loss. Moreover, the confidence loss is used to compute the objectiveness 
error for detected objects in the jth BB of grid “i” cell. The classification loss is 
employed to determine chance over every class of grid cell “i.” Equation (15) 
expresses the mathematical equation of these parameters: 

Figure 5. The proposed i-YOLOV5 model for Brain Tumor Detection.
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Weight1
gc2

i¼0

XBox

i;j
1Obj

i;j ½xi þ xi�
2
� ½yi þ yi�

2
þ

Weight1
Xgc2

i¼0

XBox

i;j
1Obj

i;j ½Wi � Wj�
2
þ ½Hi � Hj�

2
þ

Weight3
Xgc2

i¼0

XBox

i;j
1Obj

i;j ½CSi � CSj�
2
þ

Weight4
Xgc2

i¼0

XBox

i;j
1Obj

i;j ½ProbðCÞi � Pr obðCÞj�
2
þ

(15) 

The letters for the grid cell are s, the probability is p, weights are represented by 
W1, W2, W3, and W4 and the grid cell is presented by GC. (x̂i , Ŷ is the center of 
the BB, and (xi, yi) is the center of the GT. (Wi, Hi) signifies the width and height 
of the BB, while (Wi, Hi) denotes the width and height of the GT. The eroded 
image turns each neighborhood area into a black-point zone. The detected image 
edges are demonstrated when an eroded image is derived from the actual image 
source. The diffusion rate is managed here using the BB process to preserve the 
edge rate. Equation (16) is used to calculate the diffusion coefficient.

CDð Δj jÞ ¼ Expð�
ð Δj jÞ

k
Þ

2 (16) 

Lesion Segmentation

In medical imaging, the most challenging aspect is the variation in medical 
data. Human anatomy witnesses the variances shown by distinct modalities 
like PET, MRI, CT, and X-Ray. The segmentation area is the primary source 
for analyzing the levels of seriousness of the disease. The proposed method 
segments the tumors using McCulloch’s Kapur Entropy Method (MKEM) (Li 
et al. 2021; Liang, Liang et al. 2017; Louis, David N Louis et al. 2016; Narmatha 
et al. 2020; Pan et al. 2015). The chance of intensity value distributions of the 
foreground and background regions is calculated in this method, and the value 
of entropy is independent for both, as shown in Figure 6. The use of an 

Table 2. Optimal Hyper 
Parameters of proposed YOLOV5.

Parameter Threshold

Epochs 30
Batch-size 15
Rate of Learning 0.0013
Momentum 0.981
Optimizer SGD
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optimum threshold value enhances total entropy. Equation (17) is the math
ematical expression of the MKEM: 

Randomness0 ¼ �
XT1� 1

i¼0
ð
Probi

ωo
Þ þ Log2ð

Probi

ωo
Þþ

Randomness1 �
XT2� 1

i¼0
ð
Probi

ωo
Þ þ Log2ð

Probi

ωo
Þþ

Randomnessi �
XTiþ1� 1

i¼Ti

ð
Probi

ωo
Þ þ Log2ð

Probi

ωo
Þþ

Randomnessj �
XN� 1

i¼Tj

ð
Probi

ωo
Þ þ Log2ð

Probi

ωo
Þ

(17) 

Hyper-Parameter Optimization (HPO)

The growing demand for medical image processing using CNNs has stimulated 
various challenges in applying CNNs. Since achieving more significant results 
using specially designed architectures is so profound, the cost of computing 
becomes high, and the quality of input images becomes higher. The advanced 
hardware and HPO of the extensive network are critical for reducing these 
computation expenses and achieving more successful results. Consequently, all 
the complicated HP of the proposed CNN models are tuned automatically using 
the HGSOA. When the value range is modest, the HGSOA is an excellent 

Figure 6. Segmented Lesion Zone of Input Image.
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alternative to CNN’s HPO. The HPO algorithm seeks to find the range of 
combinations that is the best combination in which training can be provided to 
the Yolo v5 network (Begum and Lakshmi 2020; Pei et al. 2020, 2020; Philip 
Bachman and Buchwalter 2019).

CNN models are complex architectures with hyper-parameters in large 
numbers. Mostly, architectural and fine adjustment are the two often classified 
as HPO. Activation function, convolutional pooling layers, ultimately linked 
layers, filters, and sizes comprise architectural HPO. On the other hand, 
momentum, learning rate, and 12 regularizations are included in the Fine 
adjustment HPO. This work uses HGSOA to tune fine adjustment HPO once 
the architectural HPO is tuned.

Algorithm for HGSOA to Optimize Tuned and Fine Adjustment of HPO

Step 1. Set 3D grid for HPO to be optimized

(a) No. of Conv and Max Pooling Layers for Regulation
(b) No. of FC Layers
(c) No. of Filters
(d) Filter Sizes
(e) Momentum, Batch Size and Learning Rate

Step 2. Set potential value intervals corresponding to each dimension

(a) No. of Conv and Max Pooling Layers [1 to 4]
(b) No. of FC Layers [1 to 4]
(c) No. of Filters [8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96]
(d) Filter Size [2, 4, 6, 8, 10]
(e) Ensure Activation Function
(f) Regulation and Learning Rate {0.0001, 0.0006, 0.0002, 0.0008}

Step 3. Search for all the candidate combinations

(a) Choose to optimize accuracy
(b) I1, I2, I3 → Accuracy (97, 98, 99,)

