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Abstract

We introduce wavelet bases consistent with the eigenspaces of the action of rotation by the angle
27 /N in dimension d = 2. Our particular construction yields wavelets that are momentrum-entire
(a property weaker than the compact support property). The orthogonality of wavelets in a given
eigenspace is based on an inner product that depends on the eigenspace, while the eigenspaces
themselves form a super-orthogonal system over a certain family of Hilbert spaces. (We describe
this notion in the Introduction.) The existence of a gradient-orthonormal basis of momentum-entire
wavelets is an issue that remains open.
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1 Introduction

In the context of this paper, we say that an integrable function on R? is momentum-entire if the analytic
continuation of its Fourier transform is an entire function on C?. An obvious example of a momentum-
entire function is a Gaussian on R?. Another example is a compactly supported continuous function
on R<. In that case, the Fourier transform has an additional property - the growth of the analytic
continuation in the imaginary directions is exponentially bounded. On the other hand, a continuous
function on R? with exponential decay is not necessarily momentum-entire. Roughly speaking, only
real-analyticity of the Fourier transform is needed to guarantee the exponential localization.

This paper has been indirectly inspired by our quest [1] for gradient orthonormal bases of compactly
supported wavelets in dimension d > 1. Such bases of exponentially localized wavelets were
constructed 25 years ago [2] - at about the same time that the Lemarié bases [3], Meyer basis [4],
and Daubechies bases [5] were constructed. The Lemarié wavelets are exponentially localized, the
Meyer wavelet is a Schwartz function, and the Daubechies wavelets are compactly supported, but all
of these bases are L*-orthonormal instead of gradient-orthonormal. One may wonder about the more
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modest goal of constructing gradient-orthonormal bases of momentum-entire wavelets in dimension
d > 1. Even this question is currently open, however.

Remark 1.1. Since Daubechies wavelets are compactly supported, they are momentum-entire wavelets.
By contrast, Lemarié wavelets are not momentum-entire, as their Fourier transforms are only real-
analytic. Meyer wavelets are not momentum-entire either. Indeed, their Fourier transforms are
compactly supported, so one could say that Meyer wavelets are “position-entire” instead.

Here we are exclusively concerned with dimension d = 2, and discrete rotational symmetry will be
a property of the new wavelets. Our wavelet construction will involve a machine for which Daubechies
wavelets are the input and momentum-entire wavelets that lie in the eigenspaces for the action of a
rotation are the output. For the sake of orientation, recall that in two dimensions each Daubechies
basis is generated by three mother wavelets.
Our starting point is to consider a linear transformation ¢ — Ug induced by a nonlinear mapping
in momentum space - specifically, .
Ug=+V2joA, (1.1)

A(E) = (K2 — k3, 2k1k2). (1.2)
Let H, denote the Hilbert space for gradient-orthogonality of functions over R?. More precisely, H, is
the linear space of tempered distributions over R? defined by the condition that f € H; if and only if

/OO dk: /oo dka k2| f(B)]* < oc. (1.3)

The inner product is given by

(o fob, = /jo dks [o ks B2 (F) o)

-/ / (V) (VF) (1.4)

The point is that A is a continuous mapping of R? onto itself and that the Jacobian of A is given by

(1.5)

Ta(E) = det {2’“ ’2"32} — 4l

2ky 2k

Clearly,
A Y 7l
1 oo oo . 5 =
=5 [ an [ drlga@) P

=/ dm/ daz|3(q)|?
=lgll72, (1.6)

where the factor 1 is cancelled by the double covering of R* by A. Thus U is an isometry from L*(R?)
into H;.

Since the analytic continuation of A is an entire mapping from C? onto itself, U preserves the
momentum-entire property, but U is not unitary. It is obvious that the range of U consists of functions
that are invariant with respect to reflection through the origin. In two dimensions this is equivalent to
invariance with respect to 180° rotation. If we apply U to the nth-order Daubechies basis of L*(R?),
we obtain an orthonormal set in H; consisting of momentum-entire wavelets, but it is not a basis of
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H;. Now the orthogonal complement of the functions with 180° rotational symmetry are those with
180° rotational anti-symmetry. It is easy to check that the differential operator
5 0 .0
a - 8331 + Z&rg ’
transforms the former type of function to the latter, and d obviously preserves the momentum-entire
property. Unfortunately, 0 is also a unitary transformation of H; back to L?(R?), so our wavelet basis
for the other eigenspace of the action of the 180° rotation is orthonormal in the initial Hilbert space
L?(R?) instead of in the target space H;. One way to stay in the target space is to apply the operator
| v |~'0 instead, but this operator destroys the momentum-entire property.

