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ABSTRACT 
 

Two recent attempts to model the long-term trend in mean density of Antarctic krill in the 
southwestern sector of the Atlantic using the KRILLBASE dataset using different statistical methods 
as well as inclusion versus exclusion of data from “non-scientific” nets have resulted in disparate 
conclusions. The approach that used a linear mixed model (LMM) fitted to the log of mean density, 
after standardisation was applied to individual net hauls and with means calculated for 12 spatial 
strata by years between 1976 and 2016, gave a highly statistically significant linear “regional” 
decline north of 60

o
S and, to a lesser degree, south of this latitude. The alternative approach that 

used a ”hurdle” model fitted to the individual net haul data, excluded regional stratification, and 
excluded non-scientific nets failed to detect an overall significant decline. The method of modelling 
log transformed means was reappraised and corrected by applying a meta-analytic LMM approach. 
Additionally, nonlinear smooths in year by region and a smooth in mean “climatological temperature” 
were included in the LMM. This model showed on average a mostly consistent decline north of 
60

o
S, however, neither trend was significantly different from a no-trend prediction with the trend 

north of 60
o
S highly uncertain. Uncertainty of predictions resulted in only weak power to detect a 

substantial decline of the order of 70% between 1985 and 2005. These model-based inferences 
neither strongly support nor reject a general hypothesis that there has been a dramatic decline in 
density of Antarctic krill in the Southwest Atlantic over this period.  

 

 

Method Article 
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1. INTRODUCTION 
 
Availability of long-term (i.e. decadal) datasets of 
abundance estimates and subsequent estimation 
of year trends for the key “primary producer” of 
Antarctic krill (Euphausia superba) are important 
for understanding and quantifying recent relative 
to past productivity of Antarctic and sub-Antarctic 
ecosystems [1-3]. Important requirements for 
decadal and regional-scale surveys to allow 
unbiased estimates of year trends in abundance 
to be obtained are that (i) the gear and its 
method of application used to capture krill is 
efficient and that efficiency is constant over 
space and time using, ideally, a standardised 
gear/method (i.e. a single, efficient net type, haul 
method, time of day/night) and (ii) the total area 
that circumscribes the habitat is sampled 
comprehensively and representatively using the 
same survey design and sampling period (i.e. 
same austral summer months) each and every 
year of the survey. Such an ideal, multi-decadal 
dataset with common survey design and 
sampling methods which allows a finite-
population, classical (e.g. [4]) design-based 
estimate (i.e. employing design-determined 
sample unit selection probabilities, [5]) of annual 
region-wide krill density is not available. What is 
available is KRILLBASE [6] which is a 
conglomeration of multi-national, multi-year 
surveys carried out mostly in the southwestern 
Atlantic ocean sector of the sub-Antarctic and 
Antarctic marine environments. As in Atkinson et 
al. [3], even when considering the modern series 
(i.e. 1976 to 2016, inclusive), a considerable 
number of different net types with varying 
efficiencies for in situ sampling of krill were used 
across surveys. In addition, there was no single, 
spatially-optimised sampling design for the 
surveys applied over these years. 
 

As a result, empirical model-based predictions 
using model selection to determine the model 
that best approximates the data-generation 
process of the infinite population weighted 
among alternative models towards parsimony [5] 
is the only way to attempt to extract valid 
estimates of region-wide and decadal trends and 
their uncertainty from datasets such as 
KRILLBASE. In the absence of (i) and (ii) above, 
and employing this model-based approach, data 
standardisation for catch efficiency using 
empirical models [2,3,6], and adjustment for any 
imbalance in spatial strata-by-year sampling 

intensity, using random effects for large-scale 
spatial strata (Atkinson et al. [1,3]), or for net haul 
locations or “stations” (Cox et al. [2]) must be 
employed. This model-based approach that 
includes spatial strata as random effects and 
holds “nuisance” covariates or factors constant in 
predictions [2] is commonly used to infer year 
trends in stock status using commercial fishing-
generated catch-per-unit-effort data [7,8]. 
 
These recent efforts by Cox et al. [2] and 
Atkinson et al. [3] to model the long-term year 
trend in mean density of Antarctic krill in the 
southwestern sector of the Atlantic using the 
KRILLBASE dataset but with different statistical 
methods that each apply empirical model-based 
strategies to deal with the issues described by (i) 
and (ii) above have resulted in disparate 
conclusions. The approach of Atkinson et al. [3] 
used a linear mixed model (LMM) fitted to the log 
of mean density, after prior (i.e. external) 
standardisation based on empirical models using 
variables of depth range of haul, time of day, day 
of year, and net mouth area of sampling 
(Atkinson et al. [6]), was applied to individual net 
hauls and then summarised using the above 
mean calculated for each of 12 spatial strata by 
years between 1976 and 2016. This approach 
gave a highly statistically significant linear 
decline for the region defined as spatial cells 
north of 60

o
S and to a lesser degree for the 

region defined as south of this latitude. Note that 
it is difficult to discern from their Table 1 what the 
significance of the linear decline for the southern 
region is because the only information they 
present is the difference in regression slope of 
this region from the northern region and its 
statistical significance which indicated a highly 
statistically significant difference. The alternative 
approach of Cox et al. [2] used a “hurdle” model 
(i.e. a sub-model for presence/absence and a 
conditional sub-model for the log transform of 
non-zero haul densities which are then combined 
to give a single predictive model) fitted to the 
individual net haul data with the non-zero density 
response variable using the basic 
standardisation of number caught per square 
metre of the net mouth area, as given in 
KRILLBASE. They excluded data for “non-
scientific” nets, and directly fitted the above 
standardisation variables (excluding net mouth 
area) and other covariates of depth of seabed 
and “climatological temperature” [6] within the 
hurdle model components. Cox et al. [2] failed to 
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detect an overall (i.e. no regional stratification 
used) statistically significant decline. 
 