McCulloch’s Algorithm for Segmentation

Regarding random walk-in McCulloch’s cuckoo searches, levy flight has 
devised a new strategy. A much more efficient and cheaper method for 
obtaining stable random variables that can use the model levy flight is pro
posed in the proposed method. This method improves the cuckoo search 
method’s convergence rate and efficiency in time-constrained situations. 
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Many effective random number generation methods have been proposed, with 
most relying on the inverse distribution of a collection of uniformly distrib
uted (in the range of 0–1) pseudo-random numbers. In the levy flight 
approach deployed in this proposed work, there is a function of an exponential 
value with a “c” scaling parameter, “β” skewness measurement, and “δ” posi
tion specification parameter. A matrix PxQ of random value is denoted by an 
exponential value (Azizi et al. 2021; Liu et al. 2018; Shukla et al. 2017; Solawetz  
2020). The proposed approach’s cost of generating a constant random number 
is lower. A PxQ matrix of random numbers that are distinguished using “α” 
exponential values, “c” scaling parameter, and skewness measurement are 
applied by our proposed method. “β” and “a” location parameter “δ.” 
Various degrees of the algorithm have been explained using the parameter 
“α” where “S” stands for the step size Equation (18). 

Sizex ¼ Compute½
sinðαϕþ tan� 1ðβ tanðαπ

2 Þ þ cosð1 � αÞϕþ tan� 1ðβ tanðαπ
2 Þ

cosðtan� 1ðβ tanðαπ
2 Þ þ cos ðϕÞ

1
αω� 1
þ δ,Sαðc; β; λÞ

�

(18) 

Step 1. α = 1 of “δ”
Step 2. s = c * Tan(φ) + δ
Step 3. α = 2 matches the Gaussian with mean as “δ” and variance are given 

by 2*c2
Step 4. s = 2 * c√ѡ * Sin (φ) + δ
Step 5. α > 1 produces the mean of the distribution to be “δ” for all values of 

“β”, where
Step 6. ѡ = −Log10 * (Random (P, Q)) and φ = Random (P, Q) – (1, 2) * π

The algorithm computes step sizes using the above formula for β = 0 and α = 1.
α = 0.5 and β = 0 were chosen for our investigation. To avoid overflow 

should be kept between 0 and 2.
Equation (19) and Equation (20) can be used to calculate skewness α = 0for 

the symmetric case with β ≠ 1, step size (x, z):

xz ¼ y½cosð1� βÞϕÞ
ω �

1
β
� 1

½
sinðβθÞ

cosðϕÞ�
1
β þ λ                                (19)                                 

xiðT þ 1Þ ¼ xiðTÞ þ α� LðλÞ (20) 

Leavy distribution presented as Equation (21), 

LðλÞ ¼ T� 1;where; 1< λ � 3 (21) 

Linear relationship model as Equation (21), 

σ
1
2ðTÞgT2� β; 1 � ϕ � 2 (22) 

Step 1. Assume Images: IMGi,j, where j€{1, 2, . . . N}, i€{1, 2, N}
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Step 2. Evaluation of defined Object Function Funðf Þ; f ¼ f1; f2; . . . fn½ �
T

Step 3. If Iteration<=Maximum Iteration, Then
Step 4. Produce New Finding Space
Step 5. If G<=Pr, Then
Step 6. By applying McCulloch’s Search Method for Size (α)
Step 7. Update Count
Step 8. Get optimum value
Step 9. Else
Step 10. Nests
Step 11. End If
Step 12. End
Step 13. Choose Optimum Solutions

Experiment Results and Discussion

The results of i-YOLOV5-based segmenting BT-MRI are presented in this 
section. This section contains the qualitative analysis results. The proposed 
algorithm’s experimental values have been assessed. Two primary goal func
tions have been examined using these methods. On an Intel®Core TM i7 PC 
with a 1.80 GHz CPU and 8 GB RAM, the MATLAB 2020-RA toolbox and 
a 2070 Nvidia Graphic Card are applied to obtain the results.

Data Set

The data were obtained from http://www.medicaldecathlon.com (a) for image 
processing, referred to as TM-I, and (b) for a post-contrast enabled T1- 
weighted image. (c) T2-weighted images are images. (d) Reduced Inversion 
T2 Fluid Recovery (T2-FLAIR). From several healthcare centers, these images 
were obtained and have demonstrated data influence (Figure 7).

Table 3 shows the network’s recognition when images are detected at 
various resolutions, with low recognition at 1080p as the experimental out
come. The i-YOLOV5 model’s recognition at 360p image resolution is 
179.50% of its recognition at 1080p image resolution and 462.60% at 360p 
image resolution.