In what sense can one expand a function over a basis whose subsets have different orthogonality
properties? For the case in point, the answer to this question lies in the observation that the two
eigenspaces associated with the 180° rotation are mutually orthogonal with respect to both inner
products. We generalize this scenario to a more abstract setting.

Let { H. :oc€ A} be a family of Hilbert spaces that are also linear subspaces of the dual 7' (R%)
of some topological vector space T (R?) of test functions on R?. Consider a set {E1, E», ..., Ex} of
linear operators on 77 (R%) such that

EEy =6 Ey, LI'=1,2,...,N, (1.8)

(1.7)

N
Y Ef=f  feT®Y (1.9)
=1

We say that {E1, E», ..., En} is a super-orthogonal system over { Hy :x& A} if the restriction of E;
to H is an orthogonal projection of H.. for every e A.

Now suppose for some set {1, 2, ..., xn } of indices there is an H,-orthonormal basis {h;; :
j € Ji} of the subspace E;(H,) of Hy, for each I. Then for

N
tpeﬂHo(,

=1

we have

Il
M=

¥ Ep

I
=

I
M=

(B, hij) gy, T

JjeJ

Il
-

Il
M=

(s hag) g, Pass (1.10)

l J

m

1J

where the Ith series converges in Hy,. Such a composite expansion is unique as well. Indeed, if we

have N
@Izzcljhlj (111)

=1 j€J;
with the ith series converging in H,, then

N
Ene=> En Y ajhy
=1

JEJ;

=5 Cmihm (1.12)

J€JIm
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as a consequence of (1.8). Thus

<(Pa hmj’)]—] . = <907 Emhmj’>Ho<m

= <E7n@7hm]-/>H(Xm = Cm,j’ (113)

Xm

by the super-orthogonality property.

In this paper we construct wavelet bases of this type in dimension d = 2. Our topological vector
space of test functions is the space S..(R?) of Schwartz functions on R? whose moments vanish
to all orders (so the dual space S’ (R?) properly contains the space of tempered distributions over
R?). Our family of Hilbert spaces is a one-parameter continuum of massless Sobolev spaces, which
we specify in the next section. The super-orthogonal system {FE1, E-, ..., Ex} will consist of the
spectral projections of the action of rotation by the angle 27 /N (where Ex is the spectral projection
for eigenvalue 1, and so we will set Ex = Ey). The point is that the action of rotation is unitary with
respect to all of the massless Sobolev spaces, and therefore {Eo, F1, ..., En—1} is super-orthogonal
with respect to this family of Hilbert spaces.

Our opening discussion has implicitly described our wavelet construction in the case N = 2, and
we generalize it with a view to the requirement that the wavelets be momentum-entire. The differential
operator 9 is ideal in this context. It obviously preserves the momentum-entire property, and it is a
coherence operator in the sense that if we can build a wavelet set {ho; : j € J} corresponding to Eo,
then - as we will see later - the wavelet set {9'ho; : j € J} corresponds to Ex_;. The catch is that §'
is not a unitary operator, but rather a unitary transformation from a given massless Sobolev space to
another with a different degree.

The next section is devoted to generalizing the transformation U to the case where the output
functions are invariant with respect to rotation by the angle 2w/N. In Section 3 we describe the
spectral resolution { Eq, E1, ..., Ex—1} arising from that rotation, and it is important to understand that
this spectral analysis is just an exercise in the discrete Fourier transform that is independent of any
function space inner product. In Section 4 we return to the N = 2 case and complete the description
of the wavelet construction implied above. Section 5 covers the wavelet construction for arbitrary NV,
and we will see that the coherence with respect to scaling is based on the scale factor V/2 rather than
2. Moreoever, while scaling commutes with rotation, translation does not, so the familiar coherence
with respect to integer-valued translations on the unit scale is replaced by a different coherence.
Translation-invariant propagations generated by a couple of Nth-order differential operators take the
place of those translations. (In the N = 2 case, they are directional Schrodinger propagations.)

