

European Journal of Medicinal Plants

Volume 34, Issue 6, Page 29-51, 2023; Article no.EJMP.102095 ISSN: 2231-0894, NLM ID: 101583475

Top Edible Wild Plants of Eastern Mediterranean Region. Part I: Anticancer Activity

Abdullatif Azab^{a*}

^a Eastern Plants Company, Box 868, Arara, Israel.

Author's contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/EJMP/2023/v34i61143

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/102095

Review Article

Received: 04/05/2023 Accepted: 06/07/2023 Published: 14/07/2023

ABSTRACT

Medicinal plants are the major source of natural products that are used for drug discovery and development. Cancer is second cause of disease-related deaths, after cardiovascular diseases. Numerous studies were conducted and published where plant materials such as extracts, essential oils, pure natural compounds or their combinations and formulations, were tested for the treatments of cancers, tumors, and their prevention. The fauna of the Middle East region, especially the area between the Mediterranean and the Jordan River (Israel and Palestine), includes some plant species with notable potential anticancer activity. Some of these plants, are known for this activity for centuries, as we know from the traditional medicines of this region. For example, *Arum palaestinum* is one of the most important plants used in folk medicine for the treatment of cancer, and modern studies have confirmed this property. Several natural products that were isolated from this plant were proposed as responsible for this activity. In this review we will introduce the most important edible plants (not including trees) and their published anticancer activity, as well as according to traditional medicine. Important natural product proposed for these activities will be presented, as well as selected mechanism of action. Based on this brief presentation, some future applications and research potentials will be suggested.

^{*}Corresponding author: E-mail: eastern.plants@gmail.com;

Keywords: Anticancer; medicinal plants; traditional medicine; plant extracts; essential oils; natural products; alkaloids

1. INTRODUCTION

Plants were used by human since antiquity, mainly for nutritional purposes, but as early as the dawn of humanity, plants we used also for medicinal, therapeutical treatments [1,2,3]. Earliest known cancer cases were determined by archeologists to be around 1.8 million years ago [4]. Attempts to treat cancer, like other human health disorders, started also as early as human existence. The attitudes of the highly skilled ancient Egyptian physicians about cancer treatments were various. Some described cancer as "grave disease and there is no treatment for it", while others used various methods to try to cure it [5]. One of the (untreated) cancer cases of antiquity that was thoroughly studied by modern science, was of a young adult from Northern Nubia, that belonged to ancient Egypt, dating about 1200 BC [6]. Ancient Greek physicians contributed their experience and knowledge for treatment of cancer, and some of this information is well documented [7].

Drug discovery from medicinal plants is one of the major sources for some final products, but mainly for prodrugs and starting materials [8]. In many cases, the developments of these modern drugs were based on traditional knowledge, such as the very well-known artemisinin and its modifications, that resulted a Noble prize in 2015 [9]. The drug discovery was based on the knowledge that *Artemisia annua*, the major source of artemisinin, is used in traditional Chinese medicine to treat Malaria.

Cancer is the second cause of disease-related deaths among humans, after cardiovascular complications [10], but it also affects animal, wild and domesticated [11]. The global annual costs of cancer related complications is around USD 193 billion, and it is estimated that this spending will be around USD 25.2 trillion over the next thirty years [12]. Cancer treatment and preventions drugs are numerous including natural and synthetic pure compounds, plant essential mixtures. extracts. oils, and formulations [13]. While synthetic drugs have medium to severe side effects [14], most known natural products and mixtures are notably unstable [13].

The search for anticancer therapies based on natural products is of a global concern since it has a potential of safe drugs development. These natural products can also ameliorate the side effects of synthetic drugs [15,16].

Eastern Mediterranean shores populations are known for their healthy nutritional habits. especially consuming healthy wild plants. The list of these plants is very long but the top ten edible wild plants, not including trees, alphabetically ordered, are: Arum palaestinum (Araceae), Cichorium pumilum (Syn. Cichorium endivia, Asteraceae), Cyclamen persicum (Primulaceae), vulgare (Apiaceae), Foeniculum Gundelia tournefortii (Asteraceae), Majorana syriaca (Syn. Origanum svriacum, Lamiaceae), Malva Svlvestris (Malvaceae). Micromeria fruticosa (Lamiaceae), Salvia fruticosa (Syn. S. triloba, S. libanotica, S. cypria, S. lobryana, Lamiaceae), Sinapis alba (Brassicaceae). From now on, these plants will be referred to in this review article as the "Deca-plants" (10 plants).

2. ETHNOBOTANY AND ETHNOMEDICINE OF THE DECA-PLANTS

The most important ethnobotanical use of the Deca-plants was and still is for human and livestock food, but we will focus in this review article on human nutrition. Different parts of the Deca-plants are eaten by humans in the discussed region, as shown in Table 1.

Besides for food, the Deca-plants were and still used in traditional medicine of this region, in the same manner they are used in other regions. Numerous ethnomedicinal uses are known and the published. Among most frequently mentioned: skin complications, urinary system disorders, gastric disorders, cancer and prostate disorders, arthritis, respiratory complications, diabetes, urinary system disorders, wound healing, teeth and gums problems, inflammations, bone disorders, antivenom, antiplant toxicity, fertility disorders, general relaxation, and other ailments [17,18].

But in this article, we are focus on anticancer activities, so, the anticancer ethnomedicinal uses of the Deca-plants are presented in Table 2.

Species	Consumed part/s	Major method/s of use
Arum palaestinum	Leaves (all other parts are toxic)	Fried in olive oil
Cichorium pumilum	Leaves and young stem	Cooked or fried with or without
		other food ingredients
		Herbal tea/infusion
	Flowers, fresh or dries	Herbal infusion, coffee
	Seeds	substitute
Cyclamen persicum	Leaves (all other parts are toxic)	Stuffed with rice with or without meat
Foeniculum vulgare	Leaves and young stems	Eaten fresh, herbal
		tea/infusion, sweets flavoring
Gundelia tournefortii	Young stems, rarely young leaves, flowers after removing thorns	Cooked or fried with or without other food
Majorana syriaca	Leaves (mainly) and very young	Dried and added to many foods
	stems	as a spice, eaten mixed with
		olive oil, fresh or dried are
		baked with bread
Malva sylvestris	Leaves (mainly) and very young	Cooked or fried with or without
	stems	other food. Fresh used to
		prepare salads and rarely
		stuffed with rice
	Flowers	Eaten raw or in salads
	Seeds, raw or dry	Eaten fresh or as salad
		dressing
Micromeria fruticosa	Leaves and stems	Herbal tea/infusion
Rumex pulcher	Leaves	Consumed raw in salads but
		mainly stuffed in pastries
Salvia fruticosa	Leaves (mainly), young stems and	Herbal tea/infusion, meat,
	rarely flowers	poultry, fish dressing
Sinapis alba	Leaves and young stems	Fresh (mainly) or dried,
		consumed in salads
	Seeds	Used to prepare mustard or
		mustard oil, but also added to
		salads and cooked foods as a
		spice

Table 1. Food uses of the deca-plants in eastern mediterranean region

Table 2. Anticancer ethnomedicinal uses of the Deca-plants in Eastern Mediterranean region

Species	Objectives and methods of use	Ref.
Arum palaestinum	Leaves, cooked or fried taken orally	[19,20]
	Leaves decoction taken orally	[21]
Cichorium pumilum	Aerial parts infusion taken orally	[19]
Cyclamen persicum	Leaves infusion taken orally	[19]
Foeniculum vulgare	Leaves and young stems, eaten fresh or infusion	[22]
Gundelia tournefortii	Aerial parts (excluding thorns) are cooked and eaten	[20]
Majorana syriaca	Leaves infusion taken orally	[19]
Malva sylvestris	Leaves infusion taken orally	[19]
Micromeria fruticosa	Leaves infusion taken orally	[19]
Salvia fruticosa	Leaves infusion taken orally	[19]
Sinapis alba	Leaves infusion taken orally ^a	[19]
	Ref., references	

a) This species is often confused by non-botanists with Sinapis arvensis.

3. ANTICANCER ACTIVITIES OF THE DECA-PLANTS AND THEIR NATURAL PRODUCTS

Modern research has noticed the traditional anticancer properties of the Deca-plants and they were extensively studied for this activity. The number of published reports about each plant are significantly different, where publications for some of them were a few, while for others the numbers of publications were notably large. In such cases, we chose the most significant. Anticancer activity of the Deca-plants is presented in Table 3.

