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ABSTRACT

In this work, we relied on a particular exact method to solve
NP-Hard problem of determining a horizontal fragmentation
scheme in relational data warehouses. The method used is that
of linear programming which is distinguished by other meth-
ods by the existence of practical methods that facilitate the
resolution of problems that may be described in linear form.
We quote the Simplex method and the interior points. To meet
the linearity of the objective function and constraints, we used
initially “De Morgan” theorem, which is based on properties of
sets to transform and optimize decision queries, from any form
to a linear one.

In addition to designing and solving the selection problem
of horizontal fragmentation technique, we considered the pro-
blem in two simultaneous objectives, namely: the number of
Inputs/Outputs needed to run the global workload, and num-
ber of fragments generated to identify the best solutions
compared to the concept of Pareto dominance.

In addition, to carry out our work, we used the Benchmark
APB1 invoked by a workload, to achieve satisfactory results.

Introduction

Data warehouses as databases designed to contain decision-making information
in relation to the themes of business professions do not cease to increase over
time and take up volumetry. In addition, to extract the information from these
data warehouses, two difficulties arise, namely: the gigantic number of informa-
tion, plus the complexity of the decision-making queries used. Because they
incorporate selection simple predicates, join operations between fact table and
dimension tables, as well as aggregation and sorting operations.

The literature on optimization structures and techniques in relational data
warehouses classifies the problem of selecting a horizontal fragmentation
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scheme (HES) that is the subject of our research in the category of NP-
Difficile problems. In Boukhalfa (2009), the author has proved, by reduction
towards the problem 3-partitions, that the problem of FH is NP-Difficult in
the strong sense.

Research on the problem of selecting an SF has evolved over time. The first
works consider it a non-difficult problem and propose deterministic solu-
tions (Ozsu and Valduriez 2011; Ceri et al. 1982). In these works the number
of final fragments is not taken into account and is considered as an output
parameter. The second generation of work considers the number of frag-
ments generated known as input and proposes greedy algorithms to find a
better fragmentation scheme (Bellatreche et al. 2000).

The third generation considers the selection of an HFS as an optimization
problem and generally takes into account the overall cost of executing a
workload as an objective function (Boukhalfa 2009). This work considers the
number of fragments generated as a constraint of the problem where an
upper bound is to be fixed by the administrator.

This work proposes meta-heuristics to find a quasi-optimal HFS gen-
erating a number of fragments less than or equal to the upper bound.
Nevertheless, this work does not give any indication on how to set this
threshold or the most interesting values, hence the need to propose new
approaches allowing, in addition to the performance of the solution, to
generate an optimal fragment number. It is in this context that we con-
sider the problem of SFH as a problem of multi-objective optimization
which aims to minimize the response time as well as the number of
fragments generated.

The simultaneous consideration of the two optimization objectives, which
are: (i) the number of inputs/outputs and (ii) the number of fragments,
makes the problem of selecting a fragmentation scheme more complex. To
solve our bi-objective optimization problem, we need to use the multi-
objective optimization methods known from the literature. Among these
methods, we find that based on the concept of dominance used to classify
the set of solutions of the two objectives according to the Pareto rank.
According to this method, the dominant solutions belonging to the first
ranks are the most favorable.

In this work, in addition to the problem of selecting a fragmentation
scheme following the simultaneous optimization of two objective functions,
we succeeded in formalizing the problem of selecting a HFS as an optimiza-
tion problem following linear programming (LP) where the objective func-
tion and the constraints are expressed in a linear manner using the decision
variables represented by the selection simple predicates contained in the
workload. We recall that the solution of the problem of horizontal fragmen-
tation in data warehouses based on an exact method such as LP that uses



APPLIED ARTIFICIAL INTELLIGENCE ’ 909

practical methods well known in the literature has allowed us to infinitely
reduce the complexity of the problem even for important instances.
Experiments carried out on the APB1 benchmark gave very satisfactory results.

Work organization

In Part II, we briefly recalled some theoretical formalism on a linear pro-
gram, via Part III, we presented our contribution beginning with the distinc-
tion between two forms of queries, a form which directly operates in linear
form and a another that requires a transformation using the formula of “De
Morgan” to make the entire workload in a linear program. In the fourth part,
experiments were carried out at the base of Benchmark APB1 with bi-
objective resolution of horizontal fragmentation problem. Comments on
the results obtained have been some analyzes. Finally, in Part V, we have
drawn some conclusions to reach certain perspectives.