2 The Transformations

For —oco < p < co we consider the Hilbert space H, as a linear subspace of S, (R?) defined by the
condition that f € H,, if and only if

/ dkl/ dka|E*P| f(k)|? < oc. (2.1)

In particular Hy = L*(R?). An essential role will be played by the Cauchy-Riemann operator 9, which
defines a unitary transformation from H, to H,_1 for every p, but that is not our focus in this section.

Remark 2.1. For every e > 0, one can find an f € H,, such that
FR)y=0(k"™), [kl =0,

which means that for p > 1, one can find an element of H,, that is not a tempered distribution over R?.
This is the reason why we chose a larger space of distributions. It is easy to verify that H, c S.,(R?)
for —oo < p < 0.
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We are primarily interested in a family of isometries implemented by special nonlinear transformations
in the momentum coordinates. For N = 2,3, 4, ... we define Ay : R? — R? by

As(K) = (ki — k3, 2knks),
As(E) = (K — 3kik3, 3k ks — k3),

An (k) = (Re[(ky + ika)™], Im[(k1 + ik2)™]), (2.4)

The Jacobian determinant Jx of Ay is easy to calculate:

NRe|(k1 + ik2)N !

JIn (k) = det { NRe[i((kl + ikz)Nfl]}

[ ]
NIM[(ky + ik2)N "1 NIm[i(ky + ko)1
B el(kr +ik2)N "1 —NIm[(ky + iko)V 7]
= det {Nlm[( + Zkz)N 1] NRe[(kl + Zbk‘z)Nil} :|

= N*(Re[(k1 + ik2) N ')? 4+ N2 (Im[(k1 + ik2)V 1))?

= N?|(k1 + ik2)" 1)

= N2|k|*N 2 (2.5)
Moreover,

[An(R) = (Re[(k1 + ik2)™])* + (Im[(ky + ika)"])?

= [(k1 + ko)™ ?
= [k[*Y (2.6)
Now introduce the mapping g — Uxg defined by
Ung=vVNjoAy. (2.7)
Clearly,
g, = [~ dis [~ aral Oxa B
:N/ dkl/ dka|E*YG(An ()]
=5 ] e [ dmEE g B B 8)
so if we set . B
An(k) =K, (2.9)
then . L
k| = |k'|¥, (2.10)
and therefore
1Ungll%, = / de/ iy 2R 2 R g (7P, (2.11)

where a factor of N appeared because the mapping Ay is an N-fold covering of R2. Thus Uy is an
isometry from H, into H,, where

~ (2.12)
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or rather
g=((p+1)N -1 (2.13)

The only fixed exponent is p = —1, so H_; is the natural Hilbert space in the sense that Uy is an
operator on H_; instead of a transformation from one space to another. However, we will be more
interested in the fact that Uy is an isometry from L?(R?) = Hy into Hx_; as well.

These isometries are assuredly not unitary. Indeed, the ranges are the linear subspaces of
interest to us because they can also be defined by discrete rotational symmetry. We pursue this in
Section 3.

Remark 2.2. The way that we have defined the transformations A in the momentum coordinates
may cause confusion (which may be further compounded by our intention to use the Cauchy-Riemann
operator 0). After all, if we introduce the complex variable z = k1 + iko, then Ay is effectively the
transformation z — 2" and the application of 9 is just multiplication by iz in momentum space.
However, it is the analytic continuation of a Fourier transform in the separate variables &, and k- that
we are concerned about. The fact that the mappings z — z¥ are entire does not directly concern us.
We care about these special coordinate transformations on two counts:

(a) As nonlinear mappings, they are homogenous in the coordinates. This is important because
wavelets involve scaling.

(b) The induced isometries Ux produce functions with discrete rotational symmetries.

The differential operator 0 also has a special effect on rotational symmetries, as we see in the next
section.

Since partial differentiation preserves the momentum-entire property, the operator 9 clearly does
s0. Now for each N = 2,3, 4, ... the mapping Ax : R? — R? is given by a two-component polynomial
in two variables, so its analytic continuation in those two variables is obviously an entire mapping from
C? into itself. Therefore, Uy preserves the momentum-entire property for every N. It is important to
note, however, that - in contrast to differential operators - these transformations do not preserve the
compact support property.