In this attempt to resolve the conflict [9,10] the 
method of modelling log transformed 
standardised means [1,3] was reappraised using 
statistical theory and corrected by applying a 
meta-analytic LMM approach in order to more 
adequately model the error structure for this 
response variable which is a log transform of a 
sample statistic at the spatial strata by year level 
and is therefore subject to sampling error. This is 
in contrast to modelling the response variable 
measured at the lowest sampling level (i.e. 
individual net haul) typically applied in LMMs 
(e.g. [2]). Additionally, assumptions of linearity in 
year trends by region were investigated using 
low-rank thin plate regression splines [11]. 
Further, a covariate, or predictor variable of 
mean “climatological temperature”, that was 
determined by Cox et al. [2] to be a highly 
significant predictor of krill density that also has a 
biological interpretation, was investigated as an 
additional term in the LMM and standardised 
when forming predictions of year trend. Outputs 
from the fit of the LMM fitted using Markov Chain 
Monte Carlo (MCMC) sampling included year 
trends and their uncertainty and predicted 
percentage decline between 1985 and 2005 (as 
used by Atkinson et al. [3]), their statistical 
significance, and power to detect a nominal 
decline of 70%. Comparison, to versions of the 
LMM that do not consider sample statistic error 
as used by Atkinson et al. [3] and corresponding 
outputs are also given. The description of the 
software code using R [12] and contributed 
libraries (MCMCglmm,lme4,nlme) and resultant 
output are given in the Supplementary Material. 
 

2. STATISTICAL METHODS 
 

A corrected version of the LMM for mean 
standardised krill density of Atkinson et al. (2019) 
is given by 

 

 10 0 1 ( ) 2

3 ( )

log ij ij ij

ij ij i i ij j ij

S

S S

   

    

   

   

I

I
         (2.1) 

 
and 
 

   10 10log logij ij ijy e                     (2.2) 

 

/
ijn

ij ijr ijr
y Y n  

where ij is the unknown true mean 

standardised density for spatial cell i and year j 
observed for that cell (i.e. that obtained if a 
hypothetical complete census of the spatial cell 
could be carried out for that year) and assumed 

to be the expected value of ijy  where ijy  is the 

corresponding observed sample mean of 
individual haul sample standardised densities 
(i.e. "Standardised krill under 1m2 " in 

KRILLBASE [3,6]), ijrY , from ijn  net hauls, I  as 

an indicator matrix with i x j rows and a single 
column taking the value 1 if the spatial cell j is 
below 60

o
S. Further, the error model is specified 

firstly using the spatial grid in the LMM using 
separate random effects of 'slopes and 
intercepts' model that allows year trend to vary 
across the population of grid cells. The slopes 
and intercept random effects were based on grid 
cell which gives the error term for the i

th
 cell of 

i i ijS   where ijS is the centred numeric (i.e. 

integer) value of year in which the (i,j)
th
 survey 

(i.e. reassigning survey identifiers to unique 
identifiers within years for notational simplicity) 

was carried out and , (0, )i i MVN    which 

denotes random effects as having a multivariate 
Gaussian distribution with expected value vector 
of zeros and covariance matrix with variances 

given by    2 2,diag      and covariance by 

12 12     . Other components of the error 

model are a random year effect (additional to 
Atkinson et al. [3] but included in Atkinson et al. 

[1]), 
2(0, )j N   , and a random lack-of-fit 

error, 
2(0, )ij N   which represents departure 

from fixed-effect trend in ij
after accounting for 

the above error terms. Finally, sampling error is 

specified by 
2(0, / )ij ij ije N n . In classical 

regression analysis [13] ije is denoted “pure 

error” as distinguished from lack-of-fit error or as 
“measurement error” in linear mixed models [14]. 

Note that the usual sample estimate of each 
2

ij  

is available independently of the fit of the LMM 
so that these estimates can be input as a fixed 
(i.e assumed known) variance component in the 

LMM fit. The above variance for the ije  assumes 
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that the ijrY  within each spatial cell by year 

combination are independently distributed as 

Gaussian, however, if they have size ijn x ijn  

covariance matrix ijΣ with possibly non-constant 

diagonal elements and or non-zero off-diagonal 

elements then 
2(0, / )T

ij ij ij ij ije N n1 Σ 1  where 

ij1  is a length ijn column vector of 1’s. For the 

following the constant variance and 
independence assumptions are retained but 
reference to this more complex error variance 
model is required. 
 

A different R-software function to lme in the nlme 
R-library [15] used by Atkinson et al. [3] was 
used here. The MCMCglmm function [16] in the 
library of the same name was used since the 
error model defined in (1) and (2) cannot be fitted 
using either lme or lmer from the lme4 R-library 
[17]. Note that by treating the density data for 
each year and spatial cell combination as a 
separate “experiment”, then the above LMM is of 
general structure typically applied in meta-
analyses [16]. Atkinson et al. [3] in the 
description of their fitted LMM, which does not 
use mathematical notation but simply uses 
software terminology, do not distinguish between 

lack-of-fit error, ij (also denoted between-study 

random intercepts in meta-analytic LMMs), and 

sampling error, ije , variance components. Their 

LMM fitted to standardised sample mean krill 

density assumes in effect that all the ije are zero 

combined with a definition of residual error as 
2(0, / )ij ijN n   where  is a specified 

parameter they determined to take the value 2 
from model screening using the Akaike 

information criterion and 2  is a model-

estimated variance component assumed 
constant across spatial cells and years. 