Mathematical formulation of a linear program
Defining a linear program

By definition, a linear program is formalism whose decision variables are in
real type.

Let {x1, x5, ..., X,,} be a set of n real variables, and Z a linear objective
function to be optimized (min or max):

zZ= cx1+ X3+ -+ Xy
Linear constraints (equalities and inequalities)
anxi + apxy + -+ ax, < by

anxl+ apx2+---+ ayx, < by

amX1 + amXy + -+ AppXy = bm

Solution of a problem in linear programming (LP)

Find a solution to a problem designed as a LP is to assign variables that meet
the constraints. A solution is optimal if it maximizes (maximizes or mini-
mizes) the objective function.

Contribution

The basis of our contribution is to use a method of solving an NP-
Complete problem using an exact method based on LP. The first work is
the formalization of our problem in linear forms of the objective
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function and constraints. In Collette and al Optimisation Multi objectif
(2002), the authors recall that effectively treat of LP where the objective
function and the constraints are linearly expressed in terms of decision
variables. But in practice, the situations encountered often have several
complications, distorting the use of these methods: as the non-linearity
of the objective function.

In a second place, and after writing the objective function and the con-
straints in a linear form, we apply the Simplex method on the optimization
problem of the horizontal fragmentation technique. Finally, we introduce the
concept of dominance through bi-objective optimization which considers
both the number of fragments generated and the number of inputs/outputs
obtained in connection with each fragmentation scheme.

Our contribution is recorded in an optical support for horizontal fragmenta-
tion problem as a LP problem that addresses the gap that exists in the literature
that deals with this subject and has a great rarity. In addition, to solve the
problem by taking into account more than one objective at once (Ozsu and
Valduriez 2011; Barr and Bellatreche 2010; Boukhalfa 2009; Mahboubi 2008;
Bellatreche Et and Boukhalfa 2005; Aouiche, et al., 2004) (Figure 1).

General form of a decisional query

Q is a query that queries a data warehouse consists of a fact table F joined to
several dimension tables D;, following a star schema.
So the query Q can be written as follows:

Q': Select C;, Cs, ..., C., statistical operator (*)

from FactT FT, TDimension,; DT, TDimension2 DT,, . . .,
TDimensiong DTy Where ANPK, = Val,; and ANPK, = Val, and

. ANPKd = Vald al’ld FT.FK]_ = DT]_ . PK]_ al’ld FT.FKZ = DT2 .
PK,and . .. and FT.FKg = DT. PKq Group by C¢, Cy, . . ., Cp
Order by C;, C,, . .., Cpn

Different forms of queries

In our context, to formalize the horizontal fragmentation problem as an opti-
mization problem expressed using LP, we distinguish two types of queries.

In the result of this work, we will use the example of Benchmark APB1 as
data warehouse.

First form
In this first form, a query Q contains restriction in part one or more
predicates on a single attribute.
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Analysis of query forms

First form | I Second form
Direct writing in linear form Writing of the query in linear form

according to formula of "De

Writing in linear form of:
-All the workload

-Objective function

Resolution of the problem with a Linear Programming

Tool

Obtained values of:
- Decision variables

- Objective functions

Applying the Pareto algorithm based on multi-objective

solutions dominance

Solutions sorted by dominance

Figure 1. Overall scheme of our contribution.

Example

Select Time_ level, count (*)
ACTVARS from A, P PRODLEVEL
Where
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A .PRODUCT_LEVEL = P.CODE_LEVEL and

P.Class_LEVEL = A1DGFSPTJ473

Group by Time_level

Charging the query Q;

Cost (Q4) = Cost (Selection (Q;)) + Cost (Join (Qq1));
Cost (Selection (Q1)) = (Selectivity (Py) * | F | *L)/PS
Cost (Join (Qq)) =3 * (| Actvars | + | Prodlevel |)

To bring up the targeted linearity, the Q; query can be written based on
the predicate Py, as follows:

Q1 =a;*Pywitha, = (Selectivity (P1) * | F | *L)/PS+3 *
(| Actvars | + | Prodlevel |)2

Second form
In the second form, the restriction part of the application we find a set of
conjunctions of several attributes.

