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Travelling Santa Problem:
Optimization of a Million-Households
Tour Within One Hour
Tilo Strutz*

Institute of Communications, Leipzig University of Telecommunications, Leipzig, Germany

Finding the shortest tour visiting all given points at least ones belongs to the most

famous optimization problems until today [travelling salesman problem (TSP)]. Optimal

solutions exist for many problems up to several ten thousand points. Themajor difficulty in

solving larger problems is the required computational complexity. This shifts the research

from finding the optimum with no time limitation to approaches that find good but

sub-optimal solutions in pre-defined limited time. This paper proposes a new approach

for two-dimensional symmetric problems with more than a million coordinates that is able

to create good initial tours within few minutes. It is based on a hierarchical clustering

strategy and supports parallel processing. In addition, a method is proposed that can

correct unfavorable paths with moderate computational complexity. The new approach

is superior to state-of-the-art methods when applied to TSP instances with non-uniformly

distributed coordinates.

Keywords: traveling salesman problem, fast heuristic, initial tour, hierarchical subdivision, UAV, TSP

1. INTRODUCTION

The Traveling Salesman Problem (TSP) is a well-studied subject which has attracted researchers
for decades. The main idea is to construct a tour with minimum length on which the salesman
visits N cities (points) and gets back to its starting point. This kind of route optimization is a
general problem that needs to be solved in many disciplines, such as vehicle navigation, logistics
for delivery services, for cars and trucks, and more recently for unmanned aerial vehicles (drones)
such as in digital farming. Many approaches toward finding optimal solutions have been proposed
(see, for instance, Applegate et al., 2007) and dedicated software is freely available for academic use
(Applegate et al., 20031; Helsgaun, 2009)2. These solutions rely mainly on the ideas of Lin (1965)
and Lin and Kernighan (1973).

The research is nowadays typically redirected to TSPs with certain restrictions. One major
problem that remained in conjunction with the TSP is its computational complexity. Optimal
solutions exist for many problems up to several 10,000 points. However, seeking for optimality,
when the tour comprises a million or more points, still takes too much time for practical usage
despite the advances in computer technology.

1www.math.uwaterloo.ca/tsp/concorde/downloads/
2webhotel4.ruc.dk/ keld/research/LKH/LKH-2.0.9.tgz
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The present paper had been triggered by a competition
announced by the School of Computing, University of Eastern
Finland3. Santa Claus has to deliver presents to the children
in all Finnish families on Christmas Eve. He has to plan a
tour passing 1,437,195 two-dimensional coordinates (Finnish
National Coordinate System, see Figure 1) distributed all over
Finland; and as a modern person, Santa may take advantage of
unmanned aerial vehicles (UAVs) so that the entire tour also
could be split into several tours. Two-dimensional Euclidean
distances define the costs between pairs of points pi and pj and
for the distances d(pi, pj) = d(pj, pi) holds.

Researchers had been invited to submit their source code that
can be compiled and executed on a Linux computer. The target
machine also had been specified with: Dell R920 with 4 x E7-4860
(total 48 cores), 1 TB, 4 TB SASHD. This was a hint indicating the
computational resources. However, Santa is usually somewhat
tired after Christmas and he does not already start to plan his
next tour at first of January. As soon as he feels rested again, the
Christmas elves keep Santa Claus on his toes, and finally only 60
min remain for him to optimize his next tour on which he must
visit all households.

The computational time of seeking optimal tours grows
exponentially with increasing number of points. The
optimization of a tour with more than one million points
within 1 h requires heuristics which split the tasks in many
sub-tasks with limited numbers of points for each optimization
step. For this, we have to sacrifice the desire for an optimal tour.

One possible approach to achieve at least a good but sub-
optimal tour is to subdivide all points in clusters, to process
the clusters separately, and to combine the cluster tours (sub-
tours) to an entire tour (Kobayashi, 1998). Also Muldera and
Wunsch (2003) proposed a k-means clustering strategy with
dynamically incremented number of clusters. Each cluster is
separately optimized and these sub-tours are added in order
of increasing distance from the origin, which is obviously only
sub-optimal. This clustering idea describes a special formulation
of the TSP that has been stated first by Chisman (1975) in
application to a real-world warehousing problem. The points
within individual clusters must be visited contiguously and the
tour connects the clusters. That is, at first a coarse tour visiting all
clusters has to be found followed by building sub-tours separately
for each cluster. This idea was taken up by Helsgaun (2015) who
presented a practical solution. However, in his set-up, the points
already had to be arranged in clusters. Then the first point of each
cluster is taken to build a coarse tour from cluster to cluster. An
advanced version has been presented by Taillard and Helsgaun
(2019). Based on a random selection of a certain number of points
from the whole tour, a coarse tour is built. The remaining points
are compared to the points of this coarse tour and are assigned to
the closest ones followed by local optimization of each cluster.
The initial tour generation of this approach has been publish
separately by Taillard (2019) with focus on very fast processing.

Several researchers have addressed the question which tour
quality can be achieved with a certain approximation algorithm.
Christofides and Serdyukov have independently proposed an

3cs.uef.fi/sipu/santa/

algorithm that guarantees solutions within a factor of 1.5 of the
optimal tour length (excess ≤ 50%) if the instance is symmetric
and obeys the triangle inequality (Christofides, 1976; van Bevern
and Slugina, 2020). In Arora (1996), it was theoretically proven
that a (1 + 1/c)-approximation can be achieved in NO(c)-time.
This work has been extended by Mitchell (1999). While these
considerations deal with theoretical bounds, our research aims
at a practical trade-off between low complexity of the whole
procedure (accounting for large instances) and low excess of the
generated tour over the best known solution.