Segmentation and Classification

Segmentation using the McCulloch method yielded better results for malig
nant separation. The classification conclusions for the following methods are 
organized: SVM, ANN, and K-NN (Stan Benjamens, Dhunnoo, and Mesk´o  
2020; Chien-Yao Wang et al., 2019; Wiesmüller and Chandy 2010), (Yu, 
Shen, and Shen 2021). Every classifier’s confusion matrix is displayed. 
Normal (benign) is represented by CLASS 0, and abnormal (malignant) by 
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CLASS 1. With the accurate classification of 75 images as benign and the 
misclassification of 25 images as malignant, a high level of precision is 
obtained by the KNN method. In contrast, class 0 (benign) is classified 
(Figure 8 (a) and (b)). With the accurate labeling of 170 images as malignant 
and the misclassification of 18 images as benign, the ANN had the best 
performance in class 1 categorization. With a precision of 91.19%, the CNN 
attained high accuracy in MRI-BT as benign/malicious scans (Table 4). The 
CNN building’s sigmoid fully connected layer classifier was used to evaluate 
the effectiveness of the proposed strategy. Multiple measuring factors, such 
as accuracy and F1-score, validate the classifier’s performance. The F1-score 
integrates the accuracy and recall of the model if a balance between Precision 
and Recall is studied. The binary classification systems are also evaluated 
using this technique. 91.19% and 91.26% are the accuracy of CNN and the 
F1-score. On the other hand, the i-YOLOV5 CNN method has a high 
calculation cost and requires a large amount of data for its training phase. 

Figure 7. Quantitative measurements of the optimization method.

Table 3. Recognition Speed at Different Resolutions.

Model

Recognition Image Resolution

Network Weights/pcs Network Weight Size/MB1080p 720p 480p 360p

Proposed i-YOLOV5 2.05 2.29 2.51 2.65 76,918,177 344.18
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The accuracy and F1-score of every method are shown in the results, 
respectively (Figure 9 (a) and (b)).

Segmented Image Quality Measures Using McCulloch Algorithm

MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), SSIM 
(Structured Similarity Index Method), FSIM (Feature Similarity Index 
Method), and other image quality techniques are widely used to evaluate 
and assess image quality. This study looked at how well the SSIM, FSIM, 
MSE, and PSNR methods work for accurate segmentation.

Mean Square Error (MSE)

MSE is a commonly used image quality metric. Thus, the values rounded off to 
zero are better as it’s a comprehensive reference metric. The MSE measures the 
errors’ average square. Absolute error between approximate and outcome, 

Figure 8. Confusion matrix of comparison ML techniques.

Table 4. ML Algorithm comparison using F1-score and Accuracy.
Classifier ANN SVM KNN i-YOLO v5

Accuracy 88.19 89.92 89.96 91.19
F1-score 91.11 91.06 91.18 91.26

Figure 9. Performance Measures on Multiple Frequency Bands.
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Equation (23). Considering the predictable squared error/quadratic loss ratio, 
it’s a risk function.

gx;yð:Þ; gx;yð:Þare the two images among MSE that is well-defined as 

Mean Square Error ¼
1

MN

XM

i ¼ 0

XN

j ¼ 0
½gðn;mÞ � gðm; nÞ�2 (23) 

Peak Signal to Noise Ratio (PSNR)

The ratio between the maximum allowable signal power and the PSNR is 
calculated. And the distorting noise’s power has an impact on the quality 
of its portrayal. The decibel ratio between the two images is calculated. 
Because of the wide dynamic range of signals, the PSNR is commonly 
calculated as a decibel scale logarithmic term. This dynamic range ranges 
from the highest to the lowest possible values, which are affected by their 
quality. Lossy image compression codecs’ reconstruction is typically eval
uated using PSNR. The error caused by compression or distortion is 
referred to as noise. When compared to compression codecs, PSNR 
approximates reconstruction quality. For 32-bit data, the PSNR is in the 
45–65 dB range, while for 64-bit data, it is in the 75–95 dB range. The loss 
in wireless quality is 15–20 dB. The peak value refers to the highest point 
in the image data. 255 is the Peak Value of a 16-bit unsigned integer data 
type. A description of the total error in dB can be seen from Equation (24). 

Peak Signal to Noise Ratio ¼ 10Log10
ðPeak Value2

i Þ

MSE
(24) 

Structure Similarity Index Method (SSIM)

Image degradation is defined as a change in structural information perception 
in SSIM. Across these three categories, the weighted average of resemblance is 
the emergence of a statistic. 0.5 for edges, 0.25 for texture, and 0.25 for 
grayscale are proposed weights. Moreover, it should also be noted that the 
findings that are similar in subjective judgments are influenced by using a 1/0/ 
0 weight measurement. It implies that the edge of image regions dominates 
image quality perception rather than textures (or) smooth regions. The 
luminancec is 1, and the contrast is “c,” the structure is s, and the positive 
constants are α, β and γ (Equation (25)). 

Structure Similarity Index Methodðx; yÞ ¼ ½Lðx; yÞ�α � ½Cðx; yÞ�β � ½Sðx; yÞ�λ (25) 
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Features Similarity Index Matrix (FSIM)

FSIM compares input photos by mapping features and measures similarities. 
To further understand FSIM, we need to define two test case. Gradient 
Magnitude (GM) and Phase Congruency (PC). In this work, the similarity 
among input images is used to measure image quality. Let’s say the input 
images are TIM-1 (Actual Input Image) and TIM-II (Backlog Input Image), 
with PC-I and PC-II denoting phase congruency, respectively. The PC and 
GM maps were created using the input images TIM-1 and TIM-2. The GM-I 
and GM-II algorithms were also extracted from the input images. PC-I, PC-II, 
GM-I and GM-II, and Equation (26) can all be used to define and calculate 
FSIM. 

SG ¼
2G1G2 þ T2

G2
1 þ G2

2 þ T2
(26) 

Wherein T2 seems to be a positive constant that relies upon this dynamic 
range of gradient magnitude. TIM-I and TIM-2 are kept constant in this study 
so that the FSIM can be employed easily (Figure 10).

