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ABSTRACT
Kroumiria Mountains (northwestern Tunisia) have experienced
major fires, making them the main loss reason of Tunisian
forested areas. The ability of accurately forecasting or model-
ing forest fire areas may significantly aid optimizing fire-fight-
ing strategies. However, there are still limitations in the
empirical study of forest fire loss estimation because the poor
availability and low quality of fire data. In this study, a stochas-
tic approach based on Markov process was developed for the
prediction of burned areas, using available meteorological data
sets and GIS layers related to the forest under analysis. The
Self-organizing map (SOM) was initially used to classify spatio-
temporal factors influencing the fire behavior. Subsequently,
the SOM clusters were incorporated into a Hidden Markov
Model (HMM) framework to model their corresponding burned
areas. Results achieved using a database of 829 forest fires
records between 1985 and 2016, showed the appropriateness
of the HMM approach for the prediction of burned areas
compared with a state-of-the art machine learning methods.
The transition probability matrix (TPM) and the emission prob-
ability matrix (EPM) were also analyzed to further understand
the spatiotemporal patterns of fire losses.

Introduction

In the Mediterranean Basin, the forest fire is one of the most serious hazards
(Turco et al. 2014). Each year, more than 50,000 fires have been recorded in
the Mediterranean basin, burning an area of 800,000 ha, which correspond to
1.7% of the total woodland cover (Fao 2013). In Tunisia, forest resources are
very limited (≈ 1 million of ha), and only account for 6% of the whole
national’s territory (Fao 2016). Historical data on forest fires in the country
reveals that forest fires affected about one thousand ha per year between 1996
and 2010 and approximately 3167 ha per year from 2011 to 2014 (Fao 2016).
In the Kroumiria region (Northwestern Tunisia), which represents more than
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70% of the country’s woodland cover, the fires ravage each year hundreds of
hectares and sometimes by up to 0.6% of the total country’s woodland area
(Campos et al. 2008), exceeding the national average of 0.3% (308 ha) (Fao
2013).

There aremany approaches used to assess forest fire hazard areas. Among them,
one commonly used approach is based on the identification of causal geospatial
variables through qualitative rules and expert knowledge (Bisquert et al. 2012;
Chou 1992; Dlamini 2011; Jung et al. 2013; Lozano et al. 2008; Oliveira et al. 2016;
Parisien et al. 2012). The commonweakness of these studies integrating theMulti-
Criteria DecisionAnalysis (MCDA) andGeographic information system (GIS) for
forest fire susceptibility mapping, is the difficulty in assigning different weights to
various stakeholder interests. Indeed, it is not easy and strongly depends on expert
opinion to decide which parameters or criteria have greater or lesser weights
(Eugenio et al. 2016).

To overcome this problem and reduce the subjectivity apparent in these qua-
litative approaches, statistical methods such as spatial linear and logistic regression
models have been widely applied for studying the relationships between fire
occurrence data and explanatory factors (Nieto et al. 2012; Preisler et al. 2011;
Tao et al. 2013). The fuzzy logic has been also used for fire risk estimation (Soto and
Alvear 2012), as well as other advanced statistical models such as probabilistic
graphs (Dlamini 2011) and geographically weighted regression (Martínez-
Fernández, Chuvieco, and Koutsias 2013; Oliveira et al. 2016; Rodrigues, De La
Riva, and Fotheringham 2014). Furthermore, several data-mining algorithms have
been also proposed for fire behavior modeling, including sliding window (Ku-
Mahamud and Khor 2009), genetic algorithm (Castelli, Vanneschi, and Popovic
2015), neural networks (Özbayoğlu and Bozer 2012; Bisquert et al. 2012; Safi and
Bouroumi 2013), random forest and generalized additive model (Pourtaghi et al.
2016), maximum entropy (Arpaci et al. 2014; Parisien et al. 2012), regression trees
(Amatulli et al. 2006; Lozano et al. 2008; Stojanova et al. 2011), and support vector
machine (Xie and Shi 2014).

Hidden Markov Models (HMMs) have been widely applied as time series
approaches in climate change and weather forecasting (Li et al. 2013). HMM is a
stochastic model that has been proven useful in meteorological applications,
including rainfall modeling and forecasting (Jones et al. 2013), wind speed estima-
tion (Barber, Bockhorst, and Roebber 2010), and spatio-temporal weather patterns
(Ailliot et al. 2012). Likewise, in the field of fire danger assessment, there are some
efforts supporting the time series modeling, such as dynamic neural networks for
short-termprojection (Cheng andWang 2008), and generalized additivemodel for
human-caused fires (Woolford et al. 2009). However, most of previousworks were
focused on spatial fire danger assessment despite the temporal behavior of many
important fire factors such as weather variables and dynamic human-induced
changes. In addition theHMM techniques, that have been proven useful in variety
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of research areas (Testa et al. 2015; Thomas et al. 2013; Yu and Sun 2016), are still
not widely employed for spatiotemporal assessment of the forest fire hazard.