3 Eigenspaces for a Rotation

For an arbitrary positive integer N, define the coordinate transformation I'y : R> — R? as rotation by
the angle 2w /N in the counter-clockwise direction. Thus - with Z = (z1, z2) -

I'n(Z) = (z1cos(2n/N) — x2sin(27/N), z1 sin(2w/N) + x2 cos(27/N)). (3.1)
Let Wi be the contravariant action of I'y on our distributions - i.e.,
Wnf=foTy, (3.2)
where in the distributional sense,
(foTn)(@) = flpoly'), ¢ € Sw(R?). (3.3)
It is obvious that W is a unitary operator on H, for every p - since
foly=fol'y (3.4)

and |E|p is rotationally invariant - but the spectral analysis of Wy can be done in S. (R?) with no inner
product structure. The eigenvalues of Wy are the Nth roots of unity wly, I = 0,1, ..., N — 1, where

wn = exp(i2n/N). (3.5)
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If RY denotes the Ith eigenspace, then
RY ={f € SL(R*): fol'n = whf} (3.6)

and the calculation of the projection onto R} is an exercise in the discrete Fourier transform that is
independent of the Hilbert space. Indeed, if we define

N-1
1
En.f = ~ E o' f o TR, f € SL(R?), (8.7)
m=0

then Ey, is a super-orthogonal projection over the collection of Hilbert spaces H, with —oo < p < co.
To see that En; is a spectral projection of Wy, we first note that

1 m m
(Envif)oln =+ Wy fo TR
m=0
1 X , ,
’uijil N1 ’ ’
== @™ fol'R +w§§vfor§$>
m/=1
wé\, N-1 it ,
=N ;1 wy' fol'y + f
= wéVEN,l.ﬂ (38)

so En,.f € R} forevery f € S..(R?). Second, we verify (1.8) by noting that for f € R},

1N 1
EN,lf:NZw%"foF}G

3

2
= o

@ W f = b f. (3.9)

0

2=

3
Il

To establish that En; is a super-orthogonal projection, we show that the restriction of En; to H, is
self-adjoint in that Hilbert space. Notice that for ¢, € H,,

2

—1

2=

(Envio )y, =

B
Dy

1 _im oo o0 = . —m 5 —
- wi! / dks / s | (TR (R)) 9 (F)

2|
2 3
Dy

2=

w;,lm/ dk:’l/ dikb | PP 3 (K )b (T (k')

z 3
= o

1 —lm —-m
=5 2 un (e woly™), (3.10)

m=0

3

where we introduced the change of variable &' = F]Qm(lg) and used

k| = DR (K" = |K]. (3.11)
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Thus
1 N-—1 .
<EN,l 9077/)>Hp = <§07 N wl:f m¢ © Fﬁm> ) (312)
m=0 Hy
but on the other hand,
N-1 N—-1
% BN Yo TN = %1/) - % @iy Moy
m=0 m=1
N—-1
1 1 ’ !’
=yt y @™ Nipo TR
m/=1
= En%. (3.13)

This completes the proof that the restriction of En,; to H, is a spectral projection of Wy in H,, for
—00 < p < co. Now the decomposition

N—I N
- l@j (Rl N H,,) (3.14)

is an automatic consequence of the spectral theory of self-adjoint operators, but it can also be verified
independently. Indeed for f € 5. (R?),

=

-1 N-1

N-1 1
> Enaf = Z oy fo TN

=0 m
—1
7lm
fol'y
=

1
Nomofol'N = f (3.15)

I I
=z~ Z\H T
23 °
Hg
>l
OM °

3
I
o

so the condition (1.9) is satisfied.
It is very important to see the relation of the transformations defined in the previous section to
these eigenspaces. For ¢ € H, we have

(Ung) o T (k) = Unop(Ty* (R))

= VNG(AN (T3 (K)), (3.16)
but if we set T'y! (k) = K/,
AN (TR () = (Re[(K} + ik5)™], Im[(K: + ik)N]), (3.17)
while
k1 = ki1 cos(2n/N) + ks sin(27/N), (3.18)
ky = —k1 sin(2w/N) + k2 cos(27/N), (3.19)
or rather
kll + Zk; = wN(k1 + ikz). (3.20)
Therefore,

An(T(F) = (Refwi (k1 + ika) ], Im[w] (k1 + ikz)™])
(Re[(k1 + ika)™], Im[(ky + ik2)"])
An(F), (3.21)
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from which it follows that

(Ung) o'n = Unep. (3.22)
We have already pointed out in the previous section that Uy is an isometry from H,, into H, with
g=((p+1)N -1 (3.23)

We have now identified the isometric image as the eigenspace R’ N H, of the 'y -rotational operator
Wnx on H,.