The parameters control the relative relevance of PC and GM features. For 
clarity, we set an equal to 1 in this paper. It is clear from Equation (27) that 
FSIM is normalized (0–1). Table 5 shows quantitative results in PSNR, SSIM, 
FSIM, and MSE, with bands such as Low and High. 

SlðxÞ ¼ ½SpcðxÞα � SgðxÞβ� (27) 

The proposed algorithms’ matrices are demonstrated in this study by 
tabular results, as given in Table 6.

Figure 10. Grid Output for Convolutional Layer Activations for Classification.
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Optimized i-YOLOV5 CNN Models

Fivefold cross-validation is used to analyze the best model’s classifier perfor
mance. Generally, out of the fivefold dataset, four sets are predominantly used 
for training and the 5th set for testing. For each fold, the task’s classification 
performance is assessed, and the model’s average classification is determined. 
The training and validation phases’ greater accuracies are futile when the 
trained and HPO-tuned CNNs are tested on forecasting unseen samples. To 
test the trained CNN’s potential to predict sample data, a test dataset is chosen 
randomly and divided from the training and validation datasets; otherwise, 
a biased dataset assessment could provide high accuracy. With a 60:20:20 ratio, 
already sufficient images could be classified as training, validation, and test sets 
randomly since the research has 500 samples, as shown in Table 7. 299 images 
are randomly selected from each class’s dataset and utilized for testing pur
poses. CNNs’ first convolutional layer could learn features such as color and 
edges, whilst the second convolutional layer learns the susceptible features 
such as BT borders. The previous convolutional layers learn the features that 
are combined by the following convolutional layers. In the classification task 

Table 5. Performance Metrics of Image Quality (MSE, PSNR, SSIM, FSIM).
Image Noise Level PSNR MSE SSIM FSIM

Lena 0.31 22.67 22.34 0.79 0.891
0.46 17.98 17.95 0.75 0.873
0.67 15.21 15.24 0.71 0.812

Barbara 0.34 22.98 22.99 0.81 0.891
0.47 18.89 18.91 0.76 0.858
0.68 16.59 16.67 0.72 0.815

Cameramen 0.33 22.89 22.91 0.74 0.852
0.48 19.29 19.31 0.77 0.861
0.69 17.28 18.21 0.78 0.881

Table 6. Performance measure of MSE, PSNR, SSIM, FSIM, CPU Time.
Images PSNR MSE SSIM FSIM CPU Time

Img015 25.01 257.18 0.852 0.841 1.791
Img022 26.19 182.19 0.869 0.853 1.836
Img034 27.28 159.29 0.878 0.862 1.879

Table 7. Learning models of the CNN Models.
Classification Type Each Type Training Validation Test

Iter_1 No Tumor 360 377 89 89
Iter_1 Tumor 240
Iter_2 Glioma 110 340 78 78
Iter_2 Meningioma 100
Iter_2 Metastatic 105
Iter_2 Normal 80
Iter_2 Pituitary 105
Iter_3 Score I 160 335 89 89
Iter_3 Score II 180
Iter_3 Score III 160
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based on the first convolutional layer of CNN, there are 128 channels, 96 of 
which are illustrated in Figure 11. Each layer is down with 3-D array channels.

Moreover, as shown in Table 8, the performance measures like mAP and 
IoU are used to validate the i-YOLOV5 model, with an accomplishment 
of mAP of 0.98, 0.99, and 1.00 tested data sets, respectively, by the proposed 
method (Figure 12). Figure 13 shows the proposed plan for finding the region 
on the body where the tumor is most likely to be.

Following the classification process, the efficiency of CNN models should be 
evaluated using a variety of reliable approaches (Figures 14 (a) and (b)). To 
evaluate the models used in this work, the AUC of the ROC curve, precision 
metrics, specificity, accuracy, sensitivity, and precision metrics are used. The 
ROC curve’s AUC value is 0.9994. The BT is classified using these findings that 
support the proposed capacity of the i-YOLOV5 model (Figure 15).

Table 9 for accuracy metrics using factors such as TP, TN, FP, FN, 
Specificity, Sensitivity, Accuracy, and Precision.

The i-YOLOV5 model’s tumor object classification with detection perfor
mance is assessed using the following evaluation matrices: Precision (P), Recall 
(R), F1-score (F1), and mean Average Precision (mAP) are the four compo
nents of precision. Precision refers to a model’s ability to detect only relative 
objects. Recall, on the other hand, refers to a model’s capacity to locate all 
relevant cases. Equation (28), Equation (29), Equation (30), and Equation (31) 
are used to calculate the evaluation matrices: 

Figure 11. The performance measures of mAps of i-YOLOV5 iterations.

Table 8. Localization of Proposed 
Method.

Datasets mAP IoU

500 1.01 1.00
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Figure 12. Localization Results of Input Images with Localization Values.

Figure 13. Loss and Accuracy graph of BT detection.

