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Abstract

Binary operations are introduced for triples satisfying zero curvature equations and quadruples
satisfying generalized zero curvature equations, and it is shown that such operations define Lie

algebra structures on the corresponding spaces of triples and quadruples.
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1 Introduction

Zero curvature equations play a prominent role in constructing soliton equations (see, e.g., [1], [2]). By
applying the trace identity [1] and the variational identity [3], Hamiltonian structures can be furnished
for the resulting soliton equations, which generate infinitely many symmetries and conservation laws.
The trace identity and the variational identity work for semisimple and non-semisimple matrix Lie
algebras, respectively. Zero curvature equations associated with non-semisimple matrix Lie algebras
yield integrable couplings [4]-[8], because a general complex Lie algebra has a semi-direct sum of a
semisimple Lie algebra and a solvable Lie algebra (see, e.g., [9]). Integrable couplings are a pretty
new research area in soliton theory [10], [11].

Let F be the field R of real numbers or the field C of complex numbers. Let z,¢ € R be
independent variables and u = u(z, t) denote a g-dimensional column vector of F-valued dependent
variables. Recall that the Gateaux derivative of an F-valued function Pu] = P(z,t,u,us,---) in a
direction v = v(z) is defined by

0

Pl = 5|

P(x,t,u + ev, Uy + 0zy -+ ), (1.1)

where v is a ¢g-dimensional column vector of F-valued functions. By B, we denote all F-valued
functions Plu] = P(z,t,u,us, - - - ), which are C*°-differentiable with respect to z, ¢ and C°*°-Gateaux
differentiable with respect to u = u(x, t) as a vector function of z, and set

B ={(Pi,Py- ,P)" |PeB 1<i<r} r>1 (12)
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By §I(r7 F), we denote all » x r matrices U = U(u, A) in gl(r, F') (the space of all » x r matrices with
entries in F), which are C*°-Gateaux differentiable with respect to v = u(z,t) as a vector function of
x and C*°-differentiable with respect to .

For K € B9, we consider an evolution equation

us = Ku] = K(z,t,u,ug, ). (1.3)

If there are matrices U = U(u, ), V = V(u,\) € §I(r, F) and a C*-differentiable function f such
that the following matrix equation [12] holds:

U'(w[K]+ f(NUx = Vo + [U, V] =0, (1.4)

where the Gateaux derivative U’ (U’ = (Uj;)rxr if U = (Uij)rxr) is assumed to be injective and U
and V, are partial derivatives, then (U, V) is called a Lax pair of the equation (1.3) associated with
the evolution law of the spectral parameter, \; = f(\).

The injective property of the Gateaux derivative U’ guarantees that if U'[K] = 0, then K = 0.
Therefore, if there is a Lax pair (U, V') associated with the evolution law of the spectral parameter,
A+ = f()), then the equation (1.3) is equivalent to the compatibility condition

U —Ve+[U,V]=0 (1.5)
of the following spectral problems
= Ulu, ),
(1.6)
Pt = V(u7 >‘)§07

under the evolution law of the spectral parameter, A\, = f()\) [12]. The equation (1.5) is called a zero
curvature equation, and it presents a zero curvature representation of the evolution equation (1.3)
while the matrix equation (1.4) with the injective Gateaux derivative U’ holds (for the case of Lax
representations, see [13]).
More generally, motivated by a Manakov pair [14], the evolution equation (1.3) may be represented
as
U - Ve +[UV]+W =0, (1.7)

or more concretely,
U'(w)[K]+ fONUx — Vo + [U V] +W =0 (1.8)

for three matrices U = U(u,\), V = V(u,A), W = W(u,\) € fj(r, F) and a C*-differentiable
function f, under the evolution law of the spectral parameter, A, = f(\). The equation (1.7) is called
a generalized zero curvature equation, and it presents a generalized zero curvature representation of
the evolution equation (1.3) while the matrix (1.8) with the injective Gateaux derivative U’ holds.