Due to these shortcomings, an in-depth study is required to test the ability of the
HMM for modeling forest fire hazard behavior as well as predicting the size of
burned areas. This would provide a tremendous benefit for fire-fighters to allocate
resources, especially in peak seasons where there may be multiple fires happening
at the same time. To the best of our knowledge, this is the first study that mines
multi-dimensional geographical data by explicitly considering their spatial an
temporal dimensions. This allows us to discovermore complex forest fire behavior
associated to these dimensions. A key feature of usingHMM for a spatio-temporal
forecasting is that HMM states can be directly linked to real world situations. In
this sense, hidden states can be used to effectively predict fire loss areas that are
influenced by dynamic factors. That is to say, when the sequence of burned areas is
hidden; it can be estimated based on observable fire factors that are varying in time
and space. In order to accomplish this goal, an experimental study was carried out
in the Kroumiria region (Northwestern Tunisia) using a set of forest fire occur-
rence data compiled from different sources between 1985 and 2016.

Materials and Methods

Study Area

The Kroumiria region is located in the extreme north-west of Tunisia between
7°52′E–37°29ʹN and 9°33′E–36°22′N, covering an area of approximately 2500
(Figure 1). It extends south of the Mediterranean Sea and north of Wadi
Medjerda and east from the Algerian border to Jebel El-Abiod. For manage-
ment purposes, the forested areas are subdivided into 78 parcels, ranging from
0.64 km2 to 47 km2. The parcels are management units, which represent
homogeneous stands regarding ecological and topomorphological conditions
and they are generally delimited by roads or natural limits such as valley
bottoms, rocky ridge, etc. The region is mountainous with elevations ranging
from 0 m on the northern coast to 1235 m (a.s.l) and characterized by a rather
heterogeneous geology, dominated by clayey sandstone rocks. Terrain gradient,
computed from Digital Elevation Model (DEM), ranges from 0° to 49° with an
average of 17° and standard deviation of 10° (Kalboussi and Achour 2018). The
climate is Mediterranean with annual mean temperature of 18.2°C (1975–
2004). Maximum and minimum temperatures are 34.4°C and 5.6°C, respec-
tively. Average annual rainfall is 912 mm, with 77% of total precipitation
occurring in autumn and winter. While summers are dry and long, with a
strong north/south gradient and only about 4% of total annual precipitation
occurring between May and October (Chakroun et al. 2012). These climatic and
physiographic conditions have led to the development of a rich flora and
diverse vegetation. At present, the forest cover is dominated at low elevations
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(<100 m) by kermes oak (Quercus coccifera). At middle elevations (300–800 m
a.s.l.), the forests mostly consist of pure stands of cork oak (Quercus suber), and
at higher elevations (> 800 m), by zeen oak (Quercus faginea) formations. In the
north-western border of the region, the natural vegetation is dominated by pure
maritime pine (Pinus pinaster) forests (Kalboussi and Achour). Scattered within
the region, many sectors were planted by stone pine (Pinus pinea), eucalyptus
sp. and maritime pine. With the Mediterranean-climate characterized by dry
and warm summers, these vegetation species are of high flammability, which is
reflected in the study area by recurrent fire regimes (Pausas 2004).

Data Collection and Preprocessing

Forest Occurrence Data
In Tunisia, forest fires are classically documented by the Tunisian General
Directorate of Forestry (DGF). In the Kroumiria region, where forest fires are
very recurrent, the information has been systematically collected and

Figure 1. Forest fires occurred in Kroumiria parcels between 1985 and 2016.
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recorded using a standard protocol since the beginning of the 80s. The
typical report about each fire event included the burned area size, their
location in the corresponding forest parcel, their date and duration, their
major fuel types and the probable cause of their ignition. Fortunately, this
primitive information exists for most forest fires since 1985. It should be
noted, however, that some recorded fire points present missing and incom-
plete information. To overcome this problem, forest fire occurrences from
the European Forest Fire Information System (EFFIS) and the Fire
Information for Resource Management System (FIRMS) were also used to
check the existing data and complete missing features and missing fires.
Forest fire data from the EFFIS (2016) consist of a compilation of the extent
of the burned areas (2010–2015) based on a semiautomatic classification of
Moderate Resolution Imaging Spectroradiometer (MODIS) images, allowing
the mapping burnt areas of about 40 ha or larger. However, a large number
of fires smaller than the mentioned threshold have been also detected and
mapped. Data delivered by the FIRMS (2015) consist of active fire points
detected using MODIS sensor. The fire detection algorithm is fully auto-
mated and identifies pixels with one or more actively burning fires for the
entire globe. Detection confidence is estimated in the detection procedure
and ranges from 0 to 100% (Giglio et al. 2003). The confidence level is used
to classify all fire pixels as low confidence [< 30%], nominal confidence [30–
80%] or high confidence [> 80%]. Higher confidence levels can be applied to
reduce the number of false alarms (errors of commission) at the expense of a
lower detection rate (Giglio et al. 2010). In summary, a total of 829 forest fire
occurrences recorded between 1985 and 2016 was used to set the time series
(one time series representing burned areas for each parcel). As shown in
Figure 2, many parcels were not affected by fires, and then they were
discarded. Table 1 summarizes the main characteristics of some considered
parcels in Kroumiria forests.