However, given equation (2.1), the ije are not all 

zero but are distributed as
2(0, / )ijN n  where 

the value of   is known a priori from basic 

sampling theory, assuming constant variance 
and independence across stations described 
above, as taking the value 1 and further 

2(0, ).ij N    Atkinson et al. [3] state in the 

description of selection of “appropriate” variance 

functions for their LMM that “Model selection also 
identified appropriate representations of variance 
as a function of the reciprocal of the number of 
stations (from candidate fixed, power and 
exponential functions), to ameliorate the effects 
of inhomogeneity of variance”. However, 
variance functions modelling inhomogeneity of 
variance typically consider variance as a function 
of the mean, as modelled using quasi-likelihood 
estimation [18], or factor-specific variances (see 
the LMM below), or genuine covariates (i.e as 
lme was designed to model using the function 
varFunc; see [15]) but never as a power function 
of sample sizes other than the trivial case of a 
known power of 1 as in the above meta-analytic 
approach. Even under the more complex 

variance structure of
2(0, / )T

ij ij ij ij ije N n1 Σ 1 , 

where ijΣ  is, for example, a function of the 

distance between pairs of stations and unknown 
autocorrelation parameters, the variance cannot 

be simply expressed as 
2 / ijn  for any given 

value of  . The other error term in equation (2.1) 

that can be inferred as not included in the LMM 
used by Atkinson et al. [3] to give the results for 

krill density in their Table 1, is the term j  which 

was used as a random effect term in the LMM 
fitted in Atkinson et al. [1]. This is because such 
an error term cannot be included in an lme fit in 

addition to the term i i ijS   since lme requires 

a strictly nested error structure where year as a 
continuous variable is nested with spatial cell. 
The random coefficients regression (RCR) 
approach (Model 1), given by equations (2.1) and 
(2.2), models the correlation structure in the 

model residuals ij i i ij ijS       where 

   2 2cov ,ij ik ij ik ij ikS S S S             

(Equation (2.4) in [19] ; Equation (4.6.9) in [14] 

for which 
 is assumed to be zero) can be 

replaced by a 1
st
 order continuous-

autoregressive process (CAR1) also fitted using 
lme (Model 2) where 

  , 12

, 1cov , ij i jS S

ij i j i
     


    (see Equation 

(5.2.7) in [14] where   is given here by 

 exp    ) . Model 2 was compared to the 

RCR Model 1 and both models fitted using the 

weighting of ijn
 with   fixed at 1. The RCR 
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model was also fitted using lmer, from the lme4 
library, which allowed the extra random effect 

term j  to be included along with the same 

weighting as the lme fit (Model 3) and again 

weighting by ijn
 with   fixed at 1 was applied. 

Candy et al. [20] considered the case of a CAR1 

model with a common variance (i.e. 
2 2

ij  ) 

for measurement errors due to sampling (i.e. the 

ije above) where these errors were not 

identifiable given the presence of “lack-of-fit” 
errors combined with a CAR1 error structure. 
They used lme and gave an approximate method 
to deal with this lack of identifiability. This 
approximate method corresponds to that used in 
the lme fit for Model (2). However, this 
approximation was not required in the meta-
analytic approach fitted using MCMCglmm due to 

the availability of known estimates of 
2

ij  and 

known fixed values of ijn  combined with a RCR 

error model (see below). However, even in this 
case an approximation due to the log10 

transformation of the means, ijy , was required to 

estimate 
2ˆ
ij  based on a first-order Taylor series 

expansion given by  
2

2 2

( )
ˆ ˆ log 10ij y ij e ijy 



   
 

where 
     

21
2ˆ 1

ijn

ij ijr ijy ij r
n Y y



    (i.e. the 

usual sample estimate). 
 

Model 1 and Model 3 were also fitted using 
MCMCglmm giving Model 4 and Model 5, 
respectively, where these last two model fits 
included the known estimates of sample error 

variances 
2ˆ /ij ijn  as fixed variance components 

in a meta-analytic approach. Additionally, for 
Models 4 and 5 (and Models 6 and 7) a separate 
lack-of-fit variance was estimated for spatial cells 
north of 60

o
S versus those south of this latitude 

(see below). 
 

Apart from Atkinson et al.’s [3] inappropriate error 

model, given the sample statistic ijy
 that they 

model, an even more serious limitation of their 
modelling effort is the failure to consider 
nonlinear long-term trends in density given that 
they restrict their consideration to linear trends. 
Below, a nonlinear trend model, fitted separately 
to each of the two regions, is considered by 
adding a low rank thin-plate smoothing spline in 

year in a penalised form by adding the term 

 *

( ) : ,ij ij Ss S I  as a 20-level random effect term 

(i.e. 2 S ) to the linear terms in ijS , as available 

in MCMCglmm (see [11] for expression of a low-
rank thin-plate spline as a LMM). Further, a 
covariate term in mean climatological 
temperature (i.e. "Climatological temperature" in 

KRILLBASE), ijT , averaged across stations 

within spatial cell by factor year combination is 
included. The variable Climatological 
Temperature, is described in Atkinson et al. [6] 
as “Long-term average February sea-surface 
temperature for the sampling location. This is not 
the actual sea temperature at the time of 
sampling but a climatological mean sea-surface 
value for February, averaged over the years 
1979 to 2014”. This covariate was found to be 
highly significant in the model for conditional 
density described by Cox et al. [2]. 
 

Consider the model (Model 6) 
 

 

 

10 0 1 ( ) 2 3 ( )

*

4 ( )

log

: ,

ij ij ij ij ij

ij ij ij S i i ij j ij ij

y S S

T s S S e

   

     

    

     

I I

I

(2.3) 
 

where 
 

2 2

( )(0, )ij ij NN    I . 

 

allowing a separate lack-of-fit variance to be 
estimated for spatial cells north of 60

o
S (i.e. 

2 2

N   ) versus those south (i.e. 
2

 ) of this 

latitude. To fit this model using MCMCglmm we 

substitute sample estimates for ijT  and 
2

ij  of 

ijT  and 
2ˆ
ij  , respectively. The implications of 

substitution of sample estimates for ijT
 due to 

“errors-in-variables” effects on parameter 
estimation is discussed later. Further, to 
investigate the adequacy of a linear relationship 

with ijT  given as part of the fixed model 

component of model (2.3) a spline term,

 ,ij Ts T  , was added as a random effect to 

give Model 7. 
 