Table 3. Published Anticanc	er Activities of the Deca-plants in Eastern Mediterranean region	
Tuble 0.1 ublished Antiouno	Addivides of the beog plants in Eastern meanerhanean region	

Testing Method and Results	Ref.
Arum palaestinum	
New alkaloid (Fig. 1) was isolated from the ethyl acetate leaves extract. Both had cytotoxic effect on MCF-7 cells but not on HepG2 cells.	[23]
Leaves were extracted successively with water, ethyl acetate and <i>n</i> -butanol, affording new alkaloid (Fig. 1), which had cytotoxic activity against A549, SK-OV-3, SK-MEL-2 and HCT-15 cell lines.	[24]
Leaves ethanolic extract had significant activity against MCF-7 cell lines. Aerial parts were extracted with 70% aqueous ethanol, and fractionated with diethyl ether, dichloromethane, ethyl acetate, <i>n</i> -butanol, methanol, and water. Paper chromatography yielded four polyphenolic (Fig. 2). Original extract and phenolics had clear activity against Hep2, HeLa, HepG2 and MCF7 cell lines.	[25] [26]
Leaves and roots aqueous extract was formulated with isovanillin, linolenic acid and β -sitosterol, resulting in reduction of prostate tumors in mice.	[27]
Leaves were separately extracted with water and 1:1 methanol: dichloromethane (v/v). Both extracts were active against C2Cl2, 3T3-L1, HeLa cell lines.	[28]
Leaves were separately extracted with ethyl acetate, methanol, chloroform, and water. Extracts had activity against HCT116, PC3, MCF-7 cell lines, where ethyl acetate extract showed the highest activity.	[29]
Aerial parts were extracted and successively fractionized with a series of solvents with increasing polarity. Extracts and fractions were analyzed, and some know phenolics were isolated, with two chrysoeriol glucosides isolated from this plant for the first time. Some extracts and compounds had activity against MCF7, HepG2, Hep2 and HeLa cell lines. Leaves and roots aqueous extract in combination with (ready) extracts of <i>Peganum</i>	[30]
<i>harmala</i> and <i>Curcuma longa</i> ; as well as combinations of natural (curcumin, harmine and isovanillin) and synthetic anticancer compounds. The combinations showed activity	[31]
according to various <i>in vitro</i> and <i>in vivo</i> anticancer biomarkers. Aqueous flowers extract was found active against Hep3B cell lines.	[32]
Cichorium pumilum Aerial parts were extracted with microwave-assisted 50% aqueous ethanol. The extract has positive effect on dimethylbenz[a]anthracene-induced cancer in female rats, tested with histological and biochemical biomarkers.	[33]
Roots methanolic extract was active against HCT-116 human cancer cells. Extract was analyzed for phenolics, resulting in catechin as major component.	[34]
Shoots and roots methanolic extract was active against MFC-7 cell lines. Extract was analyzed for phenolics, with results almost identical to the previous report.	[35]
Leaves aqueous extract was active against 1.2-dimethyl hydrazine-induced cancer in mice. The highest dose of 600 mg/kg body weight was most efficient.	[36]
Cyclamen persicum	
Dried tubers were extracted with 70% aqueous methanol, yielding saxifragifolin B and cyclamin (Fig. 3). Both compounds were tested against SK-BR-3, HT-29, HepG2/3A, NCI-H1299, BXPC-3, 22RV1 cell lines. Saxifragifolin B was more active.	[37]
Tubers and leaves were separately extracted with 70% aqueous ethanol, and extracts were tested in various concentrations against MCF-7, PC-3 and LNCaP cancer cell lines. Both extracts had strong effect on MCF-7, PC-3 cells and less effect on LNCaP. Tubers	[38]

Testing Method and Results	Ref.
extracts had a way stronger effect.	
Tubers of three species of Cyclamen were extracted with 95% aqueous ethanol and the	
extracts were tested against H1975 and HCC78 cancer cell lines. <i>C. persicum</i> had the	[39]
strongest effect, with cell viability of 0% cell viability for H1975 cells in concentrations	
greater than 75 µg/mL, and around 7% for HCC78 cells in concentrations greater than	
150 μg/mL.	
Leaves and flowers of three Cyclamen species were separately extracted with water.	
Extracts were tested against MDA-MB-231 cell lines. C. persecum leaves extract was	[40]
most potent, and this species exceeded the other two in other activities: total phenolic	[]
content, total flavonoid content, and antioxidant activity.	
Foeniculum vulgare	
Seeds were extracted with 70% aqueous methanol, and extract was active against	[41]
B16F10 melanoma cell line.	
Seeds essential oil (EO) and 50% aqueous methanolic extract were prepared. Both	[42]
products were tested and found active in both <i>in vitro</i> (against MCF-7, HepG2, HT-29,	
HeLa, H460 and U251 cell lines), and <i>in vivo</i> (irradiation-induced cancer in mice).	
Chemical composition of was determined by GC-MS and the three major constituents (all	
previously known) are shown in Fig. 4.	
Aerial parts (excluding flowers) were extracted with 50% methanol, and the extract had	[43]
apoptosis activity against HeLa cells.	
Fruits were extracted with 96% aqueous ethanol, and extract had notable activity against	[44]
MCF-7 cancer cells ($IC_{50} = 69.41$ ppm). In this study, two other plant extracts were	
studied: Trigonella foenum-graecum and Aglaia elliptica. Their IC ₅₀ values are, 241.24	
and 19.44 ppm, respectively.	
Fresh leaves essential oil (EO) was tested against 9 different cancer cell lines, along with	[45]
EO's of three other plants, and it had small effect. The chemical composition of the EO	
was analyzed by GC-MS resulting <i>E</i> -anethole, myrcene, α -pinene, fenchone (Fig. 5),	
and, L-limonene, estragol, (Fig. 4).	
Aerial parts essential oil (EO) was tested against 6 different cancer cells, showing	[46]
moderate effect. The chemical composition of the EO was analyzed by GC-MS.	[]
This research is similar to above cited studies [42,45,46] but with better results ($IC_{50} = 10$)	[47]
ppm).	[]
Aerial parts essential oils of <i>F. volgare</i> and <i>Pelargonium graveolens</i> were prepared, and	[48]
their activity against MCF-7 cancer cells was tested, separately and as a mixture. In both	[10]
cases the effect was moderate. The composition of both EO's was analyzed with GC-	
MS.	
/ery similar study to [42,45-47] with one difference: seeds were harvested in different	[49]
ocations and several EO's were prepared and tested.	[+0]
Aqueous seeds extract was analyzed to isolate proteins that were active against MCF-7	[50]
cancer cells (inhibition of 65-80% at 100 ppm).	[50]
Mice were infected with 4T1 cancer cells, then treated with seeds aqueous extract, which	[[]]
resulted clear activity compared with control untreated groups.	[51]
Very similar study to [42, 45-47, 49] with two differences: the EO was commercially	
purchased, and it was tested against different cancer cell lines. The result was weak to	
moderate activity. In this study, the EO's of 15 more plants were investigated and they	[52]
were analyzed for chemical compositions.	
Seeds were extracted with 75% aqueous ethanol, and extract was found highly active	
against NCI-H446 and NCI-H661 cancer cell lines. A mechanism of action is proposed as	
partial down regulation of Bcl-2 (B-cell lymphoma 2 protein).	[53]
Same research group of previous work [53] used the same methods but different cancer	
cell lines (QGY-7701, Bel-7404 and HHL-5). Studying the mechanism of action revealed	
hat extract inhibited Survivin protein in these cells.	[54]
Same research group, same methods and same results like in [51].	-
Seeds methanolic extract had significant activity against A549 human lung cancer cells.	
Computer simulation (molecular docking, <i>in silico</i>) of major secondary metabolites of the	[55]

Testing Method and Results	Ref.
plant, limonene and α-pinene, that proved that they have potential of anticancer agents. EO of the fruits of ssp. <i>Piperitum</i> was prepared and testes against MDA-MB231cancer	[56]
cells. It showed notable prevention and inhibition activities.	[57]
A follow up of studies [51,55] with investigation of mechanism biomarkers: treatment	
down regulated HSP70 and HSP90 (heat shock protein).	
95% Aqueous ethanol, ultrasound-assisted extractions of seeds yielded and extract that was tested against MCF-7 and MDA-MB435 cancer cell lines. For the first it had weak	[58]
activity compared with seven other plans, and for the second, it had relatively strong activity. The extract was analyzed with GC-MS resulting notably different composition	[59]
(Fig. 6) compared with previous reports (Fig. 4, [42], and Fig. 5, [45]).	[60]
Gundelia tournefortii	
The edible parts, stems and flowers (excluding prickles) were separately extracted with water, methanol, and <i>n</i> -hexane. Extracts were tested against HCT-116 cancer cells resulting $IC_{50} > 1000 \ \mu g/mL$ (inactive). Extracts were analyzed for chemical compositions by GC-MS, and the major compounds are listed, and their structures are presented in the article.	[61]
Roots and leaves were separately extracted with water, and both extracts were active against MCF-7 cell lines, resulting moderate activity. Essential oil was also prepared but was not tested for anticancer activity.	[62]
Seeds aqueous extract was found moderately active against six cancer cell lines. Extract was analyzed by GC-MS and major constituents are shown in Fig 7.	[63]
Aerial parts aqueous extract was tested against Hep3B cancer cells injected in mice and found active. Decrease of p53/Akt/PI3K signaling pathway was proposed as mechanism of action.	[64]
A follow up of the previous study, with the same methods and very similar results.	[65]
Majorana syriaca	
Aerial parts ethanolic extract had significant activity against MCF-7 cell lines. Essential oil (EO), aqueous and 70% aqueous ethanol extracts, were separately prepared from dry leaves. Both materials were tested against MCF-7 cancer cells. For concentration of 50 µg/mL and 72 h, cell survival was: 25.1% for ethanolic extract, 25.2% for aqueous extract and 21.3% for EO. EO was analyzed with GC-MS and major compounds are presented in Fig. 8.	[25] [66]
Aerial parts were extracted with 40% aqueous ethanol and was active against THP-1 human leukemia cells.	[67]
EO and 80% aqueous ethanol extract were separately prepared, and both were active against two cancer cell lines. Authors indicate that the plants they used were cultivated in Cairo university, not wild.	[68]
70% Aqueous ethanolic extract was moderately active against LoVo and SW620 cancer cells.	[69]
Fresh leaves aqueous extract had activity against MDA-MB231 cancer cells.	[70]
A follow up of the previous study with 80% aqueous ethanol dry leaves extract.	[71]
Malva sylvestris	
Leaves were extracted with 70% aqueous methanol and extract was treated for isolation of phenolics (pH=2). Extract was tested against B16, A375 and CHP100 cell lines, and found active, mainly against A375 (human melanoma) cells. HPLC analysis of the extract yielded compounds shown in Fig. 9.	[72]
Essential oils (EO's) of aerial parts of plants from 16 different locations were prepared and found active against C32, MCF-7 and SkBr3 cell lines. EO's were also analyzed for chemical compositions.	[73]
Leaves ethanolic extract was moderately active against HeLa cell line.	[74]
Leaves were extracted with 80% aqueous ethanol, and extract was found active against two types of cell lines (not specified). It was also analyzed by GC-MS.	[75]