This paper proposes a new method for the generation of an
initial tour that is as close as possible to the optimal tour within
fewminutes. This initial tour can be refined further by classical 2-
opt or 3-opt operations. The proposed approach is not designed
to yield optimal tours as no appropriate randomization, double-
bridge kicks as introduced by Martin et al. (1992), or other
suitable techniques are involved.

Since the target TSP instances have a 2D Euclidean metric
given by coordinates, we can take advantage of this geometric
information, as already pointed out by Bertagnon and Gavanelli
(2020). For the initial tour generation we suggest a Double Local
optimization With recursion (DoLoWire) procedure. Locality
is considered in following two senses: (i) the approach is
local regarding the geometric coordinates, which accelerates the
clustering process, and (ii) it is local with respect to the sub-
tour optimization of connected points. Here, the locality is
represented by the sequence of adjacent points. The recursion of
processing leads to clusters at different scales.

Compared to other software solutions, our underlying
algorithm operates without linked lists and without tree
structures making the software simple and transparent.

As the points to be visited are typically not arranged in
well-defined clusters, cluster-based tour initialization causes
disadvantageous paths. This paper additionally introduces a so-
called “farmyard move,” which is able to tackle these problems by
shifting a couple of points (the farmyard) from one to another of
parallel paths.

Supporting a fast procedure, the proposal facilitates
parallelizable steps of local optimization.

An earlier version of the newmethod achieved second place in
the said Santa Claus competition. The winner was a LKH version4

submitted by Keld Helsgaun.

2. METHODS

The discussion of the used methods starts with a well-known
technique since it is the backbone tool at different steps of the
proposed approach.

2.1. Backbone Optimizer
Given a circular tour with N = 10 points, we could number
the points with (-0-1-2-3-4-5-6-7-8-9-), while point 9 is assumed
to be connected also with point 0 (closed loop), and the order
is defined using a vector p = (0 1 2 3 4 5 6 7 8 9). The
vector p can be interpreted as a permutation vector determining

4http://akira.ruc.dk/~keld/research/LKH-3/
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FIGURE 1 | A special instance of TSP: the Traveling Santa Problem: (A) entire map of all 1.437.195 points; (B) close-up of (A); (C) close-up of (B).

the current order of points. If the tour length has not reached its
minimum, the tour can be improved simply by permutations of
the point order.

The most successful TSP solvers today are based on the
Lin-Kernigham algorithm (Lin and Kernighan, 1973) and
perform so-called k-opt operations, where k defines how many
connections are removed to modify the order of points. For
example, a 2-opt operation could cut the entire sequence between
points 2 and 3 and between 6 and 7: p = (0 1 2 | 3 4 5 6 | 7 8 9).
The only operation (or permutation) that can now be performed
is a flip of the cut segment leading to p = (0 1 2 | 6 5 4 3 | 7 8 9)
(Croes, 1958). Note that this is equivalent to flipping the outer
segment: p = (9 8 7 | 3 4 5 6 | 2 1 0).

Permutations that are more complex could be achieved by
combinations of flips, however, even if such combination of
flips would lead to an improvement, one or more flips in this
sequence of operations can lengthen the tour and the required
permutation will not be completed without additional tricks.
The algorithm gets stuck in a local minimum. This problem
exists not only for k = 2 but also for k-opt operations with
larger k.

TABLE 1 | List of possible 3-opt operations based on a 10-points example.

Operation # Permutation Remark

0 0 1 | 2 3 4 | 5 6 | 7 8 9 Original order

1 0 1 | 4 3 2 | 5 6 | 7 8 9 Flip of first segment | 2 3 4 |

2 0 1 | 2 3 4 | 6 5 | 7 8 9 Flip of second segment | 5 6 |

3 0 1 | 4 3 2 | 6 5 | 7 8 9 Flip of both segments

4 0 1 | 5 6 | 2 3 4 | 7 8 9 Exchange of both segments

5 0 1 | 5 6 | 4 3 2 | 7 8 9 Exchange of both segments and flip of

first

6 0 1 | 6 5 | 2 3 4 | 7 8 9 Exchange of both segments and flip of

second

7 0 1 | 6 5 | 4 3 2 | 7 8 9 Exchange and flip of both segments

The proposed method relies on 3-opt operations applying
three cuts, which generate two adjacent segments as, for example,
a first segment | 2 3 4 | and a second segment | 5 6 |. These two
segments can be modified by either reversing their order (flip)
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LISTING 1 | Pseudo code of 2/3-opt backbone optimizer. See text for details.

optimizer( N, // number of points
permuteVec, // permutation vector
lenMin, lenMin2, // minimal length of first and second segment
lenMax, lenMax2, // maximal length of first and second segment
maxNumOfLoops // maximal number of loops
)

loop = 0;
do // loop until stop_flag is set
{
loop++;
stop_flag = true;
for (pos = 0; pos <= N - lenMin - lenMin2; pos++)
{ //all positions in the permutation vector excl. 1st and last pos.

for (len1 = lenMin; (len1 <= N - pos - lenMin2 ) && (len1 <=
lenMax); len1++)

{ // for all possible lengths of first segment
for (len2 = lenMin2; (len2 <= N - pos - len1) && (len2 <=

lenMax2); len2++)
{ // for all possible lengths of second segment
get sum of current costs at segment borders

(pos-1,pos), // border between 1st segment and remaining tour
(pos+len1-1, pos+len1) // border between 1st and 2nd segment
(pos+len1+len2-1, pos+len1+len2) // border between 2nd

// segment and remaining tour
check all possible permutations
{

get sum of new costs after current permutation operation
if ( new costs < current costs)
{

apply permutation to permuteVec
if (loop < maxNumOfLoops) stop_flag = false;
continue; // ignore remaining possible permutations

}
}

}
}

}
} while (stop_flag);

and/or by exchanging the segments position. Table 1 contains all
possible variants of 3-opt operations.