Environmental Predictors
We considered different sets and sources of environmental predictors of
fire occurrences, which are summarized in Table 2. These variables were
selected based on the investigation of two expert models, namely
Dagorne’s model (Dagorne et al. 1994) and Fire Weather Index model
(FWI; Cortez and Moraiz 2007). The Dagorne’s model, designed for the
Mediterranean forest context, considers three main factors, including the
combustibility index, human occupation index, and the topographic
Index; while, the FWI model, designed specifically for Canadian’s forest,
focuses particularly on climatic variables (i.e., temperature, relative
humidity, and wind).
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Vegetation Layer. Vegetation data were obtained the national forest inventory
map published by the DGF in 2010. This map classify the natural vegetation on
its physiognomy, phenology, and floristic composition. More than 10 classes
were identified for the Kroumiria region. We simplified those classes into four
categories taking into account dryness of vegetation and dominant presence of
deciduous species, grasses and weeds, which could act as fuel loads for fires. We

Figure 2. Forest fire occurrences per parcel.

Table 1. Forested area, number of fires, total burned area and largest burned in the period
1985–2016 for some considered parcels in Kroumiria forests.

Kroumiria parcel
Parcel
ID

Forested
area (ha)

First
fire’s
year

Last
fire’s
year

Number of
forest fires

Total burned
area (ha)

Largest
burned area

(ha)

Tabarka I 1 1760.675 1986 2015 5 455.715 450
Ain Drahem IX 50 4084.688 1987 2013 6 3.63 1.45
Ouled Ali I 53 1880.726 1994 2005 11 123.36 120
Feija II 47 2306.713 1993 2014 14 262.514 250
Tegma I 17 3314.273 1990 2015 19 313 300
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assigned a score value varying from 0 to 4 reflecting the level of the flammability
(i.e., the ability of a species to ignite and sustain fire) for each vegetation class
(Dimitrakopoulos 2001; Henaoui, Bouazza, and Amara 2013). A score of 0 was
assigned to the class representing less flammable species such as Cistus salvifo-
lius; while, a score of 3 was attributed to the class regrouping very flammable
species, including Pinus halepensis, Quercus suber, Quercus faginea.
Intermediate score-values of 1 and 2 were attributed to moderately flammable
and flammable vegetation classes, respectively.

Topographical and Meteorological Variables. Elevation data are generated
from the 1-arc second DEM (approximately 30 m) derived from the recently
and freely available Shuttle Radar Topography Mission (SRTM) and retrieved
from the

United States Geological Survey (USGS) website (http://www.earthex
plorer. usgs.gov). To cover the entire study area, the tile
“n36_e008_1arc_v3” was downloaded and then pit-filled using ArcGIS gen-
eric tools (ESRI, Inc., Redlands, CA, USA). From this DEM, we computed
slope gradient and aspect grids using spatial analysis tool.

Meteorological data, including the mean temperature, relative humidity
and wind speed were collected from the National Weather Service for fire
event from 1985 to 2016. Missing values were completed with corresponding
daily averaged data from the NASA’s Surface meteorology and Solar Energy
(SSE) database (NASA 2016). The SSE data set contains climatology para-
meters principally derived from an atmospheric model constrained to satel-
lite observations. It is 22-year climatology (July 1983–June 2005) on a one-
degree latitude by one-degree longitude grid.

Anthropogenic Variables. In most cases, forest fires have an anthropogenic
origin, whether voluntary or involuntary (Renard et al. 2012). Fire ignitions
recorded tend to be clustered around transportation networks and near
urban areas (Catry et al. 2009; Martínez et al. 2009). We therefore considered
four variables to describe the human footprint: (1) distance to road networks,
(2) distance to settlements, (3) distance to lookout posts (i.e., watch tower),
and (4) distance to fire-walls. Furthermore, as the Tunisian-Algerian border
plays an important role in the spatial distribution of forest fires, we also
computed, using Euclidean distance tool, the thematic layer “distance to the
Tunisian-Algerian border.”