Zero curvature representations are good tools for computing symmetries of soliton equations, and
related algebraic structures help in recognizing diverse symmetry algebras [15] (for the case of Lax
representations, see [16]). Generalized zero curvature representations will bring more possibilities
to get symmetries and their algebras, since generalized zero curvature equations become zero
curvature equations when W = 0. In this paper, we would like to show that there exist Lie algebra
structures behind zero curvature equations and generalized zero curvature equations.

2 Lie algebra structures

Let U = U(u, A) be a given square matrix in the loop algebra §I(r, F). We do not need the injective
property of the Gateaux derivative U’ while addressing related Lie algebra structures in this section.

1337



British Journal of Applied Science and Technology 3(4), 1336-1344, 2013

2.1 The case of zero curvature equations
Assume that P(U) denotes the set of all triples (V, K, f) satisfying (1.4), i.e.,
U'(w)K]+ fAN)Ux = Va + [U, V] =0,

where V. = V(u,\) € §I(r, F), K = K[u] € B? and f is C*°-differentiable with respect to .
Obviously, P(U) forms a vector space on the field F' under the usual addition and scalar multiplication:

V1, K1, f1) + (Va, K2, f2) = (Vi + Vo, K1 + Ko, f1 + f2), a(V, K, f) = (aV, oK, af), (2.1)
where (Vi, K1, f1), (Va, K2, f2), (V, K, f) e P(U) and a € F.

Theorem 2.1. Let U = U(u, A\) be a given square matrix in the loop algebra §/(r, F). The bracket
[—, -] on the space P(U):

[[(Vllevfl)v (V27K2,f2)]] = (IIVI, VQ}]? [K17K2]7 [[fhfﬂ])v (22)

where
[V, Vo] = Vi (u)[K2] — V5 (u)[K1] + [V, Va] + faVix — f1iVa,y,

(K1, K2] = Kj(u)[K2] — K5(u)[K1], (2.3)
[f1, 2I(0) = fia) f2(N) = fr(A) far(A) = FIA) f2(A) = fr(N) f2(N),
defines a Lie algebra structure on P(U).

Proof: It is direct to show that the bracket [—, —] is closed on the space P(U) (see also (12)).
Obviously, it is bilinear and satisfies

[[(Vv K, f)’ (V7 K, f)]] =0, v (Vv K, f) S P(U)

Therefore, one needs only prove the Jacobi identity [17]. To this end, we denote the first component
of [—, —] by [—, —]1 and compute that

[[(V1, K1, f1), (Va, K2, f2)], (Vs, K3, f3)]1
= [([V1, V2], [K1, K2, [f1, f2]), (Vs, K3, f3)]h
= [Vi, Vo] '[K3] — V5[[K1, K2]] + [[V1, Vel Va] + f3[Va, Vala — [f1, fol Va,a
= (V{[Ka]) [Ks] = (Va[K1]) [ K] + [Vi, Vo] [Ks] + f2(Vi,n)'[Ks] — fi(Van)'[Ks]
=V ([, K] + [Vi (w)[K2] = V5 (u)[K1] + [Vi, V2] + f2Vix — fiVa,a, V3]
+f3(Via[K2) = Vo \ K] + [Vi, Vol + faaVix + f2Viaa — fiaVes — fiVaan)
—[f1, f2l Vs
We further group all the terms as follows:
[[(V1, K1, f1), (Va, K2, f2)], (Vs, K3, fs)]1
= {(V/[K2]) [K5] — (V3 [K1])'[Ks] — V5[[K1, Ka]lh
V1, Vo] [K] + [Vi (w) [K2] — Vs (u)[K1], Vs]}e
H2(Vin) [Ks] = fr(Van) [Ks] + fs(Vi A [Kz2] — Vo A[Ki])}s
+H{[[V1, Vo], Val}a + {[foVix — fiVea, VB3] + f3[Vi, Va]ats
Hs(foaVin — fiaVen) — [f1, ol Vaate + {fs(f2Viax — fiVapa)te