Cox et al. [2] note that the standardised density 
in KRILLBASE uses estimated regression 
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parameters in its calculation and the uncertainty 
in these estimates was not incorporated in the 
error model component of the LMM in Atkinson 
et al. [1] and this is also the case for the LMM 
used by Atkinson et al. [3]. By re-running the 
standardisation procedure of Atkinson et al. [6] 
for standardisation variables of net mouth area, 
bottom sampling depth, day vs night sampling 
and days from 1

st
 of October using LMMs and 

the same KRILLBASE dataset described below, 
estimates of the contribution of the prediction 
error variance from the uncertainty due to 
estimation of regression parameters in the 
standardisation procedure were compared to the 

average of the 
2ˆ
ij  (i.e. averaged across all years 

by spatial strata). This is described in 
Supplementary Material and since this 
contribution was small due to the large sample 
size of net hauls across all years and spatial 
strata this source of error was not considered 
further. Note that Cox et al. [2] found that the 
contribution to the prediction error variance due 
to estimation error for their “standardisation” 
variables was of practical significance but these 
variables included “Water depth range (within 
10km)” and “Climatological temperature” that 
were not included in the Atkinson et al. [6] 
standardisation. 

 
Models 1 to 3 were compared to one another in 
terms of goodness of fit and parsimony using the 
Akikae Information Criteria (AIC) [21] while 
Models 4 to 7 were compared to each other 
using the Deviance Information Criteria (DIC) 
[16, 22]. The DIC obtained from MCMCglmm is 
conditional on the “location parameter” [16] which 
are the fixed and random effect parameters. Note 
that it is not valid to compare Models 1 to 3 with 
Models 4 to 7 in terms of either AIC or DIC since 
Models 4 to 7 incorporate additional sample-

based information (i.e. the 
2

( )
ˆ

y ij  as 

approximated by
2ˆ
ij ; see below) to that used in 

the fit of Models 1 to 3. Also, Models 1 to 3 were 
fitted using the Maximum Likelihood (ML) option 
in both lme and lmer. Note that results were very 
similar when Residual Maximum Likelihood 
(REML) [23] was maximised using the 
“method=REML” in lme and “REML=TRUE” in 
lmer. 

 
2.1 Estimation and Prediction Using 

MCMC 
 
The LMM fitted in MCMCglmm is described as 

y Xα+Zβ+ e  

 
[16] where for Model 7, y is the vector response 

variable corresponding to  10log ijy  , α  is the 

fixed effect parameters and corresponding 

design matrix, X , β  is the random effect 

parameter vector  ...β = ε, τ, ν,e  augmented by 

the random effects determining the nonlinear 
contributions to the thin-plate spline terms, and 

the corresponding design matrix, Z , and e  is 

the residual error term with elements ij . 

 
The default priors [16] for the fixed effect 

parameters α  in MCMCglmm were used (i.e. 

independent Gaussian with expected value of 
zero and large variance of e

10
). 

 
Priors for the variance structures in MCMCglmm 

(i.e. described as  var R e  and  varG β  

structures) were defined by the expected 
variance (“V”) and degree of belief parameter 
(“nu”) for independent univariate inverse-gamma 
distributions for all variance parameters with 
these two parameters set to 1 and 0.002, 

respectively [16]. The prior for the variance of e  
was set to 1 and subsequently fixed at 1 during 
estimation with corresponding diagonal elements 

of Z  set to ˆ /ij ijn , or equivalently, the mev 

option of MCMCglmm was set to 
2ˆ /ij ijn . 

 
MCMC sampling involved 130,000 draws from 
the posterior distribution for the full parameter set 

θ  where  1 2 3, ,θ θ θ θ  and where 1 θ α , 

 2G G θ , and  3R R θ . A “burn-in” phase 

of 30,000 and “thinning rate” of 1 in 100 was 
used, giving a final sample of 1000 values. The 
thin-plate spline fitted in Models 6 and 7 
separately for each of the two spatial strata of 
north and south of the below 60

o
S latitude was 

fitted with number of knots set at the default at 

S of 10 for each strata and fitted as a penalised 
smoother [16] by including the spline term 

 *

( ) : ,ij ij Ss S I  in the random component of the 

MCMCglmm function call. Similarly, the spline in 
Climatological Temperature for Model 7 was 
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fitted as a random effect term with T  also set at 
the default of 10. 
 

The posterior distribution of θ  obtained in the fit 

of Models 4 to 7 is given by 

   2

( )
ˆ,ij y ijij

f y θ θ  where  f θ  is the 

prior density function and  2

( )
ˆ,ij y ijy θ  is the 

likelihood. The ijy  and 
2

( )
ˆ

y ij  are jointly the 

sufficient statistics for parameters ij  and 
2

( )y ij  

given  2

( ),ijr ij y ijY N    so the above 

likelihood contains all the information in the haul-
level data on these parameters given these 
distributional assumptions. Therefore, it is 
important to note the estimation used in lme and 
lmer fits does not incorporate the sufficient 

statistics 
2

( )
ˆ

y ij (or their approximation 
2ˆ
ij ) and 

therefore the parameter estimates and the AIC 

statistic obtained with ijy  as the dependent 

variable and ignoring these other sufficient 
statistics does not incorporate all the information 
in the haul-level data whereas the meta-analysis 
approach using MCMCglmm does. The above 
arguments would be expected to hold 
approximately if as assumed in the above LMMs 

that  10log ijY , with sample realisation 

 10log ijy  , is Gaussian distributed rather than 

ijrY and therefore ijY . 

 

Predictions of year trends from Model 7 for the 
two regions while controlling for mean 

Climatological Temperature, ijT , was obtain for 

the r
th
 MCMC sample by 

 

  * * * *

10
ˆˆ ˆˆ log ,r N S r r y S S X α +Z β  

 

where NS  is the (vector) set of years populated 

by values of mean density in the dataset for the 
northern region (i.e. north of 60

o
S) and similarly 

for SS for the southern region, while 
*

X  has first 

four columns corresponding to the year fixed 

effect terms of  ,N S1 1 ,  ,N S0 1 ,  ,N SS S , 

and  ,N S0 S , where subscripts define the 

length of vectors corresponding to year vectors 

and the final column is given by  ,N ST T  where 

mean values of Climatological Temperature 
averaged over all years and spatial cells within 
each region have been appropriated replicated. 