Testing Method and Results	Ref.
lines.	
Micromeria fruticosa	
Aerial parts aqueous extract and essential oil were prepared and tested against MCF-7 and HCT cancer cells, showing very strong activity. In concentration of 50 µg/mL, survival of MCF-7 cells was 25% for extract and 10% for EO, while for HCT cells, results were 21% and 14%, respectively, the chemical composition of EO was analyzed with GC-MS, and major constituents are shown in Fig. 10.	[77]
Aerial parts aqueous extract had moderate activity against U-87 MG cancer cells: at concentration of 200 μg/mL, cells survival was 30%.	[78]
Aerial parts were extracted with methanol and extract was tested against MCF-7 and HCT-116 cancer cells. Testing was performed for several biomarkers of cell viability and apoptosis, including caspase activity. In all tests, extract showed high potency. Aerial parts were extracted with methanol and extract was tested against MCF-7 and	[79]
HCT-116 cancer cells. This study is a follow up of studies [77,79], and its objective was to find the mechanism of action: downregulation of CDK1 and cyclin B1. Ethanolic extract of aerial parts showed notable activity against MCF-7 and A549 cell lines. When combined with <i>Teucrium polium</i> ethanolic extract or cisplatin, synergetic	[80]
effect was clear. Leaves, stems, flowers, and roots were separately extracted with three solvents: water, ethanol, and <i>n</i> -hexane (12 extracts). Each was tested against human colon cancer cells, aboving different levels of activity in different concentrations and duration. Extracts	[81]
showing different levels of activity, in different concentrations and duration. Extracts were analyzed with GC-MS resulting very similar compositions as in study [77], with additional compound: oleamide, cis-CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CONH ₂	[82]
Salvia fruticosa	
Essential oil (EO), aqueous and 70% aqueous ethanol extracts, were separately prepared from dry leaves. Both materials were tested against MCF-7 cancer cells. For concentration of 50 μ g/mL and 72 h, cell survival was: 14.9% for ethanolic extract, 27.9% for aqueous extract and 13.3% for EO. EO was analyzed with GC-MS and major compounds are presented in Fig. 11.	[66]
Combinations of compounds shown in Fig. 11 had clear activity against HCT-116 cancer cells. Mechanism of action was studied revealing caspase inhibition.	[83]
Aerial parts aqueous extract was tested against HCT15 and CO115 cancer cells, showing notable activity. This activity was separately compared with same extract of <i>Salvia officinalis</i> and rosmarinic (an important constituent of aqueous sage extracts) and was higher that both.	[84]
Aqueous extract was prepared and was also analyzed to isolate rosmarinic acid and luteolin-7-glucoside (Fig. 12). All three materials had activity against Caco-2 and HeLa cell lines, as well as DNA damage repair.	[85]
Methanolic extract of commercial, dry aerial parts powder was prepared and analyzed with GC-MS, resulting some known compounds showed in previous figures. This extract was active against PC-3 and DU-145 cell lines and had DNA damage repairing activity. Aerial parts methanolic extract was prepared, separately fractionized with methanol and <i>n</i> -hexane. The three materials were analyzed with GC-MS, resulting some compounds	[86]
shown in previous figures as well as salvigenin and viridiflorol (Fig. 13). Extract and fractions were active against MCF-7, MDA-MB-231, RKO, Caco-2 and 3T3-L1 cell lines. Bark methanolic extract was active against MCF-7, T47D and MDA-MB-468 cell lines, with inhibition of 65, 72 and 76%, respectively. Aerial parts were extracted consecutively with petroleum ether, dichloromethane,	[87]
methanol, and water. All extracts were tested against A375., A431 and HaCaT cell lines, but only methanolic extract had significant activity.	[88]
Roots were extracted with acetone, and column chromatography of extract yielded eight abietane diterpenoids (Fig. 14). Extract and isolated compounds were tested against HCT-116 and MDA-MB-132 cell lines. Compound 5 was most active with $IC_{50} = 18 \ \mu M$ against HCT-116 cells, and 44 μM against MDA-MB-132 cells. Extract had IC_{50} values of	[89]

Testing Method and Results	Ref.
177 and 110 μM, respectively.	[90]
Leaves were separately extracted with 90% aqueous ethanol and acetone. Both extracts were tested against U2OS and SKOV3 cancer cells: acetone extract had higher activity.	[91]
Sinapis alba	
Mucilage fraction was isolated from seeds (slightly basic aqueous solution, 65 °C), and it was fed to mice and rats with cancer that was induced by azoxymethane. Cancer was reduced in both cases.	[92]
Seeds were extracted with ethanol and diethyl ether. Extract was active <i>in vitro</i> (against SW480 and NIH/3T3 cancer cells) and <i>in vivo</i> (mice with cancer that was induced by azoxymethane).	[93]
Seeds and leaves were extracted with 80% aqueous ethanol. Extract was analyzed and two natural products were isolated: sinalbin and sinigrin. The three materials were tested against HCT-116 cancer cells: sinigrin had no activity, and sinablin had weak activity compared with the extract, which was notably active.	[94]
Seeds powder was exposed to aqueous myrosinase that hydrolyzed sinigrin yielding allyl isothiocayante-rich powder (see Discussion). This was administered to rat with colon cancer (71.5 mg/kg), resulting clear cancer reduction.	[95]

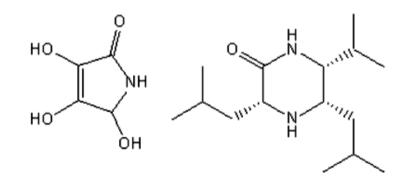


Fig. 1. New alkaloids with anticancer activity isolated from Arum palaestinum [23,24]

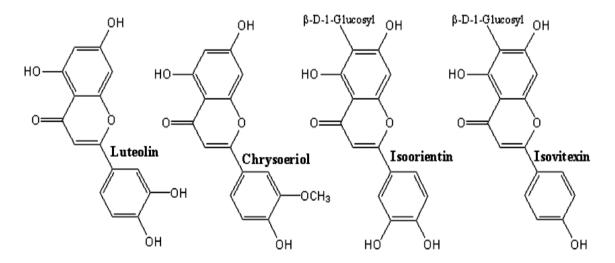


Fig. 2. Polyphenols with anticancer activity isolated from Arum palaestimum [26]

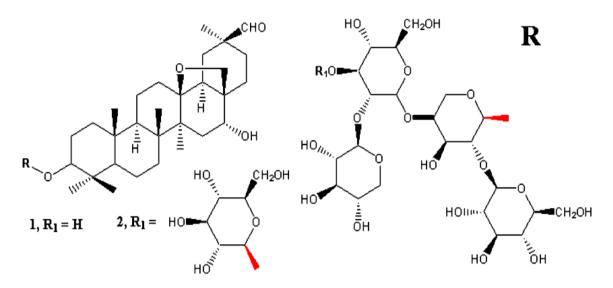


Fig. 3. Saxifragifolin B (1) and cyclamen (2) isolated from Cyclamen persicum [37]

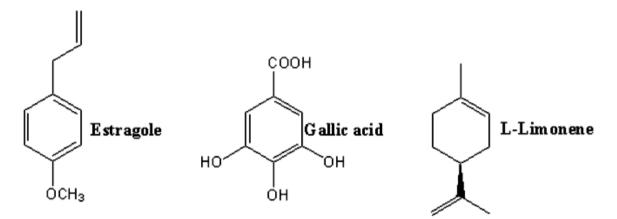


Fig. 4. Three major constituents of seeds essential oil of Foeniculum vulgare [42]

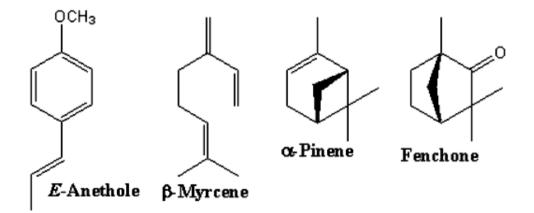


Fig. 5. Some major constituents of fresh leaves essential oil of Foeniculum vulgare [45]

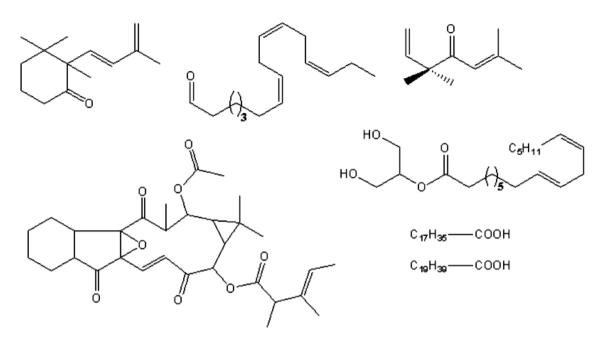


Fig. 6. Some major constituents of seeds extract of Foeniculum vulgare [60]

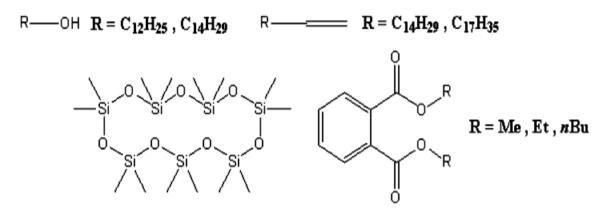


Fig. 7. Some major constituents of seeds extract of Gundelia tournefortii [63]