Figure 14. ROC Curve for proposed i- YOLOV5.

e2151180-4006 S. ARUNACHALAM AND G. SETHUMATHAVAN



P ¼
NTP

NTP þ NFP
(28) 

R ¼
NTP

NTP þ NFN
(29) 

F1 ¼
2� NTP

2� NTP þ NFN þ NFPÞ
(30) 

mAP ¼
XN

i¼1
PðiÞ � ΔRðiÞ (31) 

where NTP denotes the number of tumor images that were accurately 
identified as tumors (benign/malignant), NFP denotes the number of images 
that were identified as tumor errors benign/malignant), NFN denotes the 
number of images that were wrongly identified as tumors (), P(i) denotes 
the precision, and ΔR(i) denotes the alteration in recall from the ith 

detection.
The results of the proposed CNN model are worthy of analysis in associa

tion with the established state-of-the-art CNN models (Figure 16). By utilizing 
the CNN models of popular and pre-trained ones such as Inceptionv3, 
AlexNet, GoogleNet, ResNet-50, VGG-16, and YOLO4, the same assessment 
was carried out (Figure 17).

Table 10 displays the utilization of these networks in obtaining the out
comes. A comparison between the proposed i-YOLOV5 models and standard 
YOLOV5 was made about the accuracy and AUC obtained throughout the 
experiments.

The i-loss YOLOV5‘s functions were tested first in the experiment. Default 
YOLOV5‘s loss function is the Binary Cross-Entropy Loss (BC-EL). In order 

Figure 15. Confusion Matrix of BT classification using proposed model.
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to achieve a higher level of performance, we investigated the following per
formance losses. 1. BC-EL loss plus IoU loss, 2. Focal loss plus IoU loss, 3. 
Focal loss plus D-IoU loss (Table 11)

In general, the performance is improved when a focal loss is used instead 
of BC-EL, as illustrated in Table 12. The mAP value in the i-YOLOV5 models 

Figure 16. Confusion Matrix of BT classification using proposed model.
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Figure 17. Performance measure of Proposed model vs other models.

Table 10. Comparison of classification performance 
between proposed and existing state-of-the-art 
techniques.

Models

Classification

Accuracy AUC

AlexNet 88.13 0.8918
ResNet50 92.19 0.9318
Inception3 85.27 0.8819
GoogleNet 73.41 0.8129
VGG16 87.19 0.9103
Proposed i-YOLOV5 99.32 0.9918
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was 82.812% with BC-EL+IoU loss and 88.292% with Focal+IoU loss. On test 
datasets, the mAP value gap had the highest value of 90.24% when Focal 
+D-IoU loss was used. Focal loss’s positive effects on performance in this BT 
detection application on test datasets are clearly shown. The proposed method 
has a faster rate of convergence than the conventional method. It was stated 
that after 10 epochs, our proposed model has a mAP of 90.24%, which is 
higher than the mAP of 38% for the standard i-YOLOV5 models.

The proposed model, which is proposed in this study, yielded the highest 
mAP value, as shown in Table 12. The original YOLOV5 was created to locate 
objects in landscape RGB images. It has many applications within the realm of 
a CV within the scope of this research work, and we applied a BT detection 
application to MRI scans. MRI-BT detection improved with Focal+D-IoU 
Loss in YOLOV5, an anchorless detector. i-YOLOV5, a supported model, 
and CenterNet, an effective method, have lower mAP values than this pro
posed model.

Conclusion and Future Work

In the field of medical image analysis, Brain Tumor identification is a crucial 
challenge to radiologists. As the application of DL techniques require massive 
amount of annotated ground truth data, it fails to implement for MR images 
based Brain Tumor classification. Therefore, the current research work is 
proposed utilizing improvised cuckoo search method for faster convergence 
and accurate results. For enhancement of results, the Hybrid Grid Search 
Optimizer Algorithm is applied to find the optimal range of each hyper 
parameters in which the proposed network provides accurate classification. 
This work investigated the appropriateness of the MSE, SSIM, FSIM, PSNR, 
and CPU Time approaches for segmentation accuracy. The proposed method 
has faster rate of convergence than the conventional counterpart search 
methods. It is worth to that after 10 epochs, our proposed model gained 
mAP of 90.24%, which is higher than the mAP of 38% for the standard 
i-YOLOV5 models. A comparison of proposed i-YOLOV5 models with 

Table 11. Proposed (i-YOLOV5) BT detection with different losses on test datasets.
Method Loss_Class Loss_Configuration Loss_IoU Loss_Total mAp

BC-EL + IoU Loss 0.31023 0.68272 0.95657 2.4759 0.82812
Focal Loss + IoU Loss 0.29281 0.28278 0.76373 1.59396 0.88292
Focal Loss + D-IoU Loss 0.32918 0.70182 0.48373 2.18387 0.9024

Table 12. The i-YOLOV5 is compared to 
other models by (Bernal et al. 2019).

Model mAP

YOLOV5 (Bernal et al. 2019) 88.28%
i-YOLOV5 (Proposed) 90.24%
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standard YOLOV5 networks was made about the accuracy and AUC obtained 
throughout the experiments. Furthermore, the efficiency of testing phase is 
revealed by its highest accuracy value using proposed YOLOV5 model. It 
determines the ability of proposed model to automatically classify Brain 
Tumor MR images by bounding box of accurate position. Thus, the identifica
tion of Brain Tumor malignant images have been successfully implemented 
with accurate result. It can be concluded that the proposed algorithm holds the 
capability of processing large set of BT images to provide quicker outcome in 
medical image analysis. In future work, the improvised version of proposed 
YOLOV5 can support noisy BT MR images for malignant identification.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Anaraki, A.K., M. Ayati, and F. Kazemi. 2019. Magnetic resonance imaging-based brain tumor 
grades classification and grading via convolutional neural networks and genetic algorithms. 
Biocybernetics and Biomedical Engineering 39 (1):63–74. doi:10.1016/j.bbe.2018.10.004.