A similar process was used to derive 
*

Z  by 

selecting elements from the 20 columns ( S  =10 

for each region) of Z  corresponding to the 

model term  *

( ) : ,ij ij Ss S I  and averaging 

across years within each region for each of the 

10 ( T  =10) columns of Z  corresponding to the 

model term  ,ij Ts T  . Obtaining predictions 

only for “design” values for X and Z using the 
above simple process rather than using the 
analytical expression to obtain nonlinear 
interpolation between knot values for the spline 
terms (i.e. Equation (2) of [11]) in order to 
graphically study smoothed year trends 
circumvents the lack of such a facility for the 
latter in MCMCglmm and is adequate since there 
are few missing years within the year ranges for 
each region. Median and 90% quantile values for 
each year by region using the set of 1,000 values 

of the 
*

ŷ  vector were obtained by simple 

summarisation of this MCMC sample. 
 

As described above, mean Climatological 

Temperature, ijT , averaged across stations 

within spatial cell by factor year combination was 
used as a covariate (i.e. predictor variable). This 
covariate was found, at the individual net haul 
level, to be highly significant in the model for 
conditional density described by Cox et al. [2]. 
For predictions of long-term trend in log density, 
Climatological Temperature was controlled for 
(i.e. predictions standardised) by setting its value 
to average values for north and south strata, 
respectively, given the justification in Cox et al. 
[2] (see Discussion). 
 

2.2 Prediction of Percentage Change in 
Average Density between Reference 
Years 

 

The percentage change in average density 

between years S and S S ,  ,P S S , for 

spatial cells above 60
o
S using the linear model 

(1) does not depend on S  but only on S
since it is given by 
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 
 

 

  2

, 100 1 100

exp log 10 1e

S S
P S S

S

S







   
    

  

   

. 

 
This follows from the very simple differential 
equation 
 

 

 
 2

1
log 10e

d S

S dS





 . 

 
Atkinson et al. [3] used the same fixed effect 
terms as model (1) and applied an unweighted 
average of the estimates of the regression slope 
over the two regions to calculate the percentage 
change in mean density. The value of 

 ,P S S  in this case is 

 

 
 

 2 3

log 10
, 100 exp 1

0.5

e
P S S

S 

   
    

     

 

, noting that the R default contrasts for unordered 

factors gives 3  as a difference in slope, while 
the standard error of the estimate after 
substituting regression parameters with their 
estimates is approximately (i.e. using a 1

st
 order 

Taylor series approximation) 
 

    

   
1/2

ˆ

ˆ , log 10

ˆ , 100

e

T

se P S S S

P S S 

  

  c Σ c
 

 

where ̂Σ  is the variance-covariance matrix just 

for the regression slope parameters and 

 1,0.5T c
. The estimate of ̂Σ  was obtained 

as either lme or MCMCglmm output. Using the 
estimates in Atkinson et al. [3] (their Table 1) of 

 2 3,   of (-0.065, 0.044) the estimate of 

 ˆ ,P S S over close to two decades (i.e. S

=20.5) gives an 87% decline and not the 70% 
value that they reported. Note also that Atkinson 
et al. [3] do not present any uncertainty bounds 
on their estimate of a 70% decline. 
 

For Models 6 and 7 given the nonlinear trend 
with S using thin-plate spline terms, the estimate 

of  ,P S S  is not such a simple function of 

S but requires prediction of  ˆ S at both S 

and S S . The MCMC sample of parameters 

in Models 6 and 7 obtained using MCMCglmm 

was used to obtain predictions of  ˆ ,P S S  and 

the log-ratio,

      ˆ ˆ, log /R eL S S S S S    , along 

with the standard errors, probability levels (i.e. 
Type I error) for the null hypothesis (H0) that 

 , 0RL S S  , and the power [i.e. 1 – 

Prob(Type II error)] to detect a 70% or                   
greater decline [i.e. H1 ; the alternative 

hypothesis,    , log 0.30R eL S S  ] for each 

region. 
 

3. DATA 
 
Table 1 shows the criteria for the selection of the 
subset of the full KRILLBASE dataset [6] used for 
modelling which was designed to match the 
selection criteria described by Atkinson et al. [3]. 
The final dataset consisted of 7328 records for 
individual hauls which were subsequently used to 
calculate the means of standardised density for 

spatial cell by year combinations (i.e. ijy ). There 

were 12 spatial strata or cells constructed as 
described in Table 1 which had at least 50 
stations sampled when totalled across all years. 
There were 291 combinations of spatial cell by 
year populated with at least one haul (i.e. 

0ijn  ), but this was further reduced to 268 

combinations for which ijn  was two or greater so 

that 
2ˆ
ij  could be calculated. Of these 268 

means, 207 were for the south of 60
o
S strata and 

61 for the north of 60
o
S strata while the 

corresponding total hauls per strata were 6145 
and 1083, respectively. The subset of 
KRILLBASE used by Cox et al. [2] that was 
restricted to “scientific” net types of “Isaacs-
Kidd”, “RMT8”, and “2 m fixed- frame net” gave a 
total over both strata of 5,962 net hauls 
(including zero-catch hauls). 

 
 



 
 
 
 

Candy; ARRB, 36(12): 27-43, 2021; Article no.ARRB.76466 
 

 

 
35 

 

Table 1. Data subsetting of KRILLBASE 
 

Selection Criterion Number of 
Records 
Retained 

Comments 
(data selection as described in 
Atkinson et al. [3] 

Years
a
 1976 to 2016 inclusive 11,090 Austral summers

b
, earliest record: 19 

Nov 1975 

Remove winter records 10,920 retain stations sampled after 1
st
 October 

and before 1
st
 May 

Latitudinal range 70
o
S to 50

o
S inclusive 

Longitudinal range 80
o
W to 20

o
W inclusive 

8,055 
 

Spatial cells corresponding to 2.5
o
 

latitudinal zones further subdivided into 
shelf and oceanic zones

c 

Variable “No. of krill under 1m
2
” non-missing 7,912  

Variable “Bottom sampling depth (m)” = or > 
50 m 

7,777  

Variable “Top sampling depth (m)” = or <20 m 7,352  

Remove data for spatial cells
c 
with < 50 

stations 
7,328 At least 50 stations sampled in total over 

all years 
a 

Calendar year at the start of SEASON (1
st
 October) in KRILLBASE for the given Austral summer

 

b
 SEASON in KRILLBASE. Earliest Austral summer record 8 Oct 1985; latest Austral summer record 30 Aug 

1999. 
c 
Shelf (<1000 m seabed depth); Oceanic (= or > 1000m seabed depth). 

d
 The 50

o
S to 52.5

o
S latitudinal zone was exclusively oceanic. 