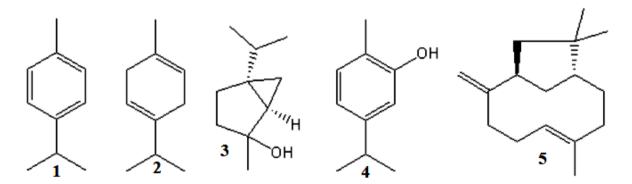


Fig. 8. Some major constituents of leaves essential oil of Majorana syriaca [66]

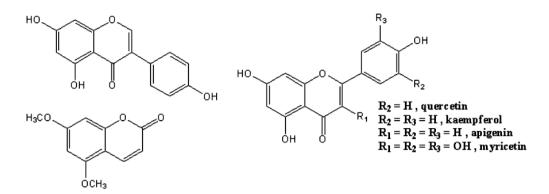


Fig. 9. Some major phenolics of methanolic leaves extract of Malva sylvestris [72]

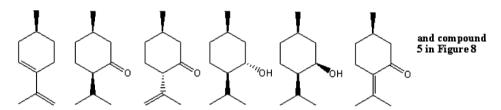


Fig. 10. Some major constituents of aerial parts essential oil of Micromeria fruticosa [77]

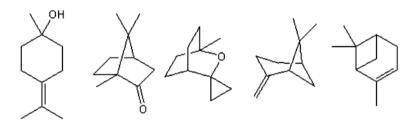


Fig. 11. Some major constituents of leaves essential oil of Salvia fruticosa [66]

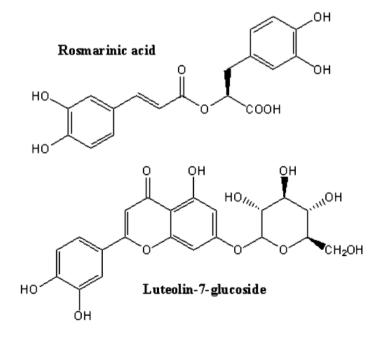


Fig. 12. Phenolics from aerial parts aqueous extract of Salvia fruticosa [85]

Fig. 13. Constituents from aerial parts methanolic extract of Salvia fruticosa [87]

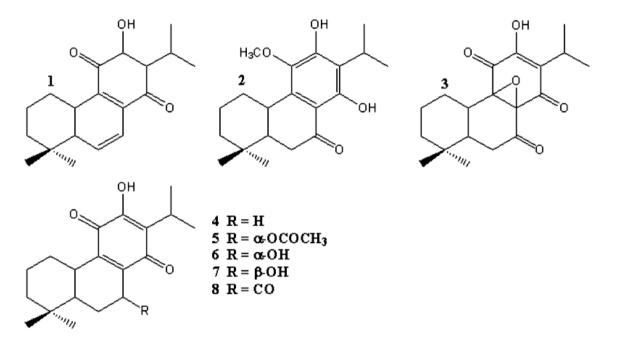


Fig. 14. abietane diterpenoids from roots acetone extract of Salvia fruticosa [90]

4. DISCUSSION

The search for cancer therapies is one of the most expanded fields of science, and it emerges from the critical need of humanity to combat this fatal illness. Synthetic drugs of almost all kinds and structures of compounds, but small molecules are the leading agents so far [96]. But the vast majority of synthetic drugs have adverse side effects [97], and cisplatin is the most known case in particular [98]. On this basis, the search for natural or seminatural therapies is more than obvious, and extracts, pure natural products or their analogues are investigated for this purpose [99,100].

Arum palaestinum is consumed during winter and early spring in the reviewed region of Eastern Mediterranean, and in folk medicines, it is considered an active anticancer plant. The chemical basis of this traditional practice was shown in many modern studies. This plant contains active alkaloids (Fig. 1, [23,24]), and it is known that this natural products family has the anticancer potency [101]. To give this statement further verification, study [31] reported that A. palaestinum extract was used in combination with extracts of Peganum harmala and Curcuma longa; as well as combinations of natural (curcumin, harmine and isovanillin) and synthetic anticancer compounds. P. harmala, a well-known alkaloid containing plant, is also known for its anticancer activity [102]. And even though C. longa is not an alkaloid-rich plant, but it is known for its anticancer properties [103]. The anticancer activity was also reported for the major active natural products of these plants: harmine (P. harmala, [104]) and curcumin (C. longa, [105]).

The anticancer activity of combinations of A. palaestinum with pure natural products isovanillin. linolenic acid and **B**-sitosterol: can indicate synergistic effects. The [27]), plant itself contains active anticancer polyphenols (Fig. 2, [26]), and this is consistent with the previously known effect of these compounds [106]. And continuing the topic of combinations, it is important to mention that despite the notable proximity of the structures of vanillin and its isomer, isovanillin (Fig. 15), the first was reported for its anticancer activity as a pure compound [107], while the second is anticancer agent only in combinations [27].

To conclude the discussion of A. palaestinum it is important to mention two published studies. First, the comprehensive metabolites analysis that was published by I.M. Abu-Reidah and his colleagues [108], where they reported the presence of 191 compounds. Second, A. Maree and his colleagues reported that they reviewed all documented cases of A. palaestinum poisoning in Israel and found no severe cases or deaths [109]. The edible part of this plant is the leaves and eating them fresh causes serious mouth irritation (oxalates). But no documented reports are known about consumption of other parts.

Many botanical authorities consider *Cichorium pumilum* and *Cichorium endivia* as the same species [110,111,112], while others consider *C. pumilum* only a subspecies of *C. endivia* [113]. However, in this article they are considered the same species. But it should clearly said, that even though few literature resources consider *C. pumilum* and *C. intybus* the same species (or ssp.), we will not present the anticancer activity of *C. intybus* despite the fact that it is interesting [114].

Published studies did report so far, the active compound/s in C. pumilum which is responsible for the plant anticancer property. But it can be reasonably assumed that this activity can be easily linked with β-ionone and/or its derivatives. Leaves of the plant (edible part) were extracted with nonpolar solvent (1:2 n-pentanedichloromethane) and the extract was column chromatography, revealing the presence of β ionone and its 5,6-epoxy (Fig. 16, compounds 1,2, [115]). In later study, aerial parts were extracted with ethanol and analyzed with the same method, vielding three norisoprenoids that have close structures to β -ionone (Fig. 16, structures 3,4, [116]). Several studies have shown that β -ionone and some of its natural and synthetic analogues have anticancer activities [117].

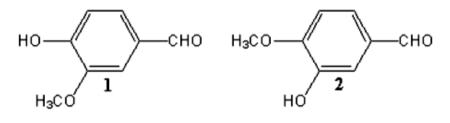


Fig. 15. Vanillin (1) and isovanillin (2)

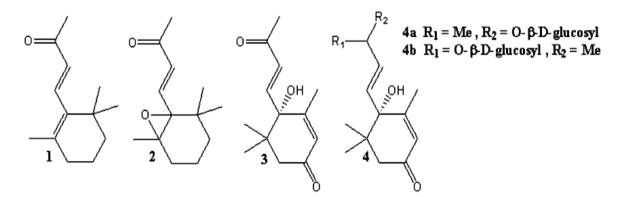


Fig. 16. Compounds with anticancer potency isolated from Cichorium pumilum [115,116]

Safety issues related to use of medicinal plants were always of a major concern, regardless with the nature of the use of these plants, but this concern is more intense when these plants are used for human nutrition [118]. Among the plants reviewed in this article for anticancer activity, a special attention was given to Arum palaestinum, Foeniculum vulgare, Majorana syriaca, Malva Svlvestris and Salvia fruticosa [119]. Interestingly, no safety concerns were mentioned regarding Cyclamen persicum. Authors of the previous article are local scholars that use wild C. persicum as food, and hence use the leaves, while authors from Europe, mostly use domesticated and cultivated varieties of this plant in gardens. So, Middle Eastern scholars raised no safety issues, but their European counterparts focused on the poisonous properties of the plant tubers, especially to pets and livestock [120,121]. Leaves of C. persicum are not only non-toxic, but they are also very nutritious: high phenolics and flavonoids content, strong antioxidant, with neoxanthin, violaxanthin, lutein, β -carotene, cis- β -carotene [40].

Seeds essential oil of *Foeniculum vulgare* was reported as active anticancer, and its major component is estragole (Fig. 4, [42]). This compound was found to have the same property as pure compound: against HepG2 [122], and against MCF-7 [123], cancer cells. The reported activity of the extract against HepG2 was IC₅₀ 48 μ g/mL, and the activity of the pure compound was 22 μ g/mL. An opposing trend was found for MCF-7: extract 50 μ g/mL and pure estragole 75

 $\mu g/mL.$ These results need more studies and explanations.

The search for anticancer natural products and their analogues and modifications, led scientists to explore nanoparticles that were prepared using plant materials [124]. Among these, silver nanoparticles (Ag-NPs) are very common, and one of them, with anticancer activity, was prepared using aqueous extract of *Malva sylvestris* as a reductant of silver ions [125]. These Ag-NPs had IC₅₀ (72 h, μ g/mL) of 36 against SK-OV-3 and 49 against OVCAR-3 cancer cells.

M. sylvestris as well as other Malva species, for high phenolics are known content. and thus, high antioxidant capacity [126]. Six of these phenolics are shown in Fig. 9 [72]. But one of the most important polyphenols of *M*. which be found sylvestris, can in high concentrations in the leaves (most consumed part) and has notable anticancer activity; was not mentioned so far: malvidin (Fig. 17, [127]).