Apostolopoulos, I. D., and T. A. Mpesiana. 2020. COVID-19: Automatic detection from x-ray 
images utilizing transfer learning with convolutional neural networks. Physical and 
Engineering Sciences in Medicine 43 (2):1. doi:10.1007/s13246-020-00865-4.

Azizi, S., B. Mustafa, F. Ryan, Z. Beaver, J. Freyberg, J. Deaton, A. Loh, A. Karthikesalingam, 
S. Kornblith, T. Chen, et al. 2021. Big self-supervised models advance medical image 
classification. arXiv preprint arXiv:2101 05224 eess.IV:3478–3488.

Bahadure, N. B., A. K. Ray, and H. P. Tethi. 2017.Image analysis for MRI-based brain tumor 
detection and feature extraction using biologically inspired BWT and SVM. International 
Journal of Biomedical Imaging 2017:1–12. doi: 10.1155/2017/9749108.

Banerjee, I., M. C. Chen, M. P. Lungren, and D. L. Rubin. 2018.Radiology report annotation 
using intelligent word embeddings: Applied to multi-institutional chest CT cohort. Journal 
of Biomedical Informatics 77:11–20. doi: 10.1016/j.jbi.2017.11.012.

Begum, S. S., and D. R. Lakshmi. 2020. Combining optimal wavelet statistical texture and 
recurrent neural network for tumour detection and classification over MRI. Multimedia 
Tools and Applications 79:1–22.

Benjamens, S., P. Dhunnoo, and B. Mesk´o. 2020. The state of artificial intelligence-based 
FDA-approved medical devices and algorithms: An online database. NPJ Digital Medicine 
3 (1):1–8. doi:10.1038/s41746-020-00324-0.

Benjdira, B., T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni Car detection using unmanned 
aerial vehicles: Comparison between faster R-CNN and yolov3. In Proceedings of the 2019 
1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 
5–7 February 2019; IEEE: Muscat, Oman, 2019; vol. 79, pp. 1–6.

Bernal, J., K. Kushibar, D. S. Asfaw, S. Valverde, A. Oliver, R. Martí, and X. Lladó. 2019.Deep 
convolutional neural networks for brain image analysis on magnetic resonance imaging: A 
review. Artificial intelligence in medicine 95:64–81. doi: 10.1016/j.artmed.2018.08.008.

Bochkovskiy, A. 2020. Yolo v4, v3 and v2 for Windows and Linux. GitHub 2020 April https:// 
github.com/AlexeyAB/darkne .

APPLIED ARTIFICIAL INTELLIGENCE e2151180-4011

https://doi.org/10.1016/j.bbe.2018.10.004
https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.1155/2017/9749108
https://doi.org/10.1016/j.jbi.2017.11.012
https://doi.org/10.1038/s41746-020-00324-0
https://doi.org/10.1016/j.artmed.2018.08.008
https://github.com/AlexeyAB/darkne
https://github.com/AlexeyAB/darkne


Bochkovskiy, A., C.-Y. Wang, and H.-Y.M Liao. 2020. YOLOv4: Optimal speed and accuracy of 
object detection. arXiv 2020, arXiv:2004 10934 cs.CV. doi:10.48550/arXiv.2004.10934.

Chenjie, G., I.-H. Gu, A.S. Jakola, and J. Yang (2018) Deep learning and multi-sensor fusion for 
glioma classification using multistream 2D convolutional networks. In: 2018 40th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 
Honolulu, HI, USA, IEEE, pp. 5894–97.

Chen, D., S. Liu, P. Kingsbury, S. Sohn, C. B. Storlie, E. B. Habermann, J. M. Naessens, 
D. W. Larson, and H. Liu. December 2019. Deep learning and alternative learning strategies 
for retrospective real-world clinical data. NPJ Digital Medicine 2(1):43. doi: 10.1038/s41746- 
019-0122-0.

Destrempes, F., M. Mignotte, and J. F. Angers. 2005. A stochastic method for Bayesian 
estimation of Hidden Markov Random field models with application to a color model. 
IEEE Transactions on Image Processing 14 (8):1096–108. doi:10.1109/TIP.2005.851710.

Dorrer, M., and A. Tolmacheva. 2020. Comparison of the YOLOv3 and Mask R-CNN 
architectures’ efficiency in the smart refrigerator’s computer vision. Journal of Physics 
Conference Series 1679 (4):042022. doi:10.1088/1742-6596/1679/4/042022.

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, 
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. 2020. An image is worth 16x16 
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010 11929. doi:10. 
48550/arXiv.2010.11929.

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, 
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: 
Transformers for image recognition at scale. In 9th International Conference on Learning 
Representations, ICLR 2021, Virtual Event, Austria, May 3-7 2021, 2021.

Feng, X., N. J. Tustison, S. H. Patel, and C. H. Meyer. 2020. Brain Tumor Segmentation Using 
an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features. 
Frontiers in computational neuroscience 14:1–12. doi: 10.3389/fncom.2020.00025.

Fu, J., X. Sun, Z. Wang, and K. Fu. 2020. An anchor-free method based on feature balancing 
and refinement network for multiscale ship detection in SAR images. IEEE Transactions on 
Geoscience and Remote Sensing 59:1331–1344.