Burned Area Modeling
An HMM consists of a doubly stochastic process representing a time-varying
system (such as modeling of vegetation dynamics or phonological variations),
in which the hidden stochastic process can be indirectly inferred by analyzing
the sequence of observed symbols of another set of stochastic processes.
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More formally, a discrete N-state HMM is defined by its components (λ = (A,
B,Π)), where the state transition probability is A = {aij}i,j=1,N, the distribution
of observation probability is B = {bi(o)}i=1,N, and the distribution of initial
state probability is Π = {πi}i=1,N. Given suitable estimates of the HMM
parameters (modeling A and B matrices), solutions are well known for: (1)
predicting observation and state sequences from the model by Monte Carlo
sampling methods; (2) estimating the most likely behavioral “state” sequence
given the model and an observation sequence (Viterbi algorithm); and (3)
updating the model estimate given new observations (Baum-Welch algo-
rithm). More details about the Viterbi or Baum Welch solutions are pre-
sented in the above references. The issues related to developing an HMM to
estimate fire losses involved (1) determining hidden states applicable to
assess the burned area sizes, (2) employing fire factors as observations to
which they correspond, (3) and taking into account the spatial variability of
fires to the different parcels, in addition to the temporal variability.

Figure 3 shows the distribution of the forest fires based on their
amount of burned areas, with the majority of the fires presenting a
small size. It indicates a positive skew, which is also the same case in
Canada (Malarz, Kaczanowska, and Kułakowski 2002), Portugal (Cortez
and Moraiz 2007) and Turkey (Ozbayoglu and Bozer 2011). Regarding the
dataset, there are 807 fires less than 50 hectares in size, whose 74.10% of
samples were less than 1 hectare. Thus, the logarithm function y = ln
(x + 1) was applied to the area size to reduce skewness and improve
symmetry (Figure 4). The log transformation is a common method used
to improve regression results for right-skewed targets (Menard 2002).
Thus, the transformed burned area, presented in Figure 4, will be the
output target of this work.

Figure 3. The histogram for the burned area (left) and respective logarithm transform (right).
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By using a HMM, the burned area are understood as hidden states which
are being searched for. However, in a HMM the hidden states are conven-
tionally discrete variables. Instead, we perform discretization of the trans-
formed value. We used four-state HMM according to the burned area classes,
namely; limited, considerable, large, and massive. We first compute the
z-score of transformed variable for each sample as (x-μ)/σ, where μ is the
mean and σ is the standard deviation. Then, we assign discretized values to
samples according to their z-score using the following formula: “If |normal-
ized burned area| < −1, then it is limited; else if −1 ≤|normalized burned area|
<0, then it is considerable; else if 0 ≤|normalized burned area|<1, then it is
large; else it is massive”.

As we assumed that forest fire factors were suitable parameters to predict
burned areas, they will serve as the observations in the HMM. In our
research, 14 factor parameters were extracted for each selected fire spot:
Month, year, nearby lookout post distance (m), adjacent fire-wall distance
(m), Tunisian-Algerian border distance (m), vegetation flammability (0 to 3),
temperature (Celsius), relative humidity (%) and wind speed (m/s), altitude
(m), slope (%), aspect (0 (due north) to 360 (again due north)), closest road
distance (m), and nearest settlement distance (m). In order to clearly bring
out the annual variation of fire factors, the year parameter was treated as
categorical variable. It was discretized into five ranges using equal-frequency
discretization (1985–1995, 1996–2003, 2004–2007, 2008–2010, and
2011–2015 periods). After that, all fire factors data are stored as vector data.

Figure 4. Seven clusters classified by the SOM.
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The HMM with discrete observations is generally the most used since its
robustness in training in comparison to continuous HMMs, where observa-
tions are formed by mixtures of Gaussians as opposed to discrete symbols
(Rabiner 1989). Therefore, we used the Self Organized Map (SOM) to cluster
the vector data of fire factors (Kohonen, Kaski, and Lappalainen 1997). The
Self-organizing map is a nonparametric and nonlinear neural network that
explores data using unsupervised learning. In the input layer, the neurons
correspond to the variables describing the vector data. The output layer is
most often organized as a grid of two-dimensional neurons.

Each neuron represents a group of similar data. The Euclidian distance (dj
(t)) at neuron j on the SOM between weight at iteration time t and the input
vector was calculated through learning processes:

djðtÞ ¼
XP�1

i¼0

xi � wijðtÞ
� �

(1)

where xi is the value of parameter i, wij(t) is the weight between parameter i
and the neuron j on the SOM, and P is the number of the parameter.