4 Construction in the N = 2 Case

In this case we are dealing with a 180° rotation only. The unitary transformations are given by

U2g = V2§ 0 As, (4.1)
Wag = gols, (4.2)
where
Az(k) = (kT — k3, 2kakz), (4.3)
Ty(F) = 7. (4.4)

For —oo < p < o0, Us is an isometry from H,, into Ha,41 with isometric image
Hapi1 NRy = {f € Hapy1: foTa = f}. (4.5)

We now set p = 0. Actually U, = U, where U was discussed in the Introduction.

As we mentioned in the Introduction, our starting point is the nth-order Daubechies basis in two
dimensions. Since it is orthonormal in Hy = L*(R?), its image under U, is an orthonormal basis of
H, N RZ, but what are the new coherence properties? Since a Daubechies basis has three mother
wavelets in two dimensions, we denote them by 1, ¢2, and 5 so that

B={2"¢.(2'%—3):r€Z5cZ’ u=1,23} (4.6)

is the Daubechies basis. These functions are class C" ¢ and all of their moments of order < n
vanish. The Fourier transform of this basis is given by

B={2"exp(—i2 "5 k). (2 k) :r € Z,5€ Z*, n=1,2,3}, (4.7)
"

so the Fourier transform of the image under U is just

UsB = {27"V2exp(—27"5 - Ao (k) (2 "As(K)) 1+ € Z,5 € 72, u = 1,2,3}. (4.8)
On the other hand, B .
27" Ao (k) = Aa(27 2k). (4.9)
which implies
V20,27 Ao (k) = Uathu(27 2 ). (4.10)
For notational convenience we set .
U2 (222) = nu,r (), (4.11)
and in two dimensions this means
2 Uathy (272 K) = (). (4.12)
Thus /\ . .
UsB = {exp(—i2™ "5 Ao(k))Tpr(k) : 7 € Z,5€ Z*, up = 1,2,3} (4.13)
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and therefore
UsB = {exp(—i27 "5 Ao(—iy))jur : 7 € Z,5 € Z°, = 1,2,3}. (4.14)

This describes our orthonormal basis of RZ N H;.

There are two important points to made here. First, it is clear from (4.11) that the scale factor is
no longer 2, but rather /2. Second, the propagator can be understood as a composition of directional
Schrodinger propagators. Indeed,

§-A(GY) = s1(—07 + 93) — 2520192
= 51(—07 + 03) + 52(0% — 97), (4.15)

0y = %(al +8y), (4.16)

and so
exp(—i27 "5 Ao(—ivy)) = exp(i2” "5107 )exp(—i2 "s105 )exp(—i2 "520° Jexp(i2” "s20%). (4.17)
Indeed, an alternate way to describe our basis is to set
exp(is107 )exp(—is103)exp(—is20” )exp(is2d3 )0 = v,z (4.18)
at the unit scale and note that
UsB = {v,:(228) : r € Z,5 € Z*, p = 1,2, 3}. (4.19)

The significance of this is apparent: translation-coherence on a given scale has been replaced by
coherence with respect to a composition of certain translation-invariant propagations.

Obviously these expansion functions are momentum-entire because the Daubechies wavelets
are momentum-entire. Equally obviously, this set is not complete, since a given function ¢ cannot be
expanded in these functions unless ¢ o I's = . How do we find a set of expansion functions that
covers the symmetry ¢ o 'y = —¢ and still consists of momentum-entire expansion functions? The
idea is that

(0f)oTa = —d(fol2),  f€SL(R?, (4.20)
while d preserves the momentum-entire property. This relation means that
f€R} = (9f) o2 = —0f, (4.21)

s0 f € R%. On the other hand, df does not lie in H;. Since
||59H2L2 :/ dk’l/ dka| (k1 +Zk2)§(l§)\2
= [ [ i+ )0 = gl (4.2

we know that g — g is a unitary transformation from H; to H, and this implies it is also a unitary
transformation from R§ N H, to R? N Ho.
Thus our total basis is U>8 U 0U»2B. For an arbitrary function ¢ € Ho N H; we write

o =FEa0 ¢+ E21¢, (4.23)

where {Es,0, E2,1} is the super-orthogonal system described in the previous section - for the N = 2
case. We exploit the memberships