 

For predictions of long-term trend in log density, 
Climatological Temperature was controlled for 
(i.e. predictions standardised) by setting its value 
to average values of 3.05 C and 0.75 C for north 
and south strata, respectively, as described 
above. 
 

4. RESULTS 
 

Fig. 1 shows the mean densities used in model 
fits along with bars corresponding to twice the 

standard error (i.e. ˆ /ij ijn ) above and below 

the mean for each of the spatial strata with 
panels representing the latitudinal component 
and filled versus unfilled symbols corresponding 
to shelf versus oceanic depth strata, respectively. 
Fitted splines specific to each strata are shown 
within panels combined with shelf (solid lines) 
and oceanic depth strata (dashed lines). These 
splines were obtained from the fit of Model 6 

using MCMCglmm but with the term 4 ijT

dropped and the 2-level regional factor replaced 
by the 12-level (fixed effect) spatial cell factor 
(requiring the random intercept and slope term to 
be dropped). Fig. 1 can be compared directly to 
Fig. 2(a) in Atkinson et al. [3] and generally 
shows good agreement apart from there being 
only three means for the 50-52.5

 o
S (oceanic) 

strata in Fig. 1 here versus 10 means in their Fig. 
2(a). The R-code used to construct the dataset 
used for model fitting and how this data was 
selected to correspond to that described in 
Atkinson et al. [3] and corresponding output is 

given in Supplementary Material so that the 
results given here can be validated. 
 

Table 2 gives the fit of the seven LMMs (Models 
1 to 7) considered here, two fitted with lme, one 
with lmer, and four fitted with MCMCglmm. 
 

Table 3 gives the estimate of  ˆ ,P S S by 

region for Models 1 to 4 which are strictly linear 
in centred year S. Table 3 also gives estimates of 
the log-ratio of predicted mean density for each 
region for the 2005 estimate as a ratio of the 
1985 estimate corresponding to the approximate 
midpoint of each of the two periods that Atkinson 
et al. [3] denote as “the first and second halves 
(1976–1995) and (1996–2016) of the modern 
era”. The 20-year period between these 
midpoints corresponding closely to the 20.5-year 
period that they apply to arrive at a percentage 
reduction,  ˆ ,P S S  of 70%. They do not give their 

method of calculation to arrive at this value but 
as mentioned earlier this value is not the correct 
value of  ˆ ,P S S . Using the MCMC sample of 

Model 6 parameters to obtain the corresponding 
set of predictions, hypothesis tests and power 
calculations are also given in Table 3. 
 

Fig. 2 shows the means for spatial cells (i.e. 
across years within spatial cell) for Climatological 

Temperature, iT , versus mid-latitude for each 

spatial cell along with corresponding double 
standard error (SE) bars. 
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Table 2. LMM parameter estimates fitted to KRILLBASE standardised density 
 

Model 
(R-function) 
AIC or DIC 

Year Trend (SE or 95% CLs) 
Mean Temp 4̂  

(SE or 95% CLs) 

 ,10ijs T ; Model 7 

ˆ
  

ˆ
  

(̂  for 

Model 2) 

ˆ
  

ˆ ˆ, N 
 

̂  

or 

fixed
c
 at ˆ ij  

North, 2̂  

(SE or 95% 
CLs) 

South
a
 3̂  

(SE or 95% 
CLs) 

 *

( ) : ,10ij ijs SI b 

(95% CLs) 

1 (lme) 
AIC=678.3 

-0.0546 
***

 
(0.0101) 

0.0341 
**
 

(0.0111) 
- - 0.1989 2.4406e-06 - - 3.2572 

2 (lme) 
AIC=674.0 

-0.0557 
***

 
(0.0106) 

0.0351 
**
 

(0.0118) 
-  0.1617 0.1255 - - 3.2838 

3 (lmer) 
AIC=649.5 

-0.0432 
***

 
(0.0109) 

0.0213 
*
 

(0.0104) 
-  0.2428 4.8700e-04 0.3222 - 2.8205 

4 (MCMCglmm) 
DIC=561.0 

-0.0453
 *
 

(-0.0924, 
-0.0051) 

0.0360
 ns

 
(-0.0165, 
0.0876) 

- - 0.4366 0.0362 0.3090 0.5134, 
0.9040 

fixed 

5 (MCMCglmm) 
DIC= 545.7 

-0.0450
 ns

 
(-0.0917, 
0.0031) 

0.0420
 ns

 
(-0.0105, 
0.0965) 

- -0.4496 
***

 
(-0.6474, -0.2221) 

0.5860 0.0378 0.2629 0.4951, 
0.9133 

fixed 

6 (MCMCglmm) 
DIC= 542.4 

-0.0279
 ns

 
(-0.3365, 
0.2604) 

0.0147
 ns

 
(-0.4257, 
0.3820) 

0.0005 
(0.0001, 0.0013) 

-0.4795 
***

 
(-0.7481, -0.2829) 

0.6086 0.0388 0.2883 0.4875, 
0.8815 

fixed 

7 (MCMCglmm) 
DIC= 536.0 

-0.0282
 ns

 
(-0.3155, 
0.2943) 

0.0163
 ns

 
(-0.3916, 
0.4115) 

0.0005 
(0.0001, 0.0013) 

-0.6156 
ns

 
(-1.3197, 0.2583) 
0.0259 
(0.0003, 0.0865) 

0.5387 0.0368 0.3113 0.4762, 
0.8933 

fixed 

a 
Parameter represents the slope for South minus slope for North strata.