It is obvious that the operations 1 and 2 are only 2-opt
permutations. This also applies to the last operation, as it is
identical to a joint flip of both segments. Operation 3 combines
two adjacent flips and could be helpful in some instances. Some
authors have investigated which operations contribute most to
the optimization success. The operations discussed in Sengupta
et al. (2019), for example, are contained in the above table as
special variants.

The modification of the tour depends on three parameters:
the position pos of the first element of the first segment, the
length len1 of the first segment, and the length len2 of the second
segment. The optimal permutation (with respect to 3-opt) can
be found by iteratively testing all possible modifications until
a minimum tour length is reached, i.e., none of the possible
modifications has led to any improvement in the last loop.

This brute-force 3-opt optimization is organized in a triple
for-loop, see Listing 1. The outer for-loop defines the position

pos of the first cut, i.e., it points to the first element of the
first segment. The middle and the inner loop define the length
of the first segment and the second segment, respectively. Both
lengths are at least equal to one and their sum cannot go beyond
the total number of points. Flipping the second segment is a
forestalling of a first-segment flip at a later position. It is tested
and performed only if no other operation shortens the tour.
As soon as a tested operation would result to a shorter tour,
this operation is performed. Afterwards, the length len2 of the
second segment is increased if possible (inner loop) and so on.
In total, there are (N3 − N)/6 different combinations of pos,
len1, and len2 for a single scan making this technique only
applicable to small N. The order of tested operations is with
respect to Table 1: 7, 1, 5, 6, 3, 4, 2. It starts with the most
complex operation.

Testing an operation means that the distances between the
points at cut positions must be compared before and after the
permutation. As these distances must repeatedly be calculated, it
would be favorable to pre-compute them one time in advance and
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to store them in a distancematrix. However, this requiresN×N/2
elements to store and it is impossible to maintain such a matrix
for large N as needed in the present traveling Santa problem.

If the optimizer runs in closed-loop mode, the first segment
can start at the first position (pos == 0) of the permutation
vector and the last element of the second segment may be
identical to the last element (pos + len1 + len2 == N) of the
permutation vector p. Since the proposed approach is based on
the subdivision of the problem in sub-problems, which must be
connected later on, the optimizer supports a second mode. It is
a sub-tour mode, in which the first and the last element of p are
assumed to be already positioned best, as they are connected to
adjacent sub-tours. This mode can be seen as an open-loop mode
with fixed start and end point. Hence, the optimization starts at
pos = 1 and the second segment must not touch the last element:
pos+ len1+ len2 < N.

A variablemaxNumOfLoops defines the maximum number of
allowed iterations through the permutation vector. It limits the
computational load to a reasonable amount depending on the
tour that has to be optimized. The iteration stops when it either
reaches this maximum number or no improving permutation has
been found.

2.2. Cluster-Based Coarse Tour
The main idea of breaking the entire optimization problem
in many smaller problems is based on clustering. We need a
clustering method that covers all points and requires as few as
possible processing steps for the assignment of points to clusters
(or cells).

One of the state-of-the-art techniques is the k-means
clustering. For a given number of cells, each is defined by its
centroid, which is initialized with meaningful coordinates. The
centroids are refined step by step by assigning each point to
that cell to which it has the shortest distance. This assignment
requires iterative comparison of all points with each cell and is
far too time-consuming. To accelerate this assignment process,
the following procedure is proposed.

The rectangular region enclosing all points with coordinates
(xi, yi) is divided into a rectangular grid of Kx × Ky sub-regions,
which are considered as clusters (see Figure 2). The grid size
depends on the maximum number maxCP of allowed clusters
(i.e., the maximum number of points in the coarse tour) as
follows. At first, we have to identify the range of coordinates by

rangeX = max
i
(xi)−min

i
(xi) rangeY = max

i
(yi)−min

i
(yi) .

(1)

In order to fulfill the two requirements

Kx

Ky
≈

rangeX

rangeY
and Kx · Ky ≈ maxCP , (2)

we have to compute

Kx =
⌊

q+ 0.5
⌋

(3)

Ky =
⌊

maxCP/q+ 0.5
⌋

(4)
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FIGURE 2 | Example of sub-regions, cluster centroids, and coarse tour for a

1,437-points problem. Red triangles mark the centroids of the sub-regions;

blue squares indicate the cluster centroids after new assignments.

based on

q =

√

maxCP ·
rangeX

rangeY
. (5)

The centroid of each cluster is computed based on all points
lying inside its sub-region. This assignment is achieved simply
by the quantization of coordinates and without any comparison
operations. Depending on the distribution of points, some sub-
regions might not contain any point. Other sub-regions can
contain points which are located at its borders and appear to
be closer to the clusters of neighboring regions (see Figure 2).
In order to improve the assignment of points to clusters, single
points are moved from one cluster to an adjacent cluster (8-
neighborhood) if it is closer to the centroid to this cluster.
This procedure is somewhat similar to k-means clustering,
however the number of comparisons is heavily reduced as
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only the centroids of neighboring clusters must be evaluated.
This refinement is performed with a maximum of 32 iterations
(empirically determined) as long as any re-assignment took place.

In this course, the cluster centroids adapt to the means
of covered point coordinates. Some centroids even leave their
sub-region and move into another region. It can also happen
that, for example, the points of a cluster are distributed in
such a way that all points are captured by neighboring clusters
and finally no point remains in the current cluster. Such
vanishing clusters merely shorten the length of the coarse tour
to be optimized and do not harm the processing. This re-
assignment procedure results in a better representation of the
point distribution (in terms of initial tour length) (see also
section 4). Unfortunately, this clustering method implies circular
clusters and future investigations have to ascertain, whether other
clustering techniques are even more appropriate.