The best matching neuron, which has the minimum distance, is chosen as
the winner. For the best matching neuron and its neighboring neurons, the
new weight vectors are updated as

wij t þ 1ð Þ ¼ wij tð Þ þ a tð Þ x tð Þ � wij tð Þ
� �

(2)

where t is the iteration time, and (t) is the learning rate. The learning rate
accordingly decreases as the system converges. The final result of SOM
learning is strongly influenced by the SOM dimension (M × N neurons)
that is usually determined by considering the input vector data. There are
several approaches to determine SOM dimension such as using the expert
knowledge (Park and Chung 2006) or setting approximately the number of
neurons to the number of input samples, if the data sets are small (Kohonen,
Kaski, and Lappalainen 1997). In our research, according to Vesanto et al.
(2000), the number of neurons is approximately equal to 5 × √(number of
samples). Thus, by using the SOM, all vector data of fire factor parameters
will be assigned with their corresponding cluster labels in order to be used as
discrete HMM observations.

Before feeding the input vector data into the SOM network, certain
preprocessing steps must be done (Hastie, Tibshirani, and Friedman 2009).
As month and year variables were categorical, they were transformed into a
1-of-C encoding as recommended by Hsu, Chang, and Lin (2003). Using the
boxplot rule, no outliers were identified. All attributes were normalized with
respect to their standard deviation in order to represent them on the same
scale, before being stored as data vectors. In the SOM processing, the net-
work received the data vectors, and all weight vectors between the input
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parameter and the competitive nodes were computed (eq.2). The weights of
the best-matching unit and other neurons in the SOM lattice are adjusted
toward the input vector. Thus, the similarity among vectors of fire factor
parameters is reflected on the SOM map. In order to decide on the correct
number of clusters in the trained SOM, we utilized the Ward linkage
clustering (Tasdemir and Milenov 2010). The Ward’s dendrogram gives an
aid to reveal the degree of association between the SOM units. The inter-
pretation of the dendrogram and, consequently, of final clusters, is then
reinforced.

Extracted clusters of fire factors are subsequently used as the observation
symbols in an HMM classifier for burned area estimation. Each parcel is then
presented by its sequence of burned areas as one HMM state sequence, and
by its corresponding sequence of fire factor clusters as its matching observa-
tion sequence. Throughout this HMM modeling, the cluster of fire factors, in
a given forest parcel, is the dynamic subject that is being observed and whose
burned area size is to be determined if fire will occur.

Burned Area Estimation
Using the form of the forest fire model described above, HMM parameters
are defined based on the learning set of observation sequences, where each of
them (a sequence of clusters representing fire factors) for which the sequence
burned areas is known (a state sequence). The HMM parameters, λ = (A,B,π),
were estimated using the Baum Welch algorithm (Rabiner 1989).

The Baum Welch is a modified version of Expectation-Maximization
algorithm that is designed to optimize the parameters of an HMM so as to
best model given training sequences. Thus it deals with maximizing the
conditional probability of an observation sequence, P(O|λ), occurring given
an HMM (to be optimized). Once the model is trained on a series of
observation sequences, the model can be utilized to compute the likelihood
of a new sequence being generated by the model. This is where the strength
of HMMs lie, since by using dynamic programming techniques this can be
computed in just O(N2T) calculations (Rabiner 1989).

When the HMM have been established and their parameters estimated, the
classification of a burned areas is done in the following way. The forest fire
series, occurred in a given parcel, is represented at each date by a cluster
implying its fire factors observed at that date. From the clusters representing
the fire factors during a given succession of years, the classifier computes for
each model, the probability that the corresponding burned area class emits
the observed sequence of fire factor clusters. The burned area size is then
assigned to the class whose model delivers the highest emission probability. A
detailed description about how emission probabilities are computed using
Viterbi algorithm can be found in Rabiner (1989).
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As a practical use, given the coordinates (x,y) and the year of one fire, its
factors can be carried out and then its corresponding cluster will be well-
known. Thus, according to the series of past fires and its corresponding
sequence of fire factors (sequence of SOM clusters), the most probable set of
hidden states is reconstructed using Viterbi algorithm. As a result, the hidden
state of the corresponding fire designates its estimated burned area size. In
addition, fire losses can be analyzed against the other variable such as a time
or a cluster of fire factors. For example, the analysis could show differences in
fire behavior in certain year and with certain parameters of fire factors. The
other use is the prediction of the next class of burned area according to the
parcel in question.