Example

Select Customer_Level, Channel_level, Time_level,
sum (dollarcost)

From ACTVARS A PRODLEVEL P, T TIMELEVEL

Where A.PRODUCT_LEVEL = P.CODE_LEVEL and
A.TIME_LEVEL = SUBSTR (T.TID, 1, 6) and

T.YEAR_LEVEL = 1996 and P.CLASS_LEVEL = ZYXHAYKT707N
Group by Customer_level, Channel_level, Time_level
The main idea in our work returns to separate the con-
junction of two predicates T.YEAR_LEVEL = 1996 and P.
CLASS_LEVEL = ZYXHAYKT707N, and the two joints A.
PRODUCT_LEVEL = P.CODE_LEVEL and A.PRODUCT_LEVEL = P.
CODE_LEVEL

In this second form, we used the “De Morgan” formula, and the relation
algebra shown in Equation (4), then we estimated linearly the conjunction of
predicates in accordance with Equation (12) below mentioned.

“De Morgan formula”
Definition: additional sets

Definition

U is the universal set. The complement of the set A, denoted A is the set of U
elements that do not belong to A. In other words, the complement of the set
A is the difference U-A (Niefield and Rosenthal 1985).

A = {x|x} (1)

Given two subsets A and B of the universe U (Figure 2).



APPLIED ARTIFICIAL INTELLIGENCE ’ 913

(o)

Figure 2. Scheme sets.

The law of “Morgan” has the following properties (Niefield and Rosenthal
1985)

The law of “De Morgan” checks the following properties (Niefield and
Rosenthal 1985):

ANB=AUB (2)
AUB=AnNB 3)

Another property of relational algebra used
ANB=(AUB) — ((A—B)U(B—A)) 4)

Objective function

The objective function to be optimized in this case amounts to maximizing
the difference between the overall’ workload that interrogates the data ware-
house before and after the fragmentation.

Profit of a query

The benefit of a query is equal to the difference of its charge (cost of input/
output) before fragmentation of the data warehouse and that after fragmen-
tation including both restriction and join costs.

Profit of the global workload. The overall benefit of the workload is equal to the
sum of the profits of all weighted queries based on query execution frequencies
respectively.

Linear equations of the objective function
First case: First query form
Cost(Q;) = (Cost(Selection(Q;, P;) + Cost(Join(Q;, P;)) * P;
Cost(Q;) = ajj * P; (5)

a;j: coefficients of the predicate P; in the query Q;
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Transformation of the second form queries using the “De Morgan” law
Knowing that the selectivity of a conjunction of several simple predicates of
selection is the product selectivities of these predicates, so to have a weighted
sum of predicates based on profits related respecting the formalism above
mentioned, it should be to go through a transformation to a weighted sum in
linear form. To achieve this, we rely on the “De Morgan” formula described
above, and we apply the famous formula expressed in Equation (4), to
achieve the general form shown in Equation (6), we went through several
steps that have given us the linear expression of Equation (12).

Q= ax*P; + bx* P, + c Newlinear general form of the queryQ  (6)

In Bellatreche and Boukhalfa (2005), the cost of restriction part contained in
a decisional query can be expressed as follow:

CR_BF_F = (|F| « L)/PS) Cost of Restriction part before Fragmentation (7)

In Aouiche (2005), the cost of using a hash join between two tables, F and D,
is given according to the following equation.

CJ_BF_F =3 % (|F| + |D|) Cost of joining part before Fragmentation (8)

CJ_BF_F = 3 (|F| + |D|)

Cost of joining part before Fragmentation

(9)

Profit(Q;, Join) = 3 = ((|F| + |D|) — (|F;|+|Dj|)) = P;

Cost of Joining part After Fragmentation depending on predicate Pj (10)

Pr ofit(Q;, Restriction) + Pr ofit(Q;, Join)

Profit(Q;) = f; * (Z;:l (|F| % L)/PS — (Selectivity(P;j) * |F| x L) /PS) + 3x
(([F[+[D[) = (IF| + [Dj]))) * Py

where nis the number of selection predicats in conjunction andf;isthe
frequency of the query Q;

p;:
The n selection predicates in this case belong to the same attribute.