The coordinates of the derived centroids are taken as points of
a coarse tour to be optimized. The optimizer of section 2.1 is used
with maxNumOfLoops = 5 and, as a result, we know afterwards
in which order the clusters have to be visited. This information is
important for the subsequent optimization of sub-tours.

Note that the value of maxCP is defined for the top-level
(level = 0) of clusters. It should be chosen high enough to ensure
a reasonable coarse tour but may not be too high as this would
slow down the processing. If the algorithm goes into recursion,
the coarse tours are allowed to be shorter without adversely
affecting the tour quality. The optimal choice in terms of speed
would be maxCPnew ≈

√
N if N is the number of points per

sub-tour. However, it turned out that more points per coarse
tour benefit the final tour length. As a compromise,maxCPnew =
min(maxCP, ⌈N0.7⌉) is chosen.

2.3. Sub-tour Optimization and Creation of
Initial Tour
The points of each cluster form a segment (sub-tour) of the
entire tour. Since it has to be ensured that adjacent sub-tours
are connected in suitable manner, each list of sub-tour points
is complemented with two end-points: one stemming from the
preceding cluster and one from the succeeding cluster. The
optimization is then performed using the sub-tour mode of the
backbone optimizer described in section 2.1, that is, the optimizer
performs open-loop operations and the two end-points are not
allowed to move. The maximum number of loops is set to
maxNumOfLoops = 5 because this leads to sufficient tour quality
in most cases while keeping the computational cost low.

The approach of Taillard and Helsgaun (2019) applies a
different method for sub-tours. It sticks to a closed-loop
procedure and achieves the end-point fixation by setting the
distance between the two end-points artificially to zero and by
adding a penalty to the distances from an end-point to any other
point. No points from adjacent clusters are considered.

In our approach, the selection of end-points is achieved
by a pairwise nearest-neighbor search between all points of
consecutive clusters. As only points from two neighboring
clusters are involved, this technique rapidly leads to reasonable

candidates and to minimal tour costs for the connections from
one cluster to the next.

If the number of points of a sub-tour is larger than a
predefined number of points maxSP, the division into sub-
regions is recursively applied as described in the previous
subsection. This can be interpreted as a hierarchical clustering
procedure. Note that also the coarse tour generation now has
to be treated as a sub-tour problem (open-loop and fixed end-
points). The value of maxSP may be different from maxCP;
the optimal choice of both thresholds depends on the speed
requirements and the number of available cpu cores (see also
section 3).

As soon as all sub-tours have been optimized, on either
top level or recursively, they can be merged to a full tour.
In Figure 3A, each vertex of the coarse tour (pale thick line)
corresponds to a cluster at top level.

The sub-tours of all clusters on top level are shown in Blue
(thin dark lines). Their first sub-tour points are always marked
with a red disk and the last points are indicated with a green disk,
Figure 3B. The connections between clusters are drawn in Cyan
(thin pale line).

This small example problem requires a single recursive
clustering in a region with a very dense distribution of points.
Figure 3C shows the corresponding sub-tours in yellowish
colors. Sometimes, a cluster contains only one or two points. No
sub-tours are plotted in these cases.

An analytical complexity estimation of the described method
is difficult to accomplish because the points are not evenly
distributed in the two-dimensional landscape and the resulting
number and size of the clusters is unknown. Therefore,
the complexity has to be determined empirically. The entire
procedure of initial tour generation including time measures is
investigated in section 4.1.

2.4. Refinement of Initial Tour
The second part of the proposed approach consists of several
rounds of local optimizations. The entire tour whose creation has
been discussed in section 2.3 is split in non-overlapping sub-tours
(segments) of certain length N and each sub-tour is optimized
separately. The algorithm takes care that the sub-tours contain
disjunct sets of points.

If any of the sub-tours covering the whole tour could be
improved, the processing starts again. In each loop, the start
position of the first segment is randomly chosen, so that
optimization across the sub-tour borders of the previous round
is possible.

The optimization of each segment is again performed with
the technique discussed in section 2.1 using sub-tour mode. The
maximum number of loops within a single segment is set to
maxNumOfLoops = 1. The idea is to access all segments as
quickly as possible and hopefully achieve large improvements,
rather than fully optimizing individual segments with only small
successes at the same computational cost.

For the processing of segments, two different configurations
are considered. The first setting is called “farmyard move” and
is used for the correction of suboptimal cluster assignments.
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Sometimes the point assignment discussed in section 2.2 splits
true clusters in an unfavorable manner (see Figure 4A).

Two parts of the tour are geometrically close together but
along the sequence of points, they show a long distance (dashed
line). The backbone optimizer has to use long segments otherwise
the required 3-opt operation cannot be performed. However,
long segments mean high computational costs. Fortunately,
one of the segments typically consist of only few points
(buildings) which are regarded as a farmyard. The tour
can be improved by exchanging both segments and flipping
the farmyard (Figure 4B). The computational efforts to find
such improvement possibilities can be kept moderate using a
combination of lenMax2 ≪ lenMax = N1, see Listing 1. So,
a farmyard move is basically a 3-opt operation of type #6
(see Table 1), where the flipped segment is much shorter than
the other segment to drastically reduce computational costs.
The second configuration operates with the classical setting
lenMax2 = lenMax = N2 and N2 ≪ N1. Both configurations are
alternately applied. The farmyard-move configuration applies a
reduced set of 3-opt operations. Only operations #6 and #1 from
Table 1 are investigated saving some computations.