Ge, Z., S. Liu, F. Wang, Z. Li, and J. Sun. 2021. Yolox: Exceeding Yolo series in 2021. arXiv 
2021, arXiv:2107 08430. doi:10.48550/arXiv.2107.08430.

Ghiasi, G., T.-Y. Lin, and Q. V. Le. NAS-FPN: Learning scalable feature pyramid architecture 
for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, pages 7036–45, 2019. doi:10.48550/arXiv.1904.07392.

He, K., X. Zhang, S. Ren, and J. Sun. 2015. Deep Residual Learning for Image Recognition. 
IEEE. doi:10.1109/CVPR.2016.90.

Iqbal, S., M. U. Ghani, T. Saba, A. Rehman, and P. Saggau. 2018. Brain tumor segmentation in 
multi-spectral MRI using convolutional neural networks (CNN). Microscopy Research and 
Technique 81 (4):419–27. doi:10.1002/jemt.22994.

Jocher, G. 2020. YOLOv5(GitHub). https://zenodo.org/record/4418161#.X_iH_ugzaUk 
Kaur, T., B. S. Saini, and S. Gupta. 2019. An adaptive fuzzy K-nearest neighbor approach for 

MR brain tumor image classification using parameter-free bat optimization algorithm. 
Multimedia Tools Appl 78 (15):1–38. doi:10.1007/s11042-019-7498-3.

Kim, J. A., J. Y. Sung, and S. H. Park Comparison of Faster-RCNN, YOLO, and SSD for 
real-time vehicle type recognition. In Proceedings of the 2020 IEEE International 
Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Korea, 1–3 November 
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4.

e2151180-4012 S. ARUNACHALAM AND G. SETHUMATHAVAN

https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1038/s41746-019-0122-0
https://doi.org/10.1038/s41746-019-0122-0
https://doi.org/10.1109/TIP.2005.851710
https://doi.org/10.1088/1742-6596/1679/4/042022
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.3389/fncom.2020.00025
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.48550/arXiv.1904.07392
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1002/jemt.22994
https://zenodo.org/record/4418161#.X_iH_ugzaUk
https://doi.org/10.1007/s11042-019-7498-3


Liang, H., X. Sun, Y. Sun, and Y. Gao. 2017. Text feature extraction based on deep learning: A 
review. EURASIP Journal on Wireless Communications and Networking 2017 (1):1–12. 
doi:10.1186/s13638-017-0993-1.

Liu, S., L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network, for instance segmentation. In 
Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake 
City, UT, USA, 2018; pp. 8759–68.

Li, M., Z. Zhang, L. Lei, X. Wang, and X. Guo. 2020. Agricultural greenhouses detection in 
high-resolution satellite images based on convolutional neural networks: Comparison of 
Faster R-CNN, YOLOv3 and SSD. Sensors 20 (17):4938. doi:10.3390/s20174938.

Li, L., Z. Zhou, B. Wang, L. Miao, and H. Zong. 2021. A novel CNN-based method for accurate 
ship detection in HR optical remote sensing images via rotated bounding box. IEEE 
Transactions on Geoscience and Remote Sensing 59 (1):686–99. doi:10.1109/TGRS.2020. 
2995477.

Long, X., K. Deng, G. Wang, Y. Zhang, Q. Dang, Y. Gao, H. Shen, J. Ren, S. Han, and D. E. PP- 
YOLO. 2020. An effective and efficient implementation of object detector. arXiv 2020, 
arXiv:2007 12099.

Louis, D. N., A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, 
H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison. 2016. The 2016 World Health 
Organization classification of tumors of the central nervous system: A summary. Acta 
neuropathologica 131 (6):803–20. doi:10.1007/s00401-016-1545-1.

Malarvel, M., G. Sethumadhavan, P. C. Rao Bhagi, S. Kar, T. Saravanan, and A. Krishnan. 2017. 
Anisotropic diffusion based denoising on X-radiography images to detect weld defects. 
Digital signal processing 68:112–26. doi: 10.1016/j.dsp.2017.05.014.

Mårtensson, G., D. Ferreira, T. Granberg, L. Cavallin, K. Oppedal, A. Padovani, I. Rektorova, 
L. Bonanni, M. Pardini, and M. G. Kramberger. 2020. The reliability of a deep learning 
model in clinical out-of-distribution MRI data: A multicohort study. Medical Image Analysis 
66:101714. Publisher: Elsevier. doi:10.1016/j.media.2020.101714.

Menze, B. H., J. Andras, B. Stefan, et al. 2015. The Multimodal Brain Tumor Image 
Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging. 34 
(10):1993–2024. doi:10.1109/TMI.2014.2377694.

Mitani, A., A. Huang, S. Venugopalan, G. S. Corrado, L. Peng, D. R. Webster, N. Hammel, 
Y. Liu, and A. V. Varadarajan. Jan 2020. Detection of anaemia from retinal fundus images 
via deep learning. Nature Biomedical Engineering 4(1):18–27. doi: 10.1038/s41551-019- 
0487-z.

Narmatha, C., S.M. Eljack, T. AARM, S. Manimurugan, and M. Mustafa. 2020. A hybrid fuzzy 
brain- storm optimization algorithm for the classification of brain tumor MRI images. 
Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-020- 
02470-5.