 

b 
Expressed here as a variance of the corresponding 20 (i.e. 10 per strata) random effect estimates. Note that the contribution to predictions is the vector of random effect 

estimates multiplied by the corresponding columns of the Z matrix (Hadfield, 2010) so that graphical output is more informative than this variance in quantifying departures from 
linearity. 

c 
Fixed variances are 

2ˆ /ij ijn  in MCMCglmm while lme weights via varPower and lmer weights via weights are 1/ ijn  giving variances of 2ˆ / ijn .
 

*
P <0.05;

**
P <0.01;

*** 
P <0.001; 

ns 
P>0.05. 
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Table 3. Percentage change in mean density between midpoint of periods 1976-1995 and 1996-2016 obtained from LMM parameter estimates for 
North and South of 60

o
S strata 

 

Model 
(R-function) 
 

Percentage Change in Mean Density ˆ( 20.5)P S   

(SE) 

Ratio of predicted mean densities
b 

(  1985 ,20c

RL , SE, Power 
d
) 

North 
 

South 
 

Average 
a 

North 
 

South 
 

1 (lme) 
 

-92.4 
(3.6) 

-62.1 
(8.4) 

-83.0 
(4.4) 

  

2 (lme) 
 

-92.8 
(3.6) 

-62.2 
(9.0) 

-83.5 
(4.5) 

  

3 (lmer) 
 

-87.0 
(6.7) 

-64.5 
(11.4) 

-78.5 
(7.6) 

  

4 (MCMCglmm) 
 

-88.2 
(13.0) 

-35.6 
(46.0) 

-72.4 
(18.4) 

  

5 (MCMCglmm) 
 

-87.9 
(13.6) 

-12.1 
(64.4) 

-67.4 
(22.4) 

  

6 (MCMCglmm) 
 

   0.193 
(-1.653 

ns
, 1.237, 0.25) 

0.595 
(-0.512 

ns
, 0.905, 0.38) 

7 (MCMCglmm) 
 

   0.179 
(-1.720 

ns
, 1.333, 0.23) 

0.488 
(-0.718 

ns
, 0.812, 0.44) 

a 
Unweighted average of slopes i.e, 

2 3
ˆ ˆ0.5  . 

b 
Predictions of density were obtained by setting 

ijT  to average values of 3.05 C and 0.75 C for north and south strata, respectively. 

c 
Note that the centred equivalent to 1985 was used in the calculation but the actual year is shown for ease of interpretation. 

d
 Power [i.e. 1-Prob(Type II error)] to detect a 70% or greater decline assuming a Gaussian distribution for  1985,20RL  (see Supplementary Material). 

ns 
Probability of a Type I error for the null hypothesis  1985,20 0RL   against alternative  1985,20 0RL   no greater than 0.05 assuming a Gaussian distribution for 

 1985,20RL  
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Fig. 1. Spatial cell by year log10 transform of mean densities (showing double SE bars) and 
fitted splines using MCMCglmm (cf: Fig. 2a of Atkinson et al 2019) 

 

 
 

Fig. 2. Mean Climatological Temperature, iT , versus mid-latitude for each spatial cell (showing 

double SE bars) 
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Fig. 3. Predicted relationship between log10 standardised density and Climatological 

Temperature, ijT , obtained from Model 7 and 90% support bounds given centred year, S, set to 

zero 
 

 
 

Fig. 4. Median of predicted year trends in log10 standardised density (black lines) and 90% 
support bounds (grey fill) using Model 7 for each of north and south strata along with 

corresponding median predictions for the no-trend model (dashed thick black lines) and 90% 
support bounds (dashed thin black lines) obtained for climatological temperature standardised 

to average values of 3.05°C and 0.75°C for north and south strata, respectively, with 
predictions obtained from MCMCglmm samples 
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Fig. 3 shows the predicted relationship between 
log10 standardised density and Climatological 

Temperature, ijT , obtained from Model 7 and 

90% support bounds given centred year, S, set 
to zero. 

 
Fig. 4 shows predicted year trend in log10 
standardised density obtained from Model 7 and 
90% support bounds for both north and south 
regions along with corresponding predictions for 
the no-trend model each obtained for 
Climatological Temperature standardised to 
average values of 3.05°C and 0.75°C for north 
and south strata, respectively, with predictions 
obtained from MCMCglmm fits. The no-trend 
model corresponds to Model 5 but with all terms 
in centred year, S, dropped and climatological 
temperature standardised as above. 

 
5. DISCUSSION 
 
Model comparisons using AIC and DIC statistics, 
shown in Table 2, indicate that for the models 
that assume that the mean densities are a 
response variable that has no sampling (i.e. 
“measurement”) error (Models 1 to 3), that 
including the random year effect in Model 3 (i.e. 

estimating  ) gave the best (i.e. lowest) AIC. 

The linear year trends for Model 3, as for Models 
1 and 2, were significant and negative for both 
regions, and in terms of percentage reduction per 
year or decade, Table 3 estimates of 87% 
(North) and 64% (South) and 78% (averaged) 
with standard errors of 7%, 11% and 8%, 
respectively. These model outputs indicate the 
dramatic declines touted by Atkinson et al. [1,3]. 
However, when Model 3 was corrected by 
considering the mean densities, as they are as 
sample estimates and including the estimated 
sample variances using Model 4, the statistical 
significance levels of the linear year-trend 
coefficients are substantially reduced and the 
percentage reduction estimate for the Southern 
region is reduced to 36% and the standard error 
is greater than 100% of the estimate. This effect 
is greater again when the Climatological 
Temperature is included as a covariate (Model 
5). This was not the case for the Northern region 
which showed a similar estimated decline for 
Models 4 and 5 to that of Models 1 to 3. 
However, when nonlinearity in the year trends 
was incorporated in Models 6 and 7, the 
percentage decline between 1985 and 2005 is 
no longer statistically significant for either region 
(Table 3). Since it is not clear from the estimated 