The default settings are as follows. At first, the farmyard move
starts with segments of length lenMax = 10,000 and farmyards
with lenMax2 = 6 points. This round of optimization is followed
by a regular configuration with segments of length N2 = 300.
With each new round of farmyard moves, lenMax is increased
by 10,000 and the farmyard size by 4. The regular configuration
continues with segments, which are lengthened in increments of
200. These increments possibly enable more improvements from
round to round. This procedure is repeated until the maximum
duration (1 h) is reached. Starting with relatively short segments,
which are gradually lengthened, allows even slower computers to
run several rounds of optimization within one hour.

3. IMPLEMENTATION DETAILS

The software has been written in ANSI-C from scratch without
using any special libraries or source code from other resources.

As the processing time is limited to one our, special focus is
put on fast program execution. Ideally, the backbone optimizer
described in section 2.1 can obtain the distances of points
from a prepared distance matrix. However, it is not possible to
provide a complete distance matrix as it requires N2/2 entries. A
common strategy is to newly create the distance matrix for each
separate sub-tour comprising only the points belonging to the
current sub-tour (Taillard, 2019). A separate permutation vector
also has to be allocated. The resulting permutation order must
subsequently be transferred to the global permutation vector.
This computational overhead is more than compensated by faster
operations in the optimizer, when the distance matrix can be
accessed instead of newly computing the distances for each
single combination of pos, len1, and len2. The software limits
the preparation of distance matrices to sub-tours up to 10,000
points. In respect to memory requirements, this is about the
maximum possible when parallel optimization threads are taken
into account.

This leads to the second possibility to speed up the
computations. Since the optimization function typically
processes non-overlapping sub-tours, several processes can be
run in parallel in a multi-threading environment. The software
determines the number of threads that can be run on all CPU
cores and manages the calls of the optimization function
accordingly. If the total number of threads is T, the main thread
starts T − 1 parallel threads in maximum leaving some resources
for the operating system.

The creation of the first coarse tour (at top level) runs in
the main thread, i.e., the value of maxCP influences heavily
the computational load at this part. As soon as the coarse tour
and therewith also the sequence of the clusters is known, all
corresponding sub-tours can be optimized in parallel. If a sub-
tour is longer than maxSP, however, it cannot be optimized
directly but must be processed in recursion. That means, at
first a coarse tour through this cluster has to be generated. The
required call of the backbone optimizer is done again in the main
thread and is running in parallel to all previously started sub-tour
optimizations. Since the current implementation does not embed
the recursive execution in a separate thread, the calling function
cannot start new threads for the optimization of subsequent sub-
tours until the recursively called function is finished. From this
point of view and with multi-threading in mind, it seems to be
reasonable to set maxSP ≥ maxCP otherwise the available CPU
cores are not efficiently utilized.

After all sub-tours have been optimized and merged to an
initial tour, the complete tour is processed in non-overlapping
segments. These segments can be optimized independently, so
the backbone optimizer is called in multi-threaded mode again.
In contrast to the initial tour generation, all segments now have
the same length (eitherN1 orN2, depending on the configuration
explained in the section 2.4). This leads to nearly identical run-
times of the optimization processes and the CPU cores can be
exploited in an efficient manner.

The cost function used for the calculation of point distances is
implemented in a separate function and can be easily changed, if
the distances are not Euclidean.

The memory consumption is linearly determined by the
number of 2D coordinates which must be kept accessible during
the entire runtime. This also applies to the permutation vector.
The initial tour generation requires additional space for the
quantized coordinates. All other necessary allocations depend on
different program parameters and occupy only a fraction of the
memory space taken up by the coordinates. The distancematrices
are the only critical part. For safety reasons, the pre-calculation of
the distance matrix is restricted to sub-tours with a maximum of
104 points. Therefore, in typical settings, only the first round of
farmyard moves benefits from this acceleration technique.

4. INVESTIGATIONS AND RESULTS

The following investigations have been undertaken on a Linux
system with a state-of-the-art CPU (AMD Ryzen 9 3900x, 12
cores, 24 threads, 3.8 GHz clock rate). The source code has been
compiled with gcc and the “-Ofast” option.
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FIGURE 5 | Computation times in minutes for building an initial tour and resulting tour length dependent on chosen values of maxCP and maxSP: (A) equal values

maxCP = maxSP; (B) fixed value for maxSP.

4.1. Optimization of the Initial Tour
As the software allows the parametrization of different aspects of
the processing, it is of interest, which parameter combinations
are most successful in terms of short tour length and low
computational costs. Figure 5 shows the results of the initial
tour generation depending on the chosen maximum number
of coarse-tour points maxCP and the maximum number of
points maxSP per sub-tour. As expected, the initial tour length5

decreases with increasing values maxCP and maxSP, Figure 5A,
and the required computational time grows exponentially. It
takes about 53 min to finish the initial tour when maxCP and
maxSP are set equal to 2,500. The little peak around maxCP =
1,100 and the dip at 2,100 indicate that non-linear effects occur
which might be caused by unfavorable routing of the coarse tour.

If maxSP is set to a fix value (Figure 5B), then the duration
increases more slowly in dependence onmaxCP. For longer sub-
tours (maxSP = 1,000), the tour lengths are somewhat shorter
and, as expected, the processing lasts longer.

It might be of interest, which combinations of maxCP and
maxSP result in a good compromise of short initial tour and
fast computation. The parameter space spanned by these two
variables has been searched in the range 200 . . . 2,500 and
Figure 6 shows the resulting initial tour lengths as a function of
t1. It seems thatmaxCP/maxSP= 1,500/300, is a good choice for
t1 ≤ 3 [min] in the used set-up. The candidates 2,500/500 and
3,500/500 also seem to be promising; however, they turned out
to be slightly inferior if the final optimization is included.