Results and Discussion

SOM Discretization

Fire factors were patterned by SOMbased on spatial parameters extracted from the
fire spots stated above. In total 829 vectors of forest fire related factors were passed
through the SOM after the preprocessing step (removing 12 outliers and normal-
izing the data). The selected size of the SOMwas 10× 10 nodes, giving an explained
ratio of 51.83%.As showed in Figure 5, seven patterns of fire factorswere identified
according to the Ward linkage clustering (Tasdemir and Milenov 2010). The
centroids of these clusters represent descriptive statistics for the parameters used

Figure 5. Four classes of burnt area after the discretization by Z-score method.
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in the analysis. It is defined as vector consisted of the means of all variables for a
given cluster. The mean values for all continuous variables for each cluster are
summarized in Table 3. The profiles of the parameters can be correspondingly
descripted according to the cluster centroids. For instance, cluster II characterized
fires occurred in the Tunisia-Algeria border between 2010 and 2016. Fires in this
cluster occurred only in June and after the postrevolution period. This spatiotem-
poral correlation can be explained, at partial, by the political instability and a
widespread insecurity that Tunisia has experienced since 2010.

Cluster I was mainly typified by nearby road and populated areas, while cluster
VI showed fires occurred far from the roads. Cluster III showed similar climatic
features to those in cluster V, except for the relative humidity. Cluster VI showed
fires occurred at high altitude and temperatures. In contrast, burned areas in
cluster VII were correlated with distinct meteorological data from other clusters
and were close to fire walls. The other interpretation that can be found from this
primary classification is in consonance with the number of observations in each
cluster. The clusters, having a small number of fires, notably cluster V and cluster
VII, are in strong correlation with the period of 80’s and 90’s. According to their
centroids, most fires are markedly away from roads and populated areas in
comparison with clusters containing larger number of fires. Fires in clusters
concerning the 2000’s and 2010’s decades (cluster I and cluster III) were associated
with more adjacent roads and rural areas. This is particularly remarkable in these
clusters sincemost fire incidents were recorded starting from 2002 and continuing
until 2016. These primary indicators showed that the increasing trend of fire
occurrences is related to the human causes. Similarly, in comparison with clusters
presenting fires mainly occurred before 2002 (cluster V and cluster VII), the mean
distance from firewalls is slightly reduced, as well, as the mean distance from the
watch towers. This demonstrates that the forest surveillance and the firewall policy
management were not effective in the last two decades. On the contrary, fire
samples in cluster IV are not clearly distinguishable based on the years of occur-
rences. The flammability level was the highest compared to other clusters, which
indicates the presence of highly flammable species such as Aleppo pine and
maritime pine. Forest fires are then a recurrent phenomenon in the areas of cluster
IV, due to the flammability of the vegetation during theMediterranean dry season.

Transition and Emission Probabilities

HMMs are usually convenient to model temporal behavior as they infer
optimal hidden states from observation sequences. Here, we aim to infer
the estimated burned area from fire factors that correspond to each state. All
in all, seven clusters representing fire factors were employed to infer four
burned area classes. The HMM structure is then as follows: S = {massive,
large, considerable, limited} and O = {I, II, III, IV, V, VI, VII}. In addition to
define the HMM states and observations, we subsequently determined the
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initial state probabilities (π) based on the frequencies of first fire classes in
each parcel. In 73 affected parcels, the first fires were classified into 29
massive fires, 22 large fires, 14 considerable fires, and 8 limited fires. The
initial state distribution is then partitioned as I = {0.4, 0.3, 0.19, and 0.11}.

The learning set consists of 73 sequences with 829 fires in total, during the
period from 1985 to 2016.

The sequence used to test the classifier was not used for training. Based on
the Baum-Welch algorithm (Rabiner 1989), the estimated Transition
Probabilities Matrix (TPM, Table 4) and Emission Probabilities Matrix
(EPM, Table 5) were accordingly obtained. This requires sufficient amount
of training sequences to provide fitting model parameters, which in our case
could not be met by the available data set. To cope with this problem we
applied the “leave-one-out” technique (Ko et al. 2009). All sequences exclud-
ing the one being classified were used to estimate the model parameters; this
procedure was repeated for each tested sequence.

The TPM reports state transition probabilities, and the EPM reports the
state dependent observation probability distributions. From the TPM, some
dominant transitions between different states were clearly observed. In the
parcel where a massive fire occurred, it is very possible that the next fire
incident will be less intensive, giving high probabilities of being limited or
considerable (0.360 and 0.422, respectively). This can be explained by the
more effective prevention measures taken for the parcels where important
losses and damage were recorded. The transitions from limited or consider-
able states to massive or large states confirm this interpretation, as their
probabilities were lower with 0.151 for “considerable to massive,” 0.104 for
“considerable to large,” 0.133 for “limited to massive,” and 0.110 for “limited
to large.” In contrast, the probabilities estimated for staying in the same state
of limited or considerable (0.325 and 0.42, respectively), and for the

Table 4. Transition probabilities matrix (TPM).
States(t)