Eaxop € R§NHy, (4.24)
Esrp € RE N Hy (4.25)
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as a consequence of the bases that are available. Accordingly, we apply the expansions

3
Eaop=>_ > > (E200,0usr) g, Vnsirs (4.26)

p=13c72 rck

3
E2,1Q0 = Z Z Z <E2,150, 5U}L,§,T>L2 57};1,5',7“7 (427)

p=13c72 rel

where
Vp,5,r (L) = vp,5(222) (4.28)
and therefore ~ o a
Ovy 50 (%) = 2200, 5(22 7). (4.29)
Now by interspace orthogonality of the projections,
<E2,030’ ’Uu,g,r>H1 = <‘Pa vu,i’,r>H1 ) (4.30)
<E2,1§0757];L,§',7*>L2 = <§0, 5UM’§’T>L2 . (431)

Combining this with (4.23), (4.26) and (4.27), we obtain the expansion
3 3
w = Z Z Z <§07 vu,g,'r)Hl Uy,,é’,r + Z Z Z <507 8vu,§,r>L2 6Uu,§,r (432)
n=1gez2 reZ n=1gez2 reZ
with the understanding that the first sum converges in H; and the second sum converges in Hy =
L?(R?).
Examples of some equations are given below:

Definition 4.1. An Einstein manifold (E, g) intimated with a Divine structure (g, G) is called a Divine
Einstein manifold. Thus a tripe (E, g,G) in which an Einstein metric g and a Divine structure G
compatible with g are involved, is called a Divine Einstein manifold.

With the aid of the propositions (2.1) & (1.1) of [(? )] and [(? )] respectively, we can prove the
following:

Proposition 4.1. A Divine Einstein manifold (E, g, G) bears the property

G" = F,G) + Fy_10), (4.33)
for any integer number n > 0. Here (F,,)., is the well known Fibonacci sequence.
Proof. From equation (2.11), it is easy to get

G® =2G + 45,
and in general, if we suppose that
G"' = FoG? 4 Fuur G = (Fu + Fm1) Gl + F,65,

which due to Fibonacci properties evidently produces (4.33). O

Proposition 4.2. The Divine Einstein structure (g, G) defined for an n-dimensional Einstein manifold
(FE, g) bears the trace property, given as

trace (G?) = trace (G) + n. (4.34)
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Proof. The equation (4.34) can be evidently derived from (2.11), if we operate (2.11) by trace operator
and note that trace 5;'- = n. However, if we use the concept of orthonormal basis (E1, Es, - - - Ey,) Of
tangent space T, (FE) at a point z € E [(? )], we have from (2.12)

9(GE;, E;) = g(GE;, E;) + g(Ei, E). (4.35)
Summing (4.35) with respect to ¢, the equation (4.34) automatically set up. O

It is very clear that the proposition (2.5) of [(? )] also holds good in our case, i.e.,

5 Construction for Arbitrary N

In this general case, the angle of rotation is 27 /N. The unitary transformations are given by

Ung=VNgoAn, (5.1)
Wng=goln, (5.2)

where .
An(E) = (Re[(k1 + ik2)N], Im[(ky + ik2)™]) (5.3)

and I'y is given by (3.1). We are interested in Ux as an isometry from Hy = L*(R?) to Hy_1 with
isometric image
Hy 1 NR) ={f€HN_1:foln=f}, (5.4)

and as before, we use the nth-order Daubechies basis in two dimensions as input.
This basis B is given by (4.6), and its image under Uy is an orthonormal basis of Hx_1 N RY.
The Fourier transform of this image is given by