Simple selection predicate

(11)

Based on the “De Morgan” Equation (3) and other properties of the rela-
tional algebra, we successful in the linear expression of the second form of
queries, as follows:
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Pr ofit(Q;, Restriction) + Pr ofit(Q;, Join)

Profit(Q) = f; * (2n — 1)(2}11 (Selectivity(P;) * |F| % L)/PS) + 3x
(([F[+[D]) = (15 + [Dj]))) * Py

where n is the number of selection predicats in conjunction and f; (12)
is the frequency of the query Q;

P; : Simple selection predicate

The n selection predicates in this case belong to different attributes.

Decisions variables

The principle of a linear program is determining the values of the decision
variables that optimize the objective function. Where does the interest of the
definition of decision variables in our case the different selection simple
predicates contained in the workload. A predicate is equal one (1) if it
participates in the fragmentation scheme, and it is equal zero (0) otherwise.

Constraints

The first constraint we can admit hypothetically is the participation of
selection simple predicates or not in different fragmentation schemes.

Py e {0,1} (13)
k
ZPC < NP (14)
c=1
k
N = HMi (15)

M; is the number of fragments of the dimension table D; and K is the
number of dimension tables fragmented, then the total number of fragments
of the fact table is N.

We note here that we have considered for each simple predicate of
selection a correspondent sub-domain of the candidate attribute.

Bi-objective method used

In this work, we have limited to the use of a popular method which belongs
to the so-called scalar methods. This method is called Epsilon-constraints.
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Epsilon-constraints method

The method allows transforming a multi-objective optimization problem into

a mono-objective optimization problem with some additional constraints.
The approach is as follows:

e We choose an objective function to optimize as a priority;

e An initial constraint vector is selected;

e The problem is transformed by maintaining the priority objective and by
transforming the other objectives in terms of inequality constraints
(Collette and al Optimisation Multi objectif 2002).

Presentation of the method

We start with the problem P.
It is assumed that the priority objective function is the rank 1 function.
We choose a constraint vector.
Mathematically the method is formalized as follows:

Minimize (X))
fi(xX)<&,i=2,...k and & <0
Stg(¥)<0

andh(x) =0

as & is an upper bound for the ith objective (Collette and al Optimisation
Multi objectif 2002).

In our study, we have taken the number of input/output between memory
and disk during the execution of decisional queries, as the proprietary
function, and the number of fragments as constraints.

Experiments

The objective function defined above is to be maximized because it repre-
sents the difference between the cost of a query invoking a non-fragmented
data warehouse and the fragmented one, and less the input/output cost
relative to the fragmented data warehouse more the difference is maximum.

Benchmark used

To carry out our work, it is necessary to place the method on a relational data
warehouse (the Benchmark APBI1 in our case) and collect the results to verify
the effectiveness of the method and discuss the results.

Benchmark APBI1 used is modeled after a star schema as in Table 1.
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Table 1. Characteristics of the APB1 benchmark.

Table Type Primary key Foreign key Tail

Acvars Facts 24786000
Prodlevel Dimension Code_level Product_level 9000
Custlevel Dimension Customer_level Store_level 900
Chanlevel Dimension Chanal_level Base_level 9
Timelevel Dimension Tid Time_level 24

Workload used

We used a workload of 275 queries that covers a set of 150 simple predicates
of selection belonging to all nine attributes other than the primary keys of
dimension tables.

We generated 150 different fragmentation schemes, and assessed the
performance of each solution. The results are prepared in Table 3. We note
that the rate of reduction in number of input/output is proportional to the
number of fragments. Moreover, that more the scheme covers a large num-
ber of predicates, the better is the result. The best scheme obtained in terms
of the number of inputs/outputs is minimal one that matches the torque
number of fragments and the number of inputs/outputs respectively
(78939800, 516499200).

We note that the results reported in column (Number Input/Output)
reflect maximizing the difference of workload execution on the data ware-
house before fragmentation and after the fragmentation.

Operating environment

The experiments were performed on a brand MSI Laptop, Intel” Core
processor (™) i7 CPU 2.20 GHz, 8G RAM, OS Under Windows 7, 64 bit.

The solver used is Ipsolve 5.5.2.2 IDE, based on the Simplex method.