= Z{Ti(LQ,S)}i.
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Noting (Ma, 1992b) that
(P'[K))'[S] = (P'[S])[K] = P'[[K, S]],

we have
T1(1,2,3) + cycle(1,2,3)

= (VI[K2])'[Ks] — (Va2 [K1]) [Ks] — V5[[K1, K2]]
+(V3 [Ks))'[Kq] — (V5 [K2]) [K1] — VI[[K2, Ks]]
+(V5[K]) [K] — (VI [KS])' [Ke] — V2 ([[Ks, Ki]]
= (V{[[K2, Ks]] + V3 [[K3, K1]] + V3[[K1, Ka]])
—(V3[[K1, Ka]] + V{ [[ K2, Ks]] + V2 [[Ks, Ki]])
=0.
Since the commutator of matrices is a Lie bracket, we have
T4(1,2,3) + cycle(1,2,3) = [[V1, Vo], V3] + [V, V3], Vi] + [[V3, V1], V2] = 0
It is also direct to check that
Ti(1,2,3) +cycle(1,2,3) =0, i = 2,3,5,6,7.

This proves that the first component of the Jacobi identity holds. More easily, owe can show that
the second and third components of the Jacobi identity hold (see also [12], [16]). Therefore, [—, —]
satisfies the Jacobi identity, and so it defines a Lie algebra structure on the vector space P(U). O

2.2 The case of generalized zero curvature equations
Let Q(U) be the set of all quadruples (V, W, K, f) satisfying (1.8), i.e.,
U'(w)[K] + fO)Us — Ve + [U, V] + W =0,

where V =V (u,\), W = W(u, ) € gl(r, F), K = K[u] € B? and f is C*-differentiable with respect
to A
Obviously, Q(U) forms a vector space on the field F' under the usual addition and scalar multiplication:

(2.4)

Vi, Wi, Ky, f1) + (Va, Wa, Ka, f2) = (Vi + Vo, Wi + Wa, K1 + Ko, f1 + f2),
o(V, W, K, ) = (aV,aWV, ak, af),

where (Vi, W1, K1, f1), (Vo, Wa, Ks, f2), (V,W,K, f) € P(U) and a € F. Let (V4, W1, K1, f1) and
(Va, Wa, K>, f2) be two elements in the space Q(U). Introduce the bracket

[(Vi, Wi, K, f1), (Va, Wa, Ko, f2)] = ([V1, V2], [Wh, Wa, [Ky, Ko, [f1, f2]), (2.5)
where
[Vi, V2] = Vi (u)[K2] — V3 (u)[K1] + [V, Vo] + faVix — fiVa,
(W1, Wa] = Wi (u)[K2] — W3 (u)[K1] + [W1, Vo] = [W2, Vi] + faWix — iW2,x,
(K1, Ko] = Ki(u)[K2] — Kz (u)[K1],
[f1, £2I(0) = fra) f2(N) = fr(A) fax (V) = FIA) f2(A) = fr(N) f2(N),

motivated by an algebraic structure for Manakov’s pairs in [14].

(2.6)
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Theorem 2.2. LetU = U(u,\) be a given square matrix in the loop algebra §l(r, F). The space
Q(U) is closed under the bracket [—, —] determined by (2.5) and (2.6).