UnB = {27"VNexp(i2™"5 - An (k). (2 "An (k) : r € X,5€ Z2, = 1,2, 3}, (5.5)
but since . .
27"An (k) = AN (27N k), (5.6)
we have . . . o
VN (27 AN (K)) = Unn (277 E), (5.7)
which means we may write
UnB = {exp(—i2 "8 An (k) un(k) i 7 € 2,5 € 22, n = 1,2, 3}, (5.8)
where we have set . .
27 TN UNY (2N D) = . (7). (5.9)
Thus
UnB = {exp(—=i27 "5 An(—i7))npr i 7 € Z, 5 € 22, = 1,2,3} (5.10)

is the orthonormal basis of R) N Hy_1.
The scale factor is /2 rather than 2. Indeed, it is straightforward to see that if we set

exp(—i8+ An(=17))Nu,0 = vu,3, (5.11)
then ) B
UvB={2"""Nu,:2V%):re€Z,5cZ n=1,23} (5.12)
As for the propagation, the homogeneity of Ax implies
An(=i7) = (=) An (7). (5.13)
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Since - B
An () = (Re[d"],Im[aN]), (5.14)

it follows that ~ _
v,5 = exp((—i) " ' s1Re[0™ )exp((—i) ¥ T s2Im[0™ ) 1.0 (5.15)

In the N = 2 case we recover (4.18); in the N = 3 case we obtain
V.5 = exp(s1 (07 — 39103))exp(s2(307 02 — 95)) 10 (5.16)

In general, the order of the differential generators is V.
These expansion functions are momentum-entire, but they span only the subspace R) N Hy_1
of Hy_1 -i.e., only functions ¢ for which ¢ o I'y = ¢ can be expanded in the functions v,, &, where

2

Vpsr(B) = 27T N v, {2V F). (5.17)

The key to covering the other symmetries is to see that
Afoln)=wn(df)oTn,  f€Sn(R?), (5.18)

which means - -
(0f) o'y = WnO(f o). (5.19)

We have already pointed out in previous sections that 0 preserves the momentum-entire property.
The implication of (5.19) is that

(0™ f)oTN = wRO™f
=wyN "O"f,  feSL(R%). (5.20)

On the other hand, 8™ is a unitary transformation from H,, to H,_.», for every real p - in particular, from
Hy_11t0 Hy_1_m. The relation (5.20) supplies the additional information that 8™ maps Ry’ N Hx_1
to RN_,, N Hx_1_ and that 8™ UxB is an orthonormal basis of the latter eigenspace of Wy in
HN—l—m-

Our total basis is

N—-1 B
U o"uwB.
m=0
For an arbitrary function
N—-1
(RS m H;
=0
we write the resolution N
-1
o= EnnN-mp (5.21)
m=0

where {En 1, En,2, ..., En,n} is the super-orthogonal system described in Section 3. We exploit the
memberships
ENN-me€RN_nNHN m1, m=0,1,..,N—1, (5.22)

as a consequence of the bases we have available. Accordingly, we apply the expansions

3
EN,megO = Z Z Z <EN’N7m(p’5mv“’§’T>HN,m,1 8mﬂu,§,r, (523)

p=13c72 rek

where the super-orthogonality of the projections yields

<EN'N7WSO7gmv“*§VT>HN,m,1 = <@’5MU”’§’T>HN,M,1 . (524)
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Combining this with (5.21) and (5.23), we obtain the expansion

-1 3
= ZO,Z 2;226:2 00 Vs )y O O (5.25)
=1 ze r

where the mth series converges in Hy—,—1.

Remark 5.1. It is worth mentioning that one can obtain a basis of momentum-entire wavelets (with
these symmetries) that is split between H, and H; only. Indeed, if N and m are even, we can use
the unitary transformation
L(N—-m—-2)

¢ — A2 @
from Hy_,,_1 to H; to map the basis in Hx_.,_1 N RY_,, to abasisin H; " RY_,.. The point is that
the Laplacian A preserves both the momentum-entire property and the rotational symmetry property
defined by RY _,... Similarly, if N is even and m is odd, we use the unitary transformation

o — A%(N—m—l)(p
from Hy 1 to Hy = L*(R?) to map the basis in Hy_,—1 N RN_,, to a basis in Hy N RN _,.. This
transformation also applies to the case where N is odd and m is even, while the former transformation
applies to the case where N and m are both odd.

6 Future Directions

This type of construction is worth pursuing in dimension d > 2, because the eigenspaces of discrete
rotations have an interesting dependence on dimension. Indeed, we expect crystalline symmetries
to play an important role. Another issue yet to be resolved is the existence of gradient-orthonormal
bases of momentum-entire wavelets in multiple dimensions, including two dimensions.
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