A. Bhattacharya and his colleagues used exposed seeds powder to aqueous myrosinase that hydrolyzed sinigrin resulting allyl isothiocayante-rich powder, which consequently had anticancer activity [95]. This process (Fig. 18) was extensively studied by A. Tarar and his colleagues [128], with clear mechanismstudying orientation.

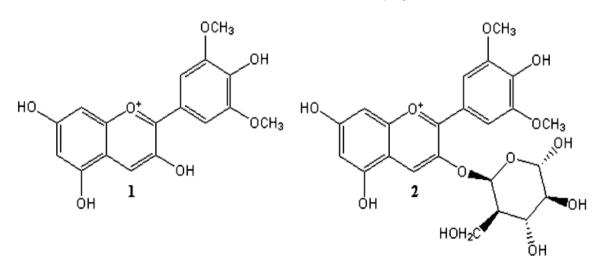


Fig. 17. Malvidin (aglycone, 1) and its glucoside (2) isolated from Malva sylvestris [127]

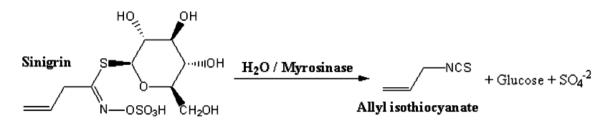


Fig. 18. Hydrolysis of sinigrin (Siapis alba) by myrosinase [128]

5. CONCLUSIONS

- Top ten edible plants (Deca-plants) in Eastern Mediterranean region are very healthy foods, due to their nutritional and medicinal properties.
- Anticancer activities of these plants were reasonably studied, but research should be expanded to understand the mechanism of action the underlies behind each activity.
- As far as the edible parts of these plants in the reviewed region, there are no safety issues related to the consumption of these plants.
- 4) Anticancer activities of these plants should be more studied for nonedible parts.
- 5) Synergistic effects of these plants as combinations of their products, as well as with other plants, pure natural products, and synthetic anticancer drugs; should be more extensively studied.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- 1. Hardy K. Paleomedicine and the evolutionary context of medicinal plant use. Rev Bras Farmacogn. 2021;31(1):1-15. DOI: 10.1007/s43450-020-00107-4, PMID 33071384.
- Petrovska BB. Historical review of medicinal plants' usage. Pharmacogn Rev. 2012;6(11):1-5. DOI: 10.4103/0973-7847.95849, PMID 22654398.
 Day J. Botany meets archaeology: people
- Day J. Botany meets archaeology: people and plants in the past. J Exp Bot. 2013;64(18):5805-16. DOI: 10.1093/jxb/ert068, PMID 23669575.

- Hunt KJ, Roberts C, Kirkpatrick C. Taking stock: A systematic review of archaeological evidence of cancers in human and early hominin remains. Int J Paleopathol. 2018;21:12-26. DOI: 10.1016/j.ijpp.2018.03.002, PMID 29773338.
- Metwaly AM, Ghoneim MM, Eissa IH, Elsehemy IA, Mostafa AE, Hegazy MM, et al. Traditional ancient Egyptian medicine: a review. Saudi J Biol Sci. 2021;28(10): 5823-32. DOI: 10.1016/j.sjbs.2021.06.044, PMID
- 34588897.
 Binder M, Roberts C, Spencer N, Antoine D, Cartwright C. On the antiquity of cancer: evidence for metastatic carcinoma in a young man from ancient Nubia (c. 1200 BC). PLOS ONE. 2014; 9(3):e90924. DOI: 10.1371/journal.pone.0090924, PMID 24637948.
- Karpozilos A, Pavlidis N. The treatment of cancer in Greek antiquity. Eur J Cancer. 2004;40(14):2033-40. DOI: 10.1016/j.ejca.2004.04.036, PMID 15341975.
 Atanasov AG, Zotchev SB, Dirsch VM.
- Atanasov AG, Zotchev SB, Dirsch VM. International natural product sciences taskforce, supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200-16. DOI: 10.1038/s41573-020-00114-z, PMID 33510482.
- Su XZ, Miller LH. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci China Life Sci. 2015;58(11):1175-9. DOI: 10.1007/s11427-015-4948-7, PMID 26481135.
 Describial L Naglested major source of
- Poorolajal J. Neglected major causes of death much deadlier than COVID-19. J Res Health Sci. 2020;20(2):e00478. DOI: 10.34172/jrhs.2020.13, PMID: 32814695.

- Kattner P, Zeiler K, Herbener VJ, Ferla-Brühl K, Kassubek R, Grunert M, et al. What Animal Cancers teach us about Human Biology. Theranostics. 2021; 11(14):682-6702. DOI: 10.7150/thno.56623, PMID 34093847.
- Chen S, Cao Z, Prettner K, Kuhn M, Yang J, Jiao L, et al. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncol. 2023;9(4):465-72. DOI: 10.1001/jamaoncol.2022.7826, PMID 36821107
- Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, et al. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules. 2022;27(17):5436.

DOI: 10.3390/molecules27175436, PMID 36080203.

- Nurgali K, Jagoe RT, Abalo R [editorial]. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245. DOI: 10.3389/fphar.2018.00245, PMID 29623040.
- Hassan HA, Edrees GM, El-Gamel EM, El-Sayed EA. Amelioration of cisplatininduced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage. Cytotechnology. 2014;66(3):419-29. DOI: 10.1007/s10616-013-9589-8, PMID 23761012.
- Adrian A, Syahputra RA, Lie S, Nugraha SE. Amelioration of cisplatin-induced liver injury by extract ethanol of Pometia pinnata. Open Access Maced J Med Sci. 2021;9(A):665-8. DOI: 10.3889/oamjms.2021.6785.
- Ali-Shtayeh MS, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: A classification of the healing potential of medicinal plants. J Ethnopharmacol. 2000;73(1-2):221-32.

DOI: 10.1016/s0378-8741(00)00316-0, PMID 11025160.

 Azaizeh H, Fulder S, Khalil K, Said O. Ethnobotanical knowledge of local Arab practitioners in the Middle Eastern region. Fitoterapia. 2003;74(1-2):98-108. DOI: 10.1016/s0367-326x(02)00285-x, PMID 12628401.

- Ali-Shtayeh MS, Jamous RM, Jamous RM. Herbal preparation use by patients suffering from cancer in Palestine. Complement Ther Clin Pract. 2011; 17(4):235-40. DOI: 10.1016/j.ctcp.2011.06.002, PMID 21982140.
- Ali-Shtayeh MS, Jamous RM, Al-Shafie JH. Elgharabah WA, Kherfan FA, Qarariah KH, et al. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): A comparative study. J. Ethnobiol. Ethnomed. 2008;4:13. DOI: 10.1186/1746-4269-4-13.
- Afifi-Yazar FU, Kasabri V, Abu-Dahab R. Medicinal plants from Jordan in the treatment of cancer: Traditional uses vs. in vitro and in vivo evaluations - part 1. Planta Med. 2011;77(11):1203-9. DOI: 10.1055/s-0030-1270832, PMID 21347997.
- 22. Jaradat NA, Shawahna R, Eid AM, Al-Ramahi R, Asma MK, Zaid AN. Herbal remedies use by breast cancer patients in the West Bank of Palestine. J Ethnopharmacol. 2016;178:1-8. DOI: 10.1016/j.jep.2015.11.050, PMID 26656536.
- 23. EI-Desouky SK, Kim KH, Ryu SY, Eweas AF, Gamal-Eldeen AM, Kim YK. A new pyrrole alkaloid isolated from Arum palaestinum Boiss. and its biological activities. Arch Pharm Res. 2007; 30(8):927-31.

DOI: 10.1007/BF02993958, PMID 17879743.

24. El-Desouky SK, Ryu SY, Kim YK. Piperazirum, a novel bioactive alkaloid from Arum palaestinum Boiss. Tetrahedron Lett. 2007;48(23):4015-7. DOI: 10.1016/i.tetlet.2007.04.032

 Husein AI, Áli-Shtayeh MS, Jondi WJ, Zatar NA, Abu-Reidah IM, Jamous RM. *In vitro* antioxidant and antitumor activities of six selected plants used in the Traditional Arabic Palestinian herbal medicine. Pharm Biol. 2014;52(10):1249-55. DOI: 10.3109/13880209.2014.886274, PMID 24863277.

- Farid MM, Hussein SR, Ibrahim LF, El Desouky MA, Elsayed AM, El Oqlah AA, et al. Cytotoxic activity and phytochemical analysis of Arum palaestinum Boiss. Asian Pac J Trop Biomed. 2015;5(11):944-7. DOI: 10.1016/j.apjtb.2015.07.019
- 27. Cole C, Burgoyne T, Lee A, Stehno-Bittel L, Zaid G. Arum Palaestinum with

isovanillin, linolenic acid and β -sitosterol inhibits prostate cancer spheroids and reduces the growth rate of prostate tumors in mice. BMC Complement Altern Med. 2015;15:264.

DOI: 10.1186/s12906-015-0774-5, PMID 26243305.

 Naseef H, Qadadha H, Abu Asfour Y, Sabri I, Al-Rimawi F, Abu-Qatouseh L, et al. Anticancer, antibacterial, and antifungal activities of Arum palaestinum plant extracts. World J Pharm Res. 2017;6: 31-43.