4.2. Final Optimization
The final tour optimization can use the remaining time t2 that
has been left by the initial tour generation. So, we have to find an
optimal share of the available t1 + t2 = 60 min. With regard to
the diagrams in Figure 5, a reasonable tour can be found within
t1 = 3 min. The faster the initial tour is generated, the more

5All given lengths of the Santa instance are rounded to kilometers. The original
coordinates are given in meters.
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compromise between length and processing time.

time is available to optimize the tour across the sub-tour borders.
However, quickly generated but unfavorable paths of the initial
tour can elude from being improved in the final optimization. A
compromise is required.

Based on the investigation results shown in Figure 6, different
combinations of parameters have been tested (see Figure 7).
The final tour length is plotted for different maxCP values over
varying values of maxSP. The default parameters for the final
optimization have been chosen as explained at the end of section
2.4. The right vertical axis of Figure 6 additionally shows the time
t1 required for the initial tour generation.

It can be seen that smaller maximum values maxSP for sub-
tours benefit the global optimization in the chosen domain
of definition. The reason probably lies in the shorter times
of t1 which leave more time for the final optimization. The
investigation also shows that a value of maxCP = 1,500 is
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preferable overmaxCP = 1,000 as it leads to shorter tours despite
the fact that the initial tour generation lasts slightly longer. It
seems that maxCP = 1,000 causes some unfavorable paths that
cannot be removed later. The graph is complemented with two
points using maxCP = 2,000 showing that large values of this
parameter not necessarily lead to better tours.

The influence of the proposed farmyard move becomes
apparent in Figure 8. The curves depict the tour lengths after
successive steps of optimization. The first points are recorded
after the initial tour generation. All other points belong to
consecutive rounds of final optimization. There is a fast decay
of the tour length after application of the first round because
this is the first time where the optimization across the initial

clusters takes place. This decay is more pronounced when the
optimization start with segments of length of N2 = 300 (curve
“w/o farmyard”) compared to farmyardmoves with lenMax2 = 6
and N1 = lenMax = 10,000 (curve “default”). However, without
farmyard moves, the optimization converges very quickly, while
using the farmyard moves in every second round of optimization
pushes the tour toward shorter length. As the values of N1,
N2, and lenMax2 get higher with each round of processing, the
duration between the measured points also increases. The rounds
of the farmyardmoves takemuch longer, since they do not benefit
from precomputed distances except for the first round with
N1 = 10,000.

Figure 8 also contains a curve showing the optimization
behavior if only a single thread is used while all other parameters
are kept. The markers (but the last) are at the same tour length
values because identical processing is performed as in the multi-
thread case. Following table compares the processing times:

Processing Times [s]

step Multiple threads Single thread Factor

Initial 98 101 1.03

Round 1 37 289 7.81

Round 2 9 97 10.78

Round 3 213 2,122 9.96

Round 4 24 269 11.21

Round 5 469 – –

The measured times reveal that the initial tour generation
profits only little by multi-threading. This has two reasons. First,
the optimization of the coarse tour at top level has to be finished
before the sub-tours can be processed. Secondly, the algorithm
stops the processing on a certain level until a recursive call returns
from a lower level. The optimization of subsequent sub-tours
at the current level cannot be started in parallel. As maxSP <

maxCP is chosen, the processing of previously started sub-tours
is much faster than the generation of the next coarse tour.
The second reason could be tackled by also encapsulating the
recursive calls in a separate thread.

The table additionally shows the different behavior of the
two configurations. The classic configuration (rounds with even
number) utilizes only about 50% of the T − 1 = 23 CPU threads
because there are only twelve physical cores. The program
cannot benefit from hyperthreading since all threads require
the same resources. The farmyard moves (rounds with odd
number) benefit even less from multi-threading. One has to
consider that not always all threads can be used. If, for example,
there are N = 105 points and the segment length is set to
N1 = 103, then N/N1 = 100 segments have to be processed.
Given that 23 CPUs are available, then ⌊100/23⌋ = 4 times all
CPUs are busy, while the remaining number of segments is only
100 − 4 · 23 = 8. Automatically, the average usage of CPUs
is reduced.

The required duration for the farmyard-move configuration
increases from round 1 to 3 much more than from 3 to 5. This
is simply due to the already discussed fact that round 1 still can
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utilize a pre-calculated distance matrix without stumbling into
memory shortage.

In section 2.2, a re-assignment of points based on a k-
means like technique had been discussed. When this cluster
improvement is skipped, not only is the length of the initial tour
>122,000 km, but the computation time to generate the initial
tour is also higher. This can be seen in Figure 8. Obviously,
reasonable clusters ease the processing more than time can be
saved than by not doing the re-assignment.

The said Santa competition requested four variants of
optimization. In the first variant “closed-loop,” Santa returns
home after visiting all points. In all other variants this is not
necessary (“open-loop”). While in the second variant Santa may
start from any location he wants, he must start from his home in
Rovaniemi (first location in the dataset) in the third variant. In
the fourth variant, Santa recruits some assistants (drone Santas)
dividing the tour into k multiple parts that are solved by each
drone separately.

The proposed method obtains following tour lengths:

1 2 3 4

Closed loop Open loop Start in Rovaniemi k = 2 Santas k = 8 Santas

115,224 115,188 115,224 115,153 114,989

As the proposed approach is only designed for the closed-
loop mode, the other variants are simply created by searching the
longest distance(s) between points of the final tour and cutting
the tour at these points. The tour neighbors of Rovaniemi are
closer than 1 km, so the (rounded) tour length is the same as for
the closed-loop tour.