States (t-1) Massive Large Considerable Limited

Massive 0.134 0.152 0.360 0.422
Large 0.1 0.176 0.224 0.5
Considerable 0.151 0.104 0.325 0.42
Limited 0.133 0.110 0.316 0.441

Table 5. Emission probabilities matrix (EPM).
Factors

States Cluster I Cluster II Cluster III Cluster IV Cluster V Cluster VI Cluster VII

Massive 0 0.329 0.177 0.045 0.271 0.034 0.144
Large 0.093 0.311 0.15 0.041 0.246 0 0.159
Considerable 0.332 0.025 0.09 0.212 0 0.234 0.107
Limited 0.328 0 0.041 0.220 0.126 0.139 0.146
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transitions from limited to considerable states and reversely (0.316 and 0.441,
respectively) were very high. This indicates that fire factors in most parts of
the corresponding parcels were allied to the class of small fires. It can also be
explained by the availability of continuous prevention and protection activ-
ities in these areas (Ben Jamâa and Abdelmoula 2004; Meddour-Sahar 2013).

We can also take advantage of the EPM for evidence suggesting that a class
of burned area may have been associated with a cluster of fire factors. For
example, we found that the observation of cluster II has an elevated like-
lihood of causing massive or large burned area with probabilities of 0.379 and
0.311, respectively. Then, the estimation of massive or large burned areas
(two states) could be based solely on cluster analysis of fire factors, involving
the cluster II (observation). This can be justified by the nearby Tunisia-
Algeria border where fire fighters cannot gain access to burned areas. The
other factors, that specify cluster II and cause important fire losses, could be
the significant distance to roads and villages from these areas. On the
contrary, cluster I and cluster VI are clearly associated with the classes of
limited and considerable burned areas. The reason of this correlation is most
likely because of the adjacency to roads and settlements (cluster I), and also
because of the close lookout posts (cluster VI). The cluster V showed
important probabilities of causing massive and large burned areas (0.271
and 0.246, respectively). This can be justified by the topomorphological
conditions in the areas that belong to cluster IV. In addition to southwest
aspect (the centroid for the aspect is 227.683 degree), fires of this cluster were
associated to sites with higher altitude and steeper slopes (it has the highest
centroids for the altitude and the slope degree with respectively 9.508 and
592.147). These areas are critical in terms of forest fire starts and spread,
since more direct sunlight generally falls on the southwest slopes and higher
relief (with resulting higher temperatures and sparser and lighter fuel load-
ings) (Dagorne et al. 1994).

Classification Performance

Since the recognition of burned area size is the main interest in this work, the
confusion matrix is then used to store the correct and incorrect classifications
made by the HMM model. In order to use the proposed HMM model as a
classifier, the Viterbi algorithm was employed to decide the most likely
“state” sequence given the model and its matching observation sequence.
And then to recognize a burned area class for a given fire, two steps should
be considered: in the first one, the clusters of fire factors, characterizing the
fire in question and the previous fires occurred in the corresponding parcel,
should be reorganized in an ordered sequence. Once we have constructed the
sequence of clusters, the state sequence could be determined by the Viterbi
process and the end-state will be the conforming burned area class.
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Tables 6 and 7 show respectively the accuracies and the confusion matrix
for burned area size classification using 10-fold cross-validation. These tables
show that the method performed well for all burned area classes, that is, with
84% average class accuracy. These results fared well compared with the other
models in the literature, even though there were not many studies performed
for burned area estimation. In the study of Ozbayoglu and Bozer (2012), the
highest accuracy level was above 65% using an MLP with only two inputs
(humidity and wind speed) and three classes (small, medium, and big fire) in
the output. In this regard it should be noted that the estimation results in
these types of studies are very dependent on the quality of the data set.
Cortez and Morais reported an accuracy rate of 60% in a similar study. In
another study by Sakr, Elhajj, and Mitri (2011), the detection of fire days
showed an accuracy of 92%. However, they did not perform burned area
estimation.

Results from Table 6 indicate that the accuracy is relatively better for
smaller fires with 85.81% and 89.84% for limited and considerable classes
respectively comparing to 79.47% for large class and 79.47% for massive
class. This constatation can be explained by analyzing the confusion matrix
(Table 7) that shows an important number of massive and large fires
classified as smaller fires (limited and considerable). The reason for missing
classifications was that many fires able to be large or massive were success-
fully controlled. It should be noted that the estimation results of bigger fires
are satisfactory compared to other models, even though there were not many
studies performed for burned area estimation. The results from Cortez and

Table 6. The classification performance in terms of accuracy. The overall accuracy is calculated as
the total number of correctly classified fires divided by the total number of test fires. The average
accuracy is calculated as the sum of the accuracy figures in column Accuracy divided by the
number of classes in the test set.
Class Accuracy

Burned area size Rate (%)

Limited 85.806
Considerable 89.841
Large 80.288
Massive 79.47
Overall Accuracy 84.801
Average Accuracy 83.852

Table 7. Confusion matrix for burned area classification.
Confusion matrix

Limited Considerable Large Massive

Limited 133 11 7 4
Considerable 14 283 12 6
Large 18 11 167 12
Massive 15 7 9 120
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Morais (2007) and Ozbayoglu and Bozer (2012) achieved lower accuracies of
46% and 57.24% for large fires, respectively. One explanation of this findings
can be attributed to is the large number of very small fires compared to the
number of big fires, since it can affect negatively the learning process and its
results.