First, we involved all selection predicates contained in the workload. Then, to
prune one or more predicates according to their participation in the maximiza-
tion of the objective function defined in Equation 5 following different equations
mentioned above, we proceeded with the change in the terminal number of
predicates participants decrementing each time the number and view the cost of
workload in number of inputs/outputs (Figure 3).

Performance of the method based on linear programming

The optimum of a linear program, if it exists, is formed at least at a vertex of
the polyhedron

Knowing that in the simplex method, the optimal solution passes through the
vertices of the polyhedron, it will be interesting to enumerate the number of
possible vertices. Theoretically for m constraints and # variables the number
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of vertices rises to CJ,.,, = (";;ﬁ)! which represents a digit which grows with
m and 7 in a very coarse way. If we consider, for example, a problem under
Linear Program of m = 30 constraints and n = 50 variables, we will have
8.871412534840452e + 21 possible vertices. In addition, if we have a machine
that processes 10 million vertices per second, it will take 282083.478 centuries

to treat us these vertices! (Saaty 1955)

Applying the simplex method on our case

To highlight the performance of LP to solve a linear problem in a quick way, we
made a comparison between the three methods used for pruning or remember
simple predicates selection of participating or not in the HFS. The first method
is based on ants’ algorithm that uses both essential elements to choose a
beneficial predicates that are pheromone and visibility. The second method is
a deterministic method which proceeds by scanning the fact table to identify
collections of predicates which are grouped together to store them finally in the
same fragments (Barr, Boukhalfa, and Bouibede 2016) (Table 2).

Achievements

According to data collected on APB1Benchmark and under cost model
previously defined. We weighted the decision variables (predicates in our
formalization) by profits related to the objective function with respect to all
275 queries of the Workload. Moreover, each time, depending predicate
selected by the solver, we deducted the number of fragments using
Equation (14). The results in Table 3 show that the objective function is
optimal in function of the increasing number of predicates in the fragmenta-
tion schemes.

Dominant fragmentation schemes according to Pareto sense

After obtaining the set of solutions by considering the objective of Input/
Output as a priority function and the number of fragments as constraint, we
have introduced the set of pairs (number of inputs/outputs, number of
fragments) according to the dominance concept using an Algorithm which
classifies the solutions according to the ranks (Collette and al Optimisation
Multi objectif 2002) The “Pareto Front” is the solution that dominates all
solutions.

Table 2. Comparison of performance between the three methods.
Average time pruning

Ants algorithm Deterministic method Linear programming
0.46153846 s 01s 0.013 s
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Table 3. Achievements.

Output/ Fragments Output/ Fragments  Output/ Output/ Fragments
input # # input # # input Fragments input # #
10975800 2 53275900 92400 67130400 25945920 75624000 77474880
13326500 3 53850700 184800 67360200 26943840 75739000 83931120
15677100 4 54411800 203280 67589900 27941760 75854000 90387360
18027500 5 54873400 304920 67819600 28939680 75969000 96843600
20378000 5 55333400 609840 68049400 29937600 76084000 103299840
21757700 10 55793400 914760 68279100 30935520 76199000 118056960
23137400 15 56253300 1143450 68508800 31933440 76314000 132814080
24496000 20 56711200 1334025 68738500 32931360 76429000 147571200
25794600 40 57169100 1524600 68968300 33929280 76544000 163968000
27093100 60 57627000 1715175 69198000 34927200 76659000 180364800
28391600 80 58084900 1905750 69427700 35925120 76773900 196761600
29609000 100 58542700 2096325 69657200 36923040 76888900 213158400
30826400 120 58996100 2515590 69886700 37920960 77003900 229555200
32043700 140 59449500 2934855 70116200 38918880 77118900 245952000
33261100 160 59902900 3354120 70345700 39916800 77233800 262348800
34478500 180 60355900 3773385 70575200 40914720 77348800 278745600
35625800 360 60796600 5031180 70804700 41912640 77463500 295142400
36599700 400 61229500 5488560 71034100 42910560 77578000 313588800
37573600 440 61662300 5488560 71263600 43908480 77692400 332035200
38547500 440 62080300 7318080 71493100 44906400 77806900 332035200
39465500 660 62498100 9147600 71722600 45904320 77920200 350481600
40370800 880 62915200 10977120 71952100 46902240 78033600 368928000
41276200 1100 63321000 10977120 72181600 47900160 78146900 387374400
42181400 1320 63683100 10 977120 72411000 48898080 78260200 405820800
42986200 1540 63913100 11975040 72640500 49896000 78373500 424267200
43790900 3080 64143100 12972960 72870000 50893920 78486800 442713600
44594100 3520 64373100 13970880 73099400 51891840 78600100 461160000
45397200 3960 64603100 14968800 73328900 52889760 78713400 479606400
46200300 4400 64832900 15966720 73558400 53887680 78826600 498052800
46992600 6600 65062700 16964640 73787800 54885600 78939800 516499200
47784800 8800 65292400 17962560 74017300 55883520 79052900 516499200
48576500 11000 65522200 18960480 74246800 56881440 79165700 516499200
49266500 13200 65751900 19958400 74476200 57879360 79270300 590284800
49953500 26400 65981700 20956320 74705700 58877280 79374600 664070400
50640600 39600 66211400 21954240 74935100 59875200 79478900 737856000
51327400 52800 66441200 22952160 75164600 60873120 79581900 737856000
52014200 66000 66670900 23950080 75394000 60873120