DOI: 10.20959/wjpr201715-10091

- 29. Hatmal M, Abderrahman S, Alsholi D. Determining the antitumor effects of differnt extracting methods of Arum palaestinum on different cancer cell lines by in vitro assay. Pharmacologyonline. 2017;1:28-45. Google Scholar.
- 30. Farid M, Hussein S, Trendafilova A, Marzouk M, El Oqlah A, Saker M. Phytochemical constituents of the butanol fraction of Arum palaestinum Boiss: cytotoxic and antiviral screening. J Mater Environ Sci. 2017;8:2585-91. Google Scholar.
- Vishwakarma V, New J, Kumar D, Snyder V, Arnold L, Nissen E, et al. Potent antitumor effects of a combination of three nutraceutical compounds. Sci Rep. 2018;8(1):12163.

DOI: 10.1038/s41598-018-29683-1, PMID 30111862.

- 32. Dwikat M, Jaradat N, Amer J, Rahim AA, Alqadi M, Murad H, et al. Antimicrobial, anticoagulant and anticancer effects of Arum palaestinum flowers extracts. Res Sq. 2021:1101438. DOI: 10.21203/rs.3.rs-1101438/v1
- Al-Akhras MA, Aljarrah K, Al-Khateeb H, Jaradat A, Al-Omari A, Al-Nasser A et al. Introducing Cichorium pumilum as a potential therapeutical agent against druginduced benign breast tumor in rats. Electromagn Biol Med. 2012;31(4):299-309.

DOI: 10.3109/15368378.2012.662193, PMID 22812448.

34. Alshehri A. Molecular and biochemical evaluation of anti-proliferative effect of (*Cichorium endivia* L.) phenolic extractson cancer cell line HCT-116. Acad J Cancer Res. 2012;5:53-60.

DOI: 10.5829/idosi.ajcr.2012.5.2.6654

35. Alshehri A, Elsayed HE. Molecular and biochemical evaluation of anti-proliferative

effect of (*Cichorium endivia*, L.) phenolic extracts on breast cancer cell line: MCF7. E3 J. Biotechnol. Pharm Res. 2012;3:74-82. Google Scholar.

- Hafez EE, Badr E, Mabrouk Y, El-Seehy M, Aggag S. Molecular genetic evaluation of *Cichorium endivia* L. as an anticancer agent against colorectal cancer. Int J Phytomed. 2016;8(4):551-7. DOI: 10.5138/09750185.1916
- El Hosry L, Di Giorgio C, Birer C, Habib J, Tueni M, Bun SS, et al. *In vitro* cytotoxic and anticlastogenic activities of saxifragifolin B and cyclamin isolated from Cyclamen persicum and Cyclamen libanoticum. Pharm Biol. 2014;52(9): 1134-40. DOI: 10.3109/13880209.2013.879600.

DOI: 10.3109/13880209.2013.879600, PMID 24649909.

- Khalilia WM. Cytotoxic activity of cyclamen persicum ethanolic extract on MCF-7, PC-3 and LNCaP cancer cell lines. J Natl Sci. 2020;10:42-6. Google Scholar.
- Özay C, Karagür ER, Akça H, Mammadov R. Cyclamen I. Inhibits nitric oxide production in LPS-stimulated NSCLC cells. Jordan J Pharm Sci. 2020;13(3). [ResearchGate].
- 40. Cornea-Cipcigan M, Bunea A, Bouari CM, Pamfil D, Páll E, Urcan AC, et al. Anthocyanins and carotenoids characterization in flowers and leaves of cyclamen genotypes linked with bioactivities using multivariate analysis techniques. Antioxidants (Basel). 2022; 11(6):1126.

DOI: 10.3390/antiox11061126, PMID 35740023.

- 41. Madhulika P, Sribhuwaneswari S, Karthikeyan D, Minz S, Sure P, Chandu AN, et al. In-vitro cytoprotection activity of Foeniculum vulgare and Helicteres isora in cultured human blood lymphocytes and antitumour activity against B16F10 melanoma cell line. Res J Pharm Technol. 2008;1:450-2. [ResearchGate].
- 42. Mohamad RH, El-Bastawesy AM, Abdel-Monem MG, Noor AM, Al-Mehdar HA, Sharawy SM, et al. Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (*Foeniculum vulgare*). J Med Food. 2011;14(9):986-1001. DOI: 10.1089/jmf.2008.0255, PMID 21812646.
- 43. Devika V, Mohandass S. Apoptotic induction of crude extract of Foeniculum

vulgare extracts on cervical cancer cell lines. Int J Curr Microbiol Appl Sci. 2014;3:657-61. [ResearchGate].

- Agustini K, Churiyah C, Wibowo AE. Cytotoxic and apoptotic Activity on Mcf7 Cell from ethanolic extract of *Trigonella foenum-Graecum* L. Aglaia elliptica blume. and Foeniculum vulgare mill. Indones J Cancer Chemoprev. 2015;6:78-83. DOI:10.14499/indonesianjcanchemoprev6i ss3pp78-83.
- 45. Oliveira PF, Alves JM, Damasceno JL, Oliveira RAM, Dias HJ, Crotti AEM, et al. Cytotoxicity screening of essential oils in cancer cell lines. Rev Bras Farmacogn. 2015;25(2):183-8.

DOI: 10.1016/j.bjp.2015.02.009

- Sharopov F, Valiev A, Satyal P, Gulmurodov I, Yusufi S, Setzer WN et al. Cytotoxicity of the essential oil of fennel (*Foeniculum vulgare*) from Tajikistan. Foods. 2017;6(9):73. DOI: 10.3390/foods6090073, PMID 28846628.
- 47. Akhbari M, Kord R, Jafari Nodooshan A, Hamedi S. Analysis and evaluation of the antimicrobial and anticancer activities of the essential oil isolated from Foeniculum vulgare from Hamedan, Iran. Nat Prod Res; 2018.

DOI: 10.1080/14786419.2017.1423310.

48. El-Garawani I, El Nabi SH, Nafie E, Almeldin S. Foeniculum vulgare and Pelargonium graveolens essential oil mixture triggers the cell cycle arrest and apoptosis in MCF-7 cells. Anti Cancer Agents Med Chem. 2019;19(9):1103-13. DOI:

10.2174/1573399815666190326115116, PMID 30914034.

 Ghasemian A, Al-Marzoqi AH, Mostafavi SKS, Alghanimi YK, Teimouri M. Chemical composition and antimicrobial and cytotoxic activities of Foeniculum vulgare Mill essential oils. J Gastrointest Cancer. 2020;51(1):260-6. DOI: 10.1007/s12029-019-00241-w, PMID

31069662.

 Megeressa M, Do V, Ahmed A. Cytotoxic activity of proteins extracted from fennel (*Foeniculum vulgare*) seeds against human cancer cell lines. FASEB J. 2020;34(S1):1. DOI: 10.1096/fasebj.2020.34.s1.06422

DOI: 10.1096/fasebj.2020.34.51.06422 Mehralikhani A Moyahedi M Larvpoor

 Mehralikhani A, Movahedi M, Larypoor M, Golab F. The role of fennel seed extract on the expression pattern of Dysadherin, E- cadherin and Ki67 in metastatic lung cancer in BALB/c female mice. (Herb. Med J. 2020;5:135-44.

DOI: 10.22087/herb%20med%20j.v5i4.832

- Najar B, Shortrede JE, Pistelli L, Buhagiar J. Chemical composition and in vitro cytotoxic screening of sixteen commercial essential oils on five cancer cell lines. Chem Biodivers. 2020;17(1):e1900478. DOI: 10.1002/cbdv.201900478, PMID 31713998.
- Ke W, Zhao X, Lu Z. Foeniculum vulgare seed extract induces apoptosis in lung cancer cells partly through the downregulation of Bcl-2. Biomed Pharmacother. 2021;135:111213. DOI: 10.1016/j.biopha.2020.111213, PMID 33395604.
- 54. Ke W, Wang H, Zhao X, Lu Z. Foeniculum vulgare seed extract exerts anti-cancer effects on hepatocellular carcinoma. Food Funct. 2021;12(4):1482-97. DOI: 10.1039/d0fo02243h, PMID 33502415.
- Mehralikhani A, Movahedi M, Larypoor M, Golab F. Evaluation of the Effect of Foeniculum vulgare on the Expression of E-cadherin, Dysadherin and Ki-67. Nutr Cancer. 2021;73(2):318-28.
 DOI: 10.1080/01635581.2020.1746365, PMID 32266842.
- 56. Kaveh R, Naghmachi M, Motaghi MM, Amirmahani F, Danaei M. Antibacterial and antioxidant activities and anticancer effects of fennel seeds (*Foeniculum vulgare*) against lung cancer cells. Proc Natl Acad Sci India Sect B Biol Sci. 2023;93(2):311-6.

DOI: 10.1007/s40011-022-01390-y.

57. Kaur B, Rolta R, Salaria D, Kumar B, Fadare OA, da Costa RA, et al. Silico investigation to explore anticancer potential of *Foeniculum vulgare* Mill. phytoconstituents for the management of human breast cancer. Molecules. 2022; 27:4077.

DOI: 10.3390/molecules27134077

- Lauricella M, Maggio A, Badalamenti N, Bruno M, D'Angelo GD, D'Anneo A. Essential oil of Foeniculum vulgare subsp. piperitum fruits exerts an antitumor effect in triple-negative breast cancer cells. Mol Med Rep. 2022;26(1):243. DOI: 10.3892/mmr.2022.12759, PMID 35642658.
- 59. Sadegh Roudbari L, Eslami M, Movahedi M, Golab F. Evaluation of the anti-

metastatic effect of Foeniculum vulgare on the protein expression of HSP 70 & 90 in Balb/c Mice with 4t1 Model of Breast Cancer. Asian Pac J Cancer Prev. 2023; 24(3):833-40.

DOI: 10.31557/APJCP.2023.24.3.833, PMID 36974535.