Proof: Let (Vi, W1, K1, f1) and (V2, Wa, Ko, f2) be two elements in the space Q(U), that is to say, we
have
U'(w)[Ki] + fiAUx = Vie + [U,Vi]+ Wi =0, i = 1,2. 2.7

First, it is direct to see that [K1, Ks] € B, [Vi,Va], [Wi,Wa] € dl(r,F), and [fi, fo] is C™-
differentiable. We would then like to prove that

(W) [Ky, Kol + [f1, LdA)Ux = [V1, Valo + [U, [V, V]| + [Wh, W] = 0. (2.8)

It follows from (2.7) that

{ (U'[K)) (K] + [U V) [Ka] = Vi o [Ka] — fuUR[K2] — W[, (2.9)
(U'[K]) (K] + (U Vo] [K] = Va o[ Ka] = f2UR[KG] = Wa[ KA,
and
{ US[K1] = Viex = [U, Vs = fiaUs = filx = Wi, (2.10)
US[K2] = Vo — [U, Vals = faaUs — foUx = Wa,n.

Let © = V{[K2] — V5 [K1] + [V4, V2]. Then we have
Or — [U, 0] = V{4 [K2] = V3 . [K1] + [Vie, Va] + [V1, Vao] — [U, VI[K2] = VE[KQ] + [V1, V2.
Note that we can compute that
[U, V1, Vo]l = [V1, [U, Va]] = [Va, [U, V1]
= [V1i,Va.o = U'[K2] = foUx = Wa| = [V2, V1o — U'[K1] = fiUx — WA].
Therefore, we can further have
0, —[U, 0]
= Vi, [Ka] = V5 . [Kn] = [U, V[K2] — V3 [KA]]
+[V1,U'[K2] + foUx + Wa] — [Vo, U'[K1] + f1Ux + W]
= Vi [Ka] = Vi, [K] = [U,VA] [Ks] + [U, Vo] [KA ]

+f2[Vi,Ux] = f1[Ve, UN] + [Vi, Wa] — [V2, W]
= U'[[Ky, K] + f1UL[K2] + W{[K2] — fo2U[K1] — W3[Ki]
+f2[Vi, U] = f1[V2, U] + [Va, Wa] — [V2, W]
]

= U'[[Ky, Ka]] + [f1, f2]Ux + f1Vo,ex — f1[U, V2,0
—faViex + fo[U, Vi a] + [Wr, Wa],

where the last two steps followed from (2.9) and (2.10), respectively. Now, this equality obviously
implies that (2.8) holds. To conclude, the space Q(U) is closed under [—, —] defined by (2.5) and
(2.6). m]

It is also direct to see that the bracket [(Vi, W, K1, f1), (V2, Wa, K3, f2)] is bilinear on the space
Q(U). Therefore, the bracket [(Vi, W1, K1, f1), (Va, Wa, K3, f2)] defines an algebraic structure on
the space Q(U). This, actually, defines a Lie algebra structure on the space Q(U).

Theorem 2.3. Let U = U(u, \) be a given square matrix in the loop algebra gi(r, F). The bracket
[—, —] determined by (2.5) and (2.6) defines a Lie algebra structure on the space Q(U).
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Proof: Obviously, the bilinear bracket [—, —] satisfies
(VW K, [), VWK, /)] =0, V(V,W,K, f) € Q(U).

Therefore, one needs only prove the Jacobi identity [17]. Based on Theorem 2.1, it is sufficient to
check the second component of the Jacobi identity. To this end, we denote the second component of
[—,—] by [-, —]2 and we compute that