4.3. Comparison With State-of-the-Art
Methods
Using large TSP instances from various sources, the performance
of DoLoWire has been compared with two methods that can be
parameterized such that they quickly output initial results and
incrementally improve them.

The first method to compare with is based on an extended
version of source code from Taillard (2019) (called POP+). The
original POPMUSIC software was designed to run as fast as
possible generating an initial tour. The default maximum length
of sub-tours had been set to t2 = 225 points. With a budget of 60
min, POPMUSIC has been modified in two points: (i) parameter
t has been changed to an empirical value of t = 70 points for
our investigations and (ii) the implementation has been extended
such that it iteratively optimizes the initial tour until the desired
duration is reached, similar to the regular configuration described
in section 2.4. The start length of segments to be optimized is set
to len = 4,000 and is increased by len/2 in each round.

The second selected method is LKH (Helsgaun, 2017).
Using the default settings, LKH is not able to generate any
tour for large instances within one hour, so special settings are
required. The preprocessing step can be accelerated by using
“INITIAL_PERIOD = 50.” There are different methods for

generating an initial tour and “INITIAL_TOUR_ALGORITHM
= GREEDY” yields the shortest tour for the Santa instance.
In order to get a sufficient number of intermediate results,
“MAX_SWAPS” is reduced to 2,000. “TIME_LIMIT =
3,600” forces the program to stop after one hour. However,
this time limit does not include the preparation time.
Additionally, “CANDIDATE_SET_TYPE = DELAUNAY”
and “EXTRA_CANDIDATES = 4” have been suggested by Keld
Helsgaun in application to the Santa instance.

The comparison should not only based on the Santa data set.
However, there are few instances with 100,000 points or more
that have already been used for testing optimization methods.
Some have been published by DIMACS (Rutgers, New Jersey) in
the course of a dedicated challenge. These data sets have been
used among others by Taillard and Helsgaun (2019) and can
be found online6. The University of Waterloo also maintains a
dedicated web page with historical instances7. Especially the VLSI
data set contains some large problems.

Figure 9 depicts the progress of optimization for different
DIMACS instances. These data sets are artificially generated.
While the points are uniformly distributed in the “E*.0” files,
the “C*.0” data sets contain small clusters of points on a single
level. As a result of the chosen parametrization in the proposed
method, the duration of the farmyard-move configuration
is always longer than the of the regular configuration. The
sophisticated optimization heuristic of LKH produces superior
results already after the first round of optimization. However,
for instances with one million points and more, LKH requires
distinctly more time than POP+ or DoLoWire to generate the
initial and the first optimized tour as can be seen especially
for E3M.0.

Table 2 compares the results with respect to the final tour
length that have been obtained after 1 h of optimization. Along
with the final tour lengths, the excess over the best-known
solution is shown in percent. The first three rows contain
the results for artificially generated instances with uniformly
distributed point. The extended version of POPMUSIC shows
here a slight advantage over DoLoWire. However, when applied
to instances with clustered points, the proposedmethod performs
distinctly better. The results for the VLSI instance “ara238025”
are very close to each other. LKH achieves the best results
for all instances with the settings discussed above. However,
this is not the result of a clever initial tour generation
method, but it is based on the sophisticated optimization
techniques used.

4.4. Investigations on Complexity
With respect to initial tour generation, several researchers
addressed the question which tour quality can be reached using
a certain approximation algorithm. Christofides proposed an
algorithm that guarantees solutions within a factor of 1.5 of the
optimal tour length if the instance is symmetric and obey the
triangle inequality (Christofides, 1976). In Arora (1996), it has
been theoretically proven that a (1 + 1/c)-approximation can

6http://mistic.heig-vd.ch/taillard/problemes.dir/tsp/tsp.html
7https://www.math.uwaterloo.ca/tsp/vlsi/index.html
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TABLE 2 | Results for different instances after 60 min of processing.

Size of Length % Excess

Instance instance Best known POP+ DoLoWire LKH POP+ DoLoWire LKH

E1M.0 100,000 713,187,688 753,807,836 757,343,554 713,914,467 5.70 6.19 0.10

E3M.0 3,162,278 1,267,318,198 1,339,204,602 1,348,907,974 1,269,251,701 5.67 6.44 0.15

E10M.0 10,000,000 2,253,088,000 2,389,639,423 2,431,057,748 ∗2,257,790,002 6.06 7.90 ∗0.21

C100k.0 100,000 104,617,752 113,054,381 110,103,932 104,874,011 8.06 5.24 0.24

C316k.0 316,228 186,870,839 201,135,304 196,653,823 187,395,021 7.63 5.24 0.28

ara238025.tsp 238,025 578,761 650,926 651,872 579,868 12.47 12.63 0.19

lra498378.tsp 498,378 2,168,039 2,383,112 2,357,782 2,171,629 9.92 8.75 0.17

lrb744710.tsp 744,710 1,611,232 1,816,607 1,806,674 1,614,552 12.75 12.13 0.21

Santa 1,437,195 108,416 119,054 115,224 109,161 9.81 6.28 0.69

Values of column “Best known length” are copied from Taillard and Helsgaun (2019) for DIMACS (*0.0) and from University of Waterloo (2020) for VLSI (*.tsp) instances. The best-known

result for Santa has been generated by LKH. The tour lengths of POPMUSIC+ have been obtain by an extended version of source code from Taillard (2019) (∗ In order to get reasonable

results for E10M.0 within 1 h, “INITIAL_PERIOD = 10” and “MAX_SWAPS = 100” had to be used).

be achieved in NO(c) time. For the proposed method DoLoWire
it is difficult to derive such a bound theoretically. However, it
is possible to obtain some indications based on experiments.
Figure 10 shows the processing time and the excess (over best
known solution) dependent on size N of all TSP instances from
Table 2. In addition to the results after the initial tour generation,
two curves are included showing the results after one and two
rounds of final optimization, respectively. This seems to be
reasonable as the pure initial methods do not optimize across the
clusters, neither for DoLoWire nor for POP+.