 Hago S, Lu T, Abdelgadir AA, Yassin S, Ahmed EM, Xu H. Phytochemical constituents and in-vitro anticancer activity of some medicinal plant extracts against MCF-7 and MDA-MB-435 human breast cancer cell lines. Nat Prod Res. 2023; 7(3):2506-15.

DOI: 10.26538/tjnpr/v7i3.6

- Abu-Lafi S, Rayan B, Kadan S, Abu-Lafi M, 61. Ravan A. Anticancer activity and phytochemical composition wild of tournefortii. Gundelia Oncol Lett. 2019:17(1):713-7. DOI: 10.3892/ol.2018.9602. PMID 30655821.
- Özaltun B, Daştan T. Evaluation of antimicrobial Activities and *In vitro* cytotoxic Activities of Gundelia tournefortii L. Plant extracts. Med J. 2019;26(4):436-42. doi: 10.17343/sdutfd.534049.
- Saraç H, Demirbaş A, Durna Daştan S, Ataş M, Çevik Ö, Eruygur N. Evaluation of nutrients and Biological Activities of Kenger (*Gundellia tournefortii* L.) Seeds Cultivated in Sivas Province. Turk J Agric Food Sci Technol. 2019;7: 52-8.

DOI: 10.24925/turjaf.v7isp2.52-58.3126

- 64. Amer J, Jaradat N, Aburas H, Hattab S, Abdallah S. Gundelia Tournefortii extracts inhibit progressions of Hepatocellular Carcinoma in mice model through decrease in p53/Akt/PI3K signaling pathway. Res Sq. 2020;2020. DOI: 10.21203/rs.3.rs-97723/v1
- Amer J, Salhab A, Jaradat N, Abdallah S, Aburas H, Hattab S, et al. Gundelia tournefortii inhibits hepatocellular carcinoma progression by lowering gene expression of the cell cycle and hepatocyte proliferation in immunodeficient mice. Biomed Pharmacother. 2022;156: 113885.
 DOI: 10.1016/j biopha.2022.113885.

DOI: 10.1016/j.biopha.2022.113885, PMID 36265306.

66. Al-Kalaldeh JZ, Abu-Dahab R, Afifi FU. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutr Res. 2010:30(4):271-8.

DOI: 10.1016/j.nutres.2010.04.001, PMID 20534330.

 Ayesh BM, Abed AA, Faris DM. In vitro inhibition of human leukemia THP-1 cells by Origanum syriacum L. and Thymus vulgaris L. extracts. BMC Res Notes. 2014;7:612.
 DOI: 10.1186/1756-0500-7-612 PMID

DOI: 10.1186/1756-0500-7-612, PMID 25194985.

- Abd El-Moneim MR, Esawy SH, El-Hadidy EM, Abdel-Salam MA. Antioxidant content and cytotoxicity of Origanum syriacum L. Adv Food Sci. 2014;36:58-64. Google Scholar.
- Aldisi SS, Jaganjac M, Eid AH, Goktepe I. Evaluation of apoptotic, antiproliferative, and Antimigratory Activity of Origanum syriacum against Metastatic colon Cancer Cells. J Herbs Spices Med Plants. 2019;25(3):202-17.

DOI: 10.1080/10496475.2019.1587674

- AlKahlout A, Fardoun M, Mesmar J, Abdallah R, Badran A, Nasser SA, et al. Origanum syriacum L. Attenuates the Malignant Phenotype of MDA-MB231 Breast Cancer Cells. Front Oncol. 2022; 12:922196. DOI: 10.3389/fonc.2022.922196, PMID 35847867.
- Mesmar J, Abdallah R, Hamade K, Baydoun S, Al-Thani N, Shaito A, et al. Ethanolic extract of Origanum syriacum L. leaves exhibits potent antibreast cancer potential and robust antioxidant properties. Front Pharmacol. 2022;13:994025. DOI: 10.3389/fphar.2022.994025, PMID 36299882.
- Daniela A, Pichichero E, Canuti L, Cicconi R, Karou D, D'Arcangelo G, et al. Identification of phenolic compounds from medicinal and melliferous plants and their cytotoxic activity in cancer cells. Caryologia. 2007;60(1-2):90-5.
 DOI: 10.1080/00087114.2007.10589552

DOI: 10.1080/00087114.2007.10589552

- 73. Delfine S, Marrelli M, Conforti F, Formisano C, Rigano D, Menichini F, et al. Variation of Malva sylvestris essential oil yield, chemical composition and biological activity in response to different environments across Southern Italy. Ind Crops Prod. 2017;98:29-37. DOI: 10.1016/j.indcrop.2017.01.016
- 74. Bozkurt-Guzel C, Serbetci T, Kultur S. Cytotoxic activities of some Turkish medicinal plants against HeLa cells *In*

vitro. Indian J Trad Knowl. 2018;17:43-9. Google Scholar.

- 75. Rayssan R, Shawkat MS. Cytotoxicity assessment of Malva sylvestris crude extract on melanoma and lymphoma cell lines. J Pharm Sci Res. 2019;11:70-4. Google Scholar.
- Boutennoun HM, Boussoufe L, Kebieche M, Al-Qaoud K, Madani K. Phenolics content, antiproliferative and antioxidant activities of Algerian Malva sylvestris. Eur J Biol Res. 2019;9:10-9. DOI: 10.5281/zenodo.2545914
- Shehab NG, Abu-Gharbieh E. Constituents and biological activity of the essential oil and the aqueous extract of *Micromeria fruticosa* (L.) Druce subsp. serpyllifolia. Pak J Pharm Sci. 2012;25(3):687-92. [ResearchGate]. PMID 22713962.
- Koc K, Ozdemir O, Kizilkaya FO, Sengul M, Turkez H. Cytotoxic activity of the aqueous extract of *Micromeria fruticosa* (L.) Druce subsp. serpyllifolia on human U-87 MG cell lines. Arch Biol Sci (Beogr). 2017;69(3):449-53. DOI: 10.2298/ABS160504119K
- Figure 10:2263/ABO 10:0004 Hort
 Figure 10:22644 Hort
 Figure 10:2264 Hort

(Basel). 2020;13(6):115. DOI: 10.3390/ph13060115, PMID 32503209.

 Abu-Gharbieh E, El-Huneidi W, Shehab NG, Bajbouj K, Vinod A, El-Serafi A, et al. Anti-tumor activity of the ethanolic extract of Micromeria fruticosa on human breast and colon cancer cells. FASEB J. 2020;34(S1):1.

DOI: 10.1096/fasebj.2020.34.s1.03880.

 Al-Hamwi M, Aboul-Ela M, El-Lakany A, Nasreddine S. Anticancer Activity of Micromeria fruticosa and Teucrium polium Growing in Lebanon. Pharmacogn J. 2021;13(1):103-9.

DOI: 10.5530/pj.2021.13.15.

- 82. Al-Nuri M, Abu-Reidah IM, Alhajeh AA, Omar G, Adwan G, Warad I. GC–MSbased metabolites profiling, *In vitro* antioxidant, anticancer, and antimicrobial properties of different solvent extracts from the botanical parts of *Micromeria fruticose* (Lamiaceae). Processes. 2022;10(5):1016. DOI: 10.3390/pr10051016
- 83. Itani WS, El-Banna SH, Hassan SB, Larsson RL, Bazarbachi A, Gali-Muhtasib

HU. Anti colon cancer components from Lebanese sage (Salvia libanotica) essential oil: Mechanistic basis. Cancer Biol Ther. 2008;7(11):1765-73. DOI: 10.4161/cbt.7.11.6740, PMID

18787402.

- 84. Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C, Fruticosa S. Salvia fruticosa, Salvia officinalis, and rosmarinic acid Induce Apoptosis and Inhibit Proliferation of Human Colorectal Cell Lines: the Role in MAPK/ERK Pathway. Nutr Cancer. 2009;61(4):564-71. DOI: 10.1080/01635580802710733, PMID 19838929.
- Ramos AA, Azqueta A, Pereira-Wilson C, Collins AR. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J Agric Food Chem. 2010;58(12):7465-71.
- DOI: 10.1021/jf100082p, PMID 20486687.
 86. Atmaca H, Bozkurt E. Apoptotic and antiangiogenic effects of Salvia triloba extract in prostate cancer cell lines. Tumour Biol. 2016;37(3):3639-46.
 DOI: 10.1007/s13277-015-4208-2, PMID

DOI: 10.1007/s13277-015-4208-2, PMID 26459311.

- Tundis R, lacopetta D, Sinicropi MS, 87. Bonesi M, Leporini M, Passalacqua NG, et al. Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae). Food Toxicol. Chem 2017;106(A):155-64. 10.1016/j.fct.2017.05.040, DOI: PMID 28552787.
- Eltawaty SI, Yagoub SO, Shouman SA, 88. Ahmed A, Omer FA. Anticancer effects of methanol extract of Libvan Salvia fruticosa Mill. on Mcf7, T47D and (Mda-Mb-468) breast cells lines. Eur J Pharm Res. 2020;7:165-9. [ResearchGate].
- Kyriakou S, Tragkola V, Plioukas M, Anestopoulos I, Chatzopoulou PS, Sarrou E, et al. Chemical and biological characterization of the anticancer potency of salvia fruticosa in a model of human malignant melanoma. Plants (Basel). 2021;10(11):2472. DOI: 10.3390/plants10112472, PMID

34834834. Hijazi MA Hijazi K Bouhadir K Eatfat 7

90. Hijazi MA, Hijazi K, Bouhadir K, Fatfat Z, Aboul-Ela M, Gali-Muhtasib H, et al. Anticancer activity of abietane diterpenoids from Salvia libanoticum grown in Lebanon. Phcog Mag. 2021;17(73):127-33. DOI: 10.4103/pm.pm 265 20

- Saleh NAM, El-bary RBEA, Mpingirika EZ, Essa HL, El-Sayed MMH, Sherbetjian MS, et al. Evaluating the potential anticancer properties of Salvia triloba in humanosteosarcoma U2OS cell line and ovarian adenocarcinoma SKOV3 cell line. Appl Sci. 2022;12(22):11545.
 - DOI: 10.3390/app122211545
- 92. Eskin NA, Raju J, Bird RP. Novel mucilage fraction of *Sinapis alba* L. (mustard) reduces azoxymethane-induced colonic aberrant crypt foci formation in F344 and Zucker obese rats. Phytomedicine. 2007;14(7-8):479-85. DOI: 10.1016/j.phymed.2006.09.016,

DOI: 10.1016/j.phymed.2006.09.016, PMID 17188481.