[[(Vi, Wi, K1, f1), (Va, Wa, K2, f2)], (Vs, Ws, K3, f3)]2
= [([Va, V], [Wa, W2, [K1, K2, [f1, f2]), (Va, W3, K, fs)]2
= [W, Wa]'[Ks] — W3[[Ky, Ko]] + fs[Wh, Wax = [f1, f2]Wa
+[[W1, Wa], Vs] — [Wa, [Vi, V]
= (W{[K2])'[Ks] — (W3[K1]) [Ks] + f2 WA A[Ks] — fiW3 5 [K3]
+[WH[Ks], Vo] + [W1, V3 [K3]] — [W3[Ks], Vi] — [Wa, V[K3]] — Wa[[K1, K2
+ (W] \[K2] — W y[K1] + foaWia + faWiax — fiaWe s — fiWaax
+[Wi o, Vo] + (Wi, Vaa] — [Wax, Vi] — [Wa, Via]) — [f1, f2]Wsa
+[Wi[K2] = W3Kq1] + faWix — filVax + [Wh, Va] — [W2, V1], V5]
—[Ws, V{[K2] — V5 [K1] + [V, Va] + faVix — fiVa].
We further group all the terms as follows:
[I(Vi, Wi, K, 1), (Va, Wa, K2, f2)], (Vs, Ws, K, f3)]2
= {(Wi[K2])'[Ks] — (W5 [K1])'[Ks] — W3[[K1, K2}
H W AKs] — i3 \[Ks] + f3 (W \[K2] — W3 \[K1])}2
HIWI[Ks], Va] = [W3[Ks], Vi] + [WT[Kz] — W3[K1], Vs }s
H W, Vo[ K] — [Wa, VI [Ks]] — [Ws, VI[Ke] — V3[Ki]l}a
Hfs(foaWix = fraWan) = [f1, f2]Wa r}s
H{f3(foWiax — filVa,an)}e
H (Wi, Vo] = [Won, Vi]) + [fo Wi s — iWa, Va]}r
H{fa([W1, Va,x] — [Wa, Vial) — [Wa, faVix — fiVaal}s
H{[[Wh, Vo] — [W2, Vi, Vs] — [Ws, [V1, Va][}o

9
= {S:(1,2,3)}..
=1
We can directly prove that for all groups of terms, we have
Si(1,2,3) +cycle(1,2,3) =0, 1 <i < 9.
For example, we can readily check that
S2(1,2,3) + cycle(1, 2, 3)
= oWIL[Ks] = iz [Ks] + fs (W1 \[K2] — W3 5 [Ki])
+fsW3 K] — faWs z[K1] + f1(W5 5 [K3s] — W3 \[K2])
+[1Ws 5 [K2] — fsWi \[Ka] + f2(Ws 5 [K:1] — WA \[Ks])
=0,
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and
S5(1,2,3) + cycle(1, 2, 3)
= fa(forWix — fiaWar) — (fiafe — fifea)Waa
+fi(fs aWax — foaWs2) — (forfs — fafa ) Wia
+2(fiaWax — faaWix) — (faafi — fafia)Waa
=0.
Therefore, the bracket [—, —], defined by (2.5) and (2.6), satisfies the Jacobi identity, and so it defines
a Lie algebra structure on the vector space Q(U). O

3 Concluding Remarks

Lie algebra structures were furnished on the vector space of triples satisfying zero curvature equations
and the vector space of quadruples satisfying generalized zero curvature equations.

There are diverse symmetry algebras for soliton equations (see, e.g., [18]-[25]), because there
exist Lie algebra structures behind their zero curvature representations. Generalized zero curvature
representations should bring more possibilities for getting symmetries and their algebras for soliton
equations.

Assume that the Gateaux derivative U’ is injective. Then evidently, if two quadruples (V1, W1, K1, f1)
and (Va, Wa, K>, f2) satisfy

U'(W)[Ki] + fi(NUx = Vi + [U Vi + Wi =0, i = 1,2,
then two autonomous evolution equations
ur = Ki[u] = K1 (u,ug, ), up = Ko[u] = Ka(u, ug, ),
commute with each other, i.e.,
[K1, K2] =0,

provided that
[V1,V2] =0, [Wh,W2] =0, [f1, f2] = 0.

Therefore, we can search for quadruples commuting with a given quadruple (V,W, K, f) to find
symmetries for a given autonomous evolution equation

us = Klu] = K(u,ug, -+ ).

Lie algebras are an important and beautiful area in mathematics [9], [17], and so, we expect that
beautiful properties on symmetries of soliton equations can be explored, based on our Lie algebra
structures established above.
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