The measured times for the initial tour generation of
DoLoWire (Figure 10A) heavily depend of the presence on
clusters and the required number of levels for clustering; that
is why the Santa instance causes the peak at N ≈ 1.47 × 106.
When including the first rounds of final optimization, the curves
t = f (N) get smoother. The thin dotted lines show fitted
models f (N) = (a1 · N)a2 + a3. The model parameters have
been derived using the fitting source code of Strutz (2016) to
a1 ≈ 2.60 · 10−6, a2 ≈ 2.06, and a3 ≈ 24.1 for “initial” and

a1 ≈ 8.52 · 10−6, a2 ≈ 1.59, and a3 ≈ 29.6 for “round 1,” where
parameter a2 may give an indication of the likely underlying
time complexity. The highest (and worst) excess equal to 20%
can be observed in Figure 10A for instance “lrb744710.” After
“round 1” the maximum excess is reduced to 14% (“ara238025”
and “lrb744710”).

POP+ also shows some dependency on the structure of the
processed instance (Figure 10B). The fittedmodel parameters are
a1 ≈ 5.70 · 10−6, a2 ≈ 1.83,and a3 ≈ 26.1 for “initial” and a1 ≈
3.61 · 10−3, a2 ≈ 0.78and a3 ≈ −57.9 for “round 1.” The latter
results allows the assumption that POP+ has a linear complexity.
The maximum excess is similar to DoloWire: 19.0% after initial
tour generation (“Santa”) and 13.9% (“lrb744710”) after second
round of final optimization. LKH generates the initial tour using
the GREEDY algorithm which is distinctly more effective for
instances with evenly distributed points, Figure 10C low excess
values for E1M, E3M, and E10M. The first round of optimization
drastically improves the tour. The subsequent optimization steps
shorten the tour in relatively small steps. The worst excess using

Frontiers in Robotics and AI | www.frontiersin.org 12 April 2021 | Volume 8 | Article 652417

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Strutz DoLoWire

 15

 30

 60

 120

 300

 600

 1200

 0.1  0.3  0.5  1  1.5  3  10
 0

 5

 10

 15

 20

 25

 30

 35
d

u
ra

ti
o

n
 
t 

[s
]

ex
ce

ss
 [

%
]

N x 10
-6

initial
round 0
round 1

initial ex.
round 0 ex.
round 1 ex.

 15

 30

 60

 120

 300

 600

 1200

 2400
 3600

 0.1  0.3  0.5  1  1.5  3  10
 0

 5

 10

 15

 20

d
u

ra
ti

o
n

 
t 

[s
]

ex
ce

ss
 [

%
]

N x 10
-6

 30

 60

 120

 300

 600

 1200

 3000

 6000

 12000

 0.1  0.3  0.5  1  1.5  3  10
 0

 5

 10

 15

 20

 25

 30

 35

d
u

ra
ti

o
n

 
t 

[s
]

ex
ce

ss
 [

%
]

N x 10
-6

greedy
optimized 1
optimized 2

greedy ex.
optimized 1 ex.
optimized 2 ex.

A

C

B

FIGURE 10 | Processing time and excess (over best known solution) dependent on size N of all TSP instances from Table 2: (A) DoLoWire; (B) POP+ using same

legend; (C) LKH.

a greedy tour generation can be observed for the Santa instance
with 21%.

5. SUMMARY AND CONCLUSIONS

A new method DoLoWire has been proposed that rapidly creates
initial tours for symmetric instances of the traveling salesman
problem. The approach uses grid-based clustering of coordinates
in combination with a fast k-means like cluster refinement
making the result almost independent of the initial point order.
This method is combined with a segment-wise optimization of
sub-tours. The initial tour generation is complemented with local
refinements while the maximum duration is limited to 60 min.
A special technique has been developed that is able to remove
unfavorable paths of the initial tour over longer distances without
exponential increase of the required processing time. Albeit
originally developed for the Santa Claus challenge, DoLoWire
has been proven also being successful when applied to standard
TSP instances. In comparison to state-of-the-art methods, it
generates initial tours faster and, in application to instances
with unevenly distributed points, with shorter length. The used

backbone optimizer lacks cleverness and this prevents better
tours for the general case.

There are several ways to improve the current state of
DoLoWire. One disadvantage is that the farmyard moves with
large segments (N > 10,000) cannot benefit from the pre-
calculation of distances. This threshold should not be fixed, but
should depend on the available memory and the number of
threads started in parallel.

With state-of-the-art hardware, DoLoWire generates initial
tours (including two rounds of optimization across clusters) in
<5 min for the investigated instances with N ≤ 3 · 106. More
time could be spent on sophisticated tricks either to improve the
initial tour or to enhance the tour refinement than spending a
mindless 55 min on 2/3-opt operations.

This leads to another option for improvement. The used
brute-force 2/3-opt backbone optimizer can possibly be
replaced with a more advanced optimizer that also can be
run with less computational complexity. LKH currently sets
the standard.

The proposed approach has been designed and tested
for instances with two-dimensional Euclidean metric. Since
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the distance calculation is performed in a separate cost
function, it is easy to adapt to other metrics if coordinates
are given. Solving general TSPs is not possible with the
proposed approach.

The implementation of the proposed method DoLoWire is
accessible to support reproducible research (Strutz, 2021).
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