- 93. Yuan H, Zhu M, Guo W, Jin L, Chen W, Brunk UT et al. Mustard seeds (*Sinapis A*. Linn) attenuate azoxymethane-induced colon carcinogenesis. Redox Rep. 2011;16(1):38-44. DOI:10.1179/174329211X1296821931091 8, PMID 21605497.
- 94. Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, et al. Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of *Sinapis nigra* L. and Sinapis alba L. extracts. Molecules. 2018;23(11):3004.

DOI: 10.3390/molecules23113004, PMID 30453590.

Bhattacharya A, Li Y, Wade KL, Paonessa JD, Fahey JW, Zhang Y. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion. Carcinogenesis. 2010;31(12): 2105-10.
 DOI: 10.1093/carcin/bgq202, PMID

20889681.
96. Wang L, Li R, Song C, Chen Y, Long H, Yang L. Small-Molecule Anti-Cancer Drugs from 2016 to 2020: synthesis and Clinical

- from 2016 to 2020: synthesis and Clinical Application. Nat Prod Commun. 2021;16(9). DOI: 10.1177/1934578X211040326
- 97. Albano D, Benenati M, Bruno A, Bruno F, Calandri M, Caruso D, et al. Imaging side effects and complications of chemotherapy and radiation therapy: A pictorial review from head to toe. Insights Imaging. 2021;12(1):76. DOI: 10.1186/s13244-021-01017-2, PMID

DOI: 10.1186/s13244-021-01017-2, PMID 34114094.

- Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018;47(19):6645-53.
 DOI: 10.1039/c8dt00838h, PMID 29632935.
- Shaik BB, Katari NK, Jonnalagadda SB. Role of natural products in developing novel anticancer agents: A perspective. Chem Biodivers. 2022;19(11):e202200535. DOI: 10.1002/cbdv.202200535, PMID 36347633.
- Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, et al. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules. 2019;9(11):679. DOI: 10.3390/biom9110679, PMID 31683894.
- 101. Mondal A, Gandhi A, Fimognari C, Atanasov AG, Bishayee A. Alkaloids for cancer prevention and therapy: current progress and future perspectives. Eur J Pharmacol. 2019;858:172472. DOI: 10.1016/j.ejphar.2019.172472, PMID 31228447.
- 102. Jalali A, Dabaghian F, Zarshenas MM. Alkaloids of Peganum harmala: Anticancer Biomarkers with Promising Outcomes. Curr Pharm Des. 2021;27(2):185-96. DOI: 10.2174/13816128266666201125103941, PMID 33238864.
- 103. Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (*Curcuma longa*). Cancer Lett. 1985;29(2):197-202. DOI: 10.1016/0304-3835(85)90159-4, PMID 4075289.
- 104. Ding Y, He J, Huang J, Yu T, Shi X, Zhang T, et al. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol. 2019;54(6):1995-2004. DOI: 10.3892/ijo.2019.4777, PMID 31081045.
- Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033.
 DOI: 10.3390/ijms20051033, PMID 30818786.
- 106. Bhosale PB, Ha SE, Vetrivel P, Kim HH, Kim SM, Kim GS. Functions of polyphenols and its anticancer properties in biomedical research: a narrative review. Transl Cancer Res. 2020;9(12):7619-31.

DOI: 10.21037/tcr-20-2359, PMID 35117361.

107. Naz H, Tarique M, Khan P, Luqman S, Ahamad S, Islam A, et al. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol Cell Biochem. 2018;438(1-2):35-45.

DOI: 10.1007/s11010-017-3111-0, PMID 28744811.

108. Abu-Reidah IM, Ali-Shtayeh MS, Jamous RM, Arráez-Román D, Segura-Carretero A. Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography–tandem mass spectrometry. Food Res Int. 2015;70:74-86.

DOI: 10.1016/j.foodres.2015.01.023

109. Maree A, Hashavya S, Gross I, Asaf Y, Bentur Y. Arum palaestinum poisoning: Revenge of the witch. Eur J Pediatr. 2020;179(10):1553-7. DOI: 10.1007/s00431-020-03648-x, PMID

32296984.

110. El-Taher AM, Elzilal HA, Abd El-Raouf HS, Mady E, Alshallash KS, Alnefaie RM, et al. Characterization some Cichorium of Taxa Grown under Mediterranean climate using morphological traits and molecular markers. Plants (Basel). 2023;12(2):388.

DOI: 10.3390/plants12020388, PMID 36679101.

- 111. Flora of Israel and adjacent areas [Website].
- 112. Hortipedia [Website].
- 113. National Center for Biotechnology Information, NCBI [Website].
- 114. Al-Snafi AE. Medical importance of Cichorium intybus – a review. IOSR J Pharm. 2016;6:41-56. [ResearchGate].
- 115. Goetz-Schmidt EM, Schreier P. Neutral volatiles from blended endive (*Cichorium endivia*, L.) [*Cichorium endivia*, L]. J Agric Food Chem. 1986;34(2):212-5. DOI: 10.1021/jf00068a014
- 116. Kisiel W, Michalska K, Szneler E. Norisoprenoids from aerial parts of *Cichorium pumilum*. Biochem Syst Ecol. 2004;32(3):343-6.
 DOI: 10.1016/j.bso.2003.08.005
 - DOI: 10.1016/j.bse.2003.08.005
- 117. Ansari M, Emami S. β-ionone and its analogs as promising anticancer agents. Eur J Med Chem. 2016;123:141-54. DOI: 10.1016/j.ejmech.2016.07.037, PMID 27474930.

118. Guil-Guerrero JL. The safety of edible wild plants: Fuller discussion may be needed. J Food Compost Anal. 2014; 35(1):18-20.

DOI: 10.1016/j.jfca.2014.05.002

119. Ali-Shtayeh MS, Jamous RM, Salameh NM, Jamous RM, Hamadeh AM. Complementary and alternative medicine use among cancer patients in Palestine with special reference to safety-related concerns. J Ethnopharmacol. 2016;187: 104-22.

DOI: 10.1016/j.jep.2016.04.038, PMID 27125594.

- Bertero A, Fossati P, Caloni F. Indoor companion animal poisoning by plants in Europe. Front Vet Sci. 2020;7:487.
 DOI: 10.3389/fvets.2020.00487, PMID 32851047.
- 121. Siroka Z. Toxicity of house plants to pet animals. Toxins. 2023;15(5):346.DOI: 10.3390/toxins15050346, PMID 37235380.
- 122. Villarini M, Pagiotti R, Dominici L, Fatigoni C, Vannini S, Levorato S, et al. Investigation of the cytotoxic, genotoxic, and apoptosis-inducing effects of estragole isolated from fennel (*Foeniculum vulgare*). J Nat Prod. 2014;77(4):773-8. DOI: 10.1021/np400653p, PMID 24617303.
- 123. Lashkari A, Najafi F, Kavoosi G, Niazi S. Evaluating the *In vitro* anti-cancer potential of estragole from the essential oil of *Agastache foeniculum* [Pursh.] Kuntze. Biocatal Agric Biotechnol. 2020;27:101727.

DOI: 10.1016/j.bcab.2020.101727

- 124. Ion D, Niculescu AG, Păduraru DN, Andronic O, Muşat F, Grumezescu AM, et al. An up-to-date review of natural nanoparticles for cancer management. Pharmaceutics. 2021;14(1):18. DOI: 10.3390/pharmaceutics14010018, PMID 35056915.
- 125. Abbasi Sh, İlhan A, Jabbari H, Javidzade P, Safari M, Abolhasani Zadeh F. Cytotoxicity evaluation of synthesized silver nanoparticles by a green method against ovarian cancer cell lines. Nanomed Res J. 2022;7:156-64. DOI: 10.22034/nmrj.2022.02.005
- 126. Shadid KA, Shakya AK, Naik RR, Jaradat N, Farah HS, Shalan N, et al. Phenolic content and antioxidant and antimicrobial activities of *Malva sylvestris* L., *Malva*

oxyloba boiss., Malva parviflora L., and Malva aegyptia L. leaves extract. J Chem. 2021;2021:1-10.

DOI: 10.1155/2021/8867400

127. Xu H, Zhang J, Huang H, Liu L, Sun Y. Malvidin induced anticancer activity in human colorectal HCT-116 cancer cells involves apoptosis, G2/M cell cycle arrest and upregulation of p21WAFI. Int J Clin Exp Med. 2018;11:1734-41. Google Scholar.

128. Tarar A, Alyami EM, Peng CA. Eradication of myrosinase-tethered cancer cells by allyl isothiocyanate derived from enzymatic hydrolysis of sinigrin. Pharmaceutics. 2022;14(1):144. DOI: 10.3390/pharmaceutics14010144, PMID 35057038.

© 2023 Azab; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/102095