Pan, Y., W. Huang, Z. Lin, W. Zhu, J. Zhou, J. Wong, and Z. Ding. “Brain tumor grading based 
on neural networks and convolutional neural networks.” 2015 37th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan, Italy: 
IEEE, 2015.

Pei, L., S. Bakas, A. Vossoughe, M. S. R. Syed, C. Davatzikos, and K. M. Iftekharuddin. 2020. 
Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. 
Biomedical signal processing and control 55:101648. doi:10.1016/j.bspc.2019.101648.

Pei, L., L. Vidyaratne, M. Monibor Rahman, and K. M. Iftekharuddin. 2020. Deep learning with 
context encoding for semantic brain tumor segmentation and patient survival prediction. In 
Medical Imaging 2020: Computer-Aided Diagnosis. vol. 11314, pp. 113140H. International 
Society for Optics and Photonics. doi:10.1117/12.2550693.

APPLIED ARTIFICIAL INTELLIGENCE e2151180-4013

https://doi.org/10.1186/s13638-017-0993-1
https://doi.org/10.3390/s20174938
https://doi.org/10.1109/TGRS.2020.2995477
https://doi.org/10.1109/TGRS.2020.2995477
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1016/j.dsp.2017.05.014
https://doi.org/10.1016/j.media.2020.101714
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/s41551-019-0487-z
https://doi.org/10.1038/s41551-019-0487-z
https://doi.org/10.1007/s12652-020-02470-5
https://doi.org/10.1007/s12652-020-02470-5
https://doi.org/10.1016/j.bspc.2019.101648
https://doi.org/10.1117/12.2550693


Philip Bachman, R. D. H., and W. Buchwalter. 2019. Learning representations by maximizing 
mutual information across views. Advances in Neural Information Processing Systems 
15535–45. https://doi.org/10.48550/arXiv.1906.00910 

Rahman, E. U., Y. Zhang, S. Ahmad, H. I. Ahmad, and S. Jobaer. 2021. Autonomous 
vision-based primary distribution systems porcelain insulators inspection using UAVs. 
Sensors 21 (3):974. doi:10.3390/s21030974.

Shukla, G., G. S. Alexander, S. Bakas, R. Nikam, K. Talekar, J. D. Palmer, and W. Shi. 2017. 
Advanced magnetic resonance imaging in glioblastoma: A review. Chinese Clinical Oncology 
6 (4):1–12. doi:10.21037/cco.2017.06.28.

Solawetz, J. 2020. YOLOv5 New Version - Improvements and Evaluation. Roboflow. https:// 
blog.roboflow.com/yolov5-improvements-and-evaluation/ .

Van Leemput, K., F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens. 2001. Alan 
Colchester and Paul Suetens. Automated segmentation of multiple sclerosis lesions by 
model outlier detection. IEEE Transactions on Medical Imaging 20 (8):677–88. doi:10. 
1109/42.938237.

Wang, C.-Y., I.H.Y Hong-Yuan Mark Liao, W. Yueh-Hua, P.-Y. Chen, and J.-W. Hsieh. 2019. 
CSP-NET: A new backbone that can enhance learning capability of CNN. arXiv. https:// 
arxiv.org/pdf/1911.11929.pdf .

Wiesmüller, S., and D. A. Chandy. (2010). Content-based mammogram retrieval using Gray 
level matrix. In Proceedings of the International Joint Journal Conference on Engineering 
and Technology (IJJCET 2010), Chennai, India, pp. 217–21.

Yu, Z., Y. Shen, and C. Shen. 2021. A real-time detection approach for bridge cracks based on 
YOLOv4-FPM. Automation in Construction 122: 103514. doi:10.1016/j.autcon.2020.103514.

Zhao, K., and X. Ren Small aircraft detection in remote sensing images based on YOLOv3. In 
Proceedings of the IOP Conference Series: Materials Science and Engineering, Guangzhou, 
China, 12–14 January 2019.

e2151180-4014 S. ARUNACHALAM AND G. SETHUMATHAVAN

https://doi.org/10.48550/arXiv.1906.00910
https://doi.org/10.3390/s21030974
https://doi.org/10.21037/cco.2017.06.28
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://doi.org/10.1109/42.938237
https://doi.org/10.1109/42.938237
https://arxiv.org/pdf/1911.11929.pdf
https://arxiv.org/pdf/1911.11929.pdf
https://doi.org/10.1016/j.autcon.2020.103514

	Abstract
	Introduction
	Related Works
	Proposed Methodology: <italic>I-</italic>YOLOV5 Model
	Mosaic Data Enhancement
	Adaptive Anchor Frame Calculation
	Adaptive Image Scaling
	The Detection Approach
	Anisotropic Diffusion Filter
	Localization
	Lesion Segmentation
	Hyper-Parameter Optimization (HPO)
	Algorithm for HGSOA to Optimize Tuned and Fine Adjustment of HPO
	McCulloch’s Algorithm for Segmentation
	Experiment Results and Discussion
	Data Set
	Segmentation and Classification
	Segmented Image Quality Measures Using McCulloch Algorithm
	Mean Square Error (MSE)
	Peak Signal to Noise Ratio (PSNR)
	Structure Similarity Index Method (SSIM)
	Features Similarity Index Matrix (FSIM)
	Optimized <italic>i-</italic>YOLOV5 CNN Models
	Conclusion and Future Work
	Disclosure statement
	References