coefficients in Table 2 what the significance and 
shape of the year trend for Models 6 and 7 are in 
terms of departure from a no-trend fit, since the 
random effect component of each thin-plate 
spline is quantified in Table 2 as a single 
variance component, the best way to evaluate 
the trends is using Fig. 4. Clearly, there is no 
evidence of a consistent and statistically 
significant decline for the Southern region with 
the no-trend line falling well within 90% support 
bounds for the spline-predicted year trend. For 
the Northern region, Fig. 4 indicates a more 
consistent and substantial decline particularly for 
pre-1985 and post-1995 periods. However, the 
90% support bounds are much larger, due 

largely to the large value of ˆN  resulting in close 

to a three times larger estimate of the lack-of-fit 
error variance (Table 2), and the no-trend line 
comes close to being enclosed by these bounds. 
The limitation that MCMCglmm cannot fit 
versions of Models 4 to 7 that replace their 
random coefficient error terms with a CAR term, 
which is the difference between Models 3 and 2, 
respectively, is not a substantial weakness since 
by way of comparison Model 1 gave only a 
slightly higher AIC than Model 2 while Model 3 
gave a substantially lower AIC compared to 
Model 1. This is the relevant model comparison, 
rather than comparing Models 1 and 2, since as 
with Models 4 to 7, Model 3 includes the random 

year effect j . 

 

Another limitation of the models that include ijT  

as a predictor is that this covariate is subject to 
sampling error due to the spatial averaging 
process across hauls and, additionally, due to 
the across-year averaging used to create this 
variable in KRILLBASE. Errors-in-variables in 
linear modelling can result in bias in both point 
estimates of model parameters and their 
uncertainty [24]. However, given the relatively 

small standard errors of the ijT  as seen in Fig. 2 

any biases are likely to be minor; see [25] for an 
example of an errors-in-variables investigation of 
sampling error in a covariate due to averaging 
using Monte Carlo simulation for a generalized 
linear model where these biases were very small 
attenuations. 
 

In terms of prediction using Model 7 and how to 

incorporate ijT , as noted earlier (see 

Supplementary Material to Cox et al. [2]) 
Climatological Temperature in KRILLBASE is a 
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long-term (1979-2014) February average of sea-
surface water temperature for each station (see 
Table 2 in [6]). Therefore, this component of the 
year trend in log of mean density, equation (2.3), 
was “conditioned out” of predictions by setting 

the value of ijT  to its centred, simple mean value 

for each region (as described in Methods). As 
Cox et al. [2] note, this covariate is fundamentally 
a nuisance spatial variable since the sampled 
values corresponding to station locations have a 
temporal component only because of the order in 
which stations have been sampled. Therefore, 

any long-term year trends in ijT  are an artifact of 

the imbalance in spatio-temporal sampling and 
need to be removed (i.e. controlled for) in 
predicted long-term trend in density as outlined in 
the general in point (ii) in the Introduction. Note 
that if this sea temperature variable was 
potentially informative of the long-term trend in 
krill density by taking the measured values at the 
location and time of each station’s haul rather 
than the station’s long-term February average, 
and if significantly predictive of density then its 
predicted year trend rather than a simple mean 
should be included in prediction of the year trend 
in krill density. 
 

6. CONCLUSIONS 
 

In conclusion, there is some evidence of a 
decline in density for the Northern region (above 
60

o
S) but very little for the Southern region 

(below 60
o
S). However, uncertainty of 

predictions using the best model, Model 7, 
resulted in only weak power to detect a 
substantial decline of the order of 70% between 
1985 and 2005 with statistical power estimates of 
0.23 and 0.44 for the Northern and Southern 
regions, respectively. For some perspective, 
experimental design principles suggest statistical 
power of 0.8 or greater is the recommended 
target in setting the amount of replication or 
repeat sampling along with other recommended 
features of randomisation, adjustment for 
covariates, elimination of confounding                
factors, and other application-specific 
recommendations for desirable experimental or 
survey design [26]. Therefore, these                     
model-based inferences neither strongly                
support nor reject a general hypothesis that there 
has been a dramatic decline in density of 
Antarctic krill in the Southwest Atlantic over this 
period. 
 

In terms of the conflicting inferences between 
Atkinson et al. [3] and Cox et al. [2], this study 

using a close to matching dataset and a 
corrected and augmented version of the LMM of 
Atkinson et al. [3] shows that long-term trend 
predictions are subject to a very high degree of 
uncertainty similar to that shown in Fig. 3 of [2]. 
Cox et al. [2] did not predict separate trends for 
the northern and southern regions of the south 
Atlantic as in Atkinson et al. (2019) and here, and 
while there is evidence of a decline north of 60

o
S 

and the corresponding inference made by 
Atkinson et al. [3] that this is associated with a 
southern contraction in the range of Antarctic 
krill, the results from Model 7 demonstrate that 
there is a considerably greater degree of 
uncertainty as to the magnitude of the decline 
north of 60

o
S than that inferred from the linear 

parameter estimate in Atkinson et al. [3]. South 
of 60

o
S there is a lack of a clear declining trend 

combined with a substantial degree of 
uncertainty about the average trend. Therefore, 
these results suggest, that in the absence of 
more fit-for-purpose, decadal-level and spatially 
comprehensive datasets than KRILLBASE, as 
described by points (i) and (ii) in the Introduction, 
consideration of long-term year trend predictions 
using KRILLBASE should carefully evaluate the 
uncertainty of these predictions. Further, given 
that the uncertainty of such predictions by 
Atkinson et al. [3] of a dramatic decline of krill 
stocks relative to estimated abundance in the 
mid-1970s has been substantially under-
estimated and trends have been unnecessarily 
restricted to a simple linear decline, this study 
suggests that stakeholders have not been 
adequately informed of the degree of caution 
required in evaluating the significance of 
estimated trends in terms of ecological, 
commercial (in regard to fishing pressure) and 
conservation outcomes. As Cox et al. [2] note, 
predictions of a dramatic decline of the order of 
80% or more in Antarctic krill abundances since 
the mid-1970s in the Southwest Atlantic should 
not be unduly influential given their associated 
uncertainty and given the lack of observation of 
the expected dramatic negative impact on 
populations of krill-dependent predators of such 
a decline. 
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