Comparison with Other Classification Techniques

Besides evaluating the used model’s performance in terms of classification
accuracy, it was also compared with other well-known classifiers, including
back-propagation NN (Nikoskinen 2015), Random Forests (RF) (Hastie,
Tibshirani, and Friedman 2009), second-degree Support Vector Machine
(SVM-2) (Schölkopf and Smola 2002), and Isotonic Regression (IR)
(Hoffmann 2009). To this end, we used the implementations provided by
the Weka machine learning environment (Machine Learning Project 2016).

As we did for the HMM model, we performed some data pre-processing
tasks and a preliminary analysis to tune the parameters for each considered
techniques. The discrete variables were transformed into a 1-of-C encoding
as done above. According to Hastie, Tibshirani, and Friedman (2009), all
attributes were standardized to a zero mean and one standard deviation for
the SVM and NN methods. The back-propagation NN utilized is a multilayer
perceptron (MLP) with one hidden layer of eight nodes and logistic activa-
tion functions and one output node with a linear function (Hastie,
Tibshirani, and Friedman 2009). Regarding the remaining methods, the
SVM-2 and IR were used with their default parameters while the RF is
developed with 500 trees (the default is 10).

Box-plots in Figure 6 show accuracies for the HMM approach and the
classifiers tested. The HMM model obtained the best forecasting result
compared to the other ML techniques. Thus, it becomes clear the superiority
of stochastic approach for this study in relation to the standard supervised
classification techniques. This indicates that the HMM was able to use the
raw data and temporal information for better classification results. We
speculate, therefore, that the hidden temporal fire factors, such as the
dynamic aspect of climate change and the development of fire control policy,
were modeled well by the HMM. Although, the percentage of correct classi-
fication for MLP is lower than those of all other considered ML techniques. A
marked difference was observed among the remaining methods: SVM-2 and
RF performed well on this problem, while IL performed less well. Thus, we
assume that the complex relationships hidden in the data cannot be fittingly
determined by a linear model, as well as all possible interactions between
predictor variables (Tu 1996). This deduction can be supported by the out-
performance of RF and SVM-2 that can produce nonlinear models. The poor
performance of NN on this problem deserves further discussion. Makridakis
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and Hibon (2000) have indicated that handling of time series data in NN is a
very complicated topic to achieve improved performance. It may be also due
to the MLP architecture since that some complex, nonlinear functions cannot
be efficiently represented by only basic hidden layers and thus low levels of
nonlinear transformations (Nikoskinen 2015).

In addition to the superiority in accuracy of proposed HMM over com-
pared ML algorithms, the HMM analysis is more informative by using
transition and emission matrices. A primary exploration was done using
Markov conditions (A matrices) to evaluate both the stochastic transitions
among fire behaviors, and the importance of the various factors (B matrices).
Such understanding provides insights into the model to better prevent fire
and reduce damage when a fire occurs. However, despite their widespread
adoption, machine learning models remain mostly black boxes (Ribeiro et al.
2016).

Conclusion

Using spatial and meteorological factors to reflect fire behavior, we have
shown that hidden Markov models successfully predicted burned area sizes.
Fire factors data were clustered using SOM before employing them as
observations in the HMM. This clustering step permits to reduce variables
of fire factors into clusters, allowing to use an HMM with discrete

Figure 6. Boxplots of accuracy in the 10-fold cross-validation for the considered machine
learning techniques (number of correct classifications/total sample size). On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, and the dots are the
outliers.
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observations. It has also the advantage of exploring spatial and temporal
patterns of fire factors. Model parameters allowed us to estimate expected
behavioral states for fire losses (limited, considerable, large, and massive), as
well as allowed to explore emission and transitions probabilities for evaluat-
ing the influence of effective factors on fire losses. The classification results of
the study show that the proposed HMM outperformed the existing models
and contributes to significant accuracy improvement, achieving an average of
83.85%. Its performance is also assessed with a state-of-the art machine
learning methods evaluated using the same data sets, giving better or com-
parable results. In conclusion, data mining and stochastic processes in com-
bination could be efficiently used to illustrate the behavioral processes and to
monitor natural hazards.
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