52700900 79200 66900700 24948000 75509000 71018640

For each sub-set of predicates that participates in a fragmentation scheme,
we computed the number of fragments generated using Equation (15) under
APBI1 benchmark. Table 3 illustrates the couples (number of input/output in
system pages, number of fragments).

The course of the classification algorithm of the two objective functions:
the number of inputs/outputs and number of fragments allowed us to
identify three ranks:

e The first rank which forms the “Pareto Front” in the sense of dominance
and contains two solutions: (62915200, 10977120) and (79165700,
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516499200). These solutions reduce the overall cost of the load to 87%
and 89%, respectively.

e The second contains eight solutions that are (20378000,5),
(38547500,440), (61662300, 5488560), (75394000,60873120),
(77806900,332035200), (79581900, 737856000), (63321000, 10977120),
and (79052900, 516499200).

e The last rank contains the rest of the solutions (Figure 4).

Conclusions and perspectives

In conclusion, we can say that the most important point for the use of an
accurate method such as LP is the success to design the problem treated in
linear form.

In our case regarding the optimization of a workload based on the rela-
tional algebra, using the properties of sets allowed us to transform decisional
queries in linear forms depending on the decision variables expressing the
simple predicates of selection.

Compared to methods based on meta-heuristics such as that based on
ants, or the one designated in a deterministic manner, the LP method shows
an interesting opportunity in the minimal time for pruning bad candidates
predicates involved in determining good HES. The practical results show that
the time taken by the ant algorithm respectively and the one set by the
deterministic method is 36 and 77 times slower compared to that used by the
linear program.

The bi-objectives view of the optimization problem of data warehouses
using horizontal fragmentation technique allowed us to limit the solutions of
the first rank Pareto to automatically assist the administrator of the data
warehouse in two solutions preferred for a set of 150 solutions.

(79165700 _516499200) ‘

(62915200, 10977120)

f,:Inputs/Outputs Number

f,: Frdgments Number

P —

_—

Figure 4. Pareto front (the two shaded points).
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The classification of the different pairs of solutions according to rank,
offers the data warehouse administrator a view on the choices in a more
conscious way. To clarify this conclusion, we can favor the solution of
the second rank represented by the couple (38547500, 440) which
reduces the overall cost of the workload to 78%, and requires only 440
fragments.

From the same point of view, we note that the solutions of the first rank
and which dominate all the other solutions, present very high fragments
numbers. A situation that forces data warehouse administrators and
researchers to push further reflection on a distributed solution of the scheme
belonging to the “Pareto Front”. That is the first perspective.

As a second perspective, we can combine horizontal fragmentation with
other structures or techniques such as Binary Join Index, to improve more
solutions and helps to reduce the number of fragments.

Notes

1. ANPK: Attribut Not Primary Key, FK: Foreign Key, PK: Primary Key.

2. | F| L, and PS respectively represent the size of the fact table, the record length of fact
table, and the size of a system page.

3. A — B means, elements belong to the set A and don’t belong to the set B.
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