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ABSTRACT 
 

Artificial neural networks (ANN), which have been a hot topic in the field of artificial intelligence (AI) 
since the 1980s, are widely applied these years for their strong ability in the field of nonlinear 
mapping, pattern recognition, robots, automatic control, biology, economy and so on. This review 
presents and summarizes the history of artificial neural networks, briefly introducing the application 
of artificial neural networks. After that, the paper focuses on an overview of research advances in 
neural networks for polymer composites and introduces several classical categories of applications. 
Finally, we look ahead to the development of neural network applications in polymer composites 
and provide a future outlook for the application of artificial neural network in polymer composites. 
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1. INTRODUCTION  
 
Artificial neural networks (ANN) [1] abstract the 
neuronal network of the brain from the 
information processing point of view, build a 
simple model, and form different networks 
according to different connection methods. The 
brief structure of the neural network is 
schematically shown in Fig. 1. Since the 1980s, 
artificial neural networks have increasingly 
become state of the art for their neurobiological 
way to finish computation. The field of artificial 
neural networks tries to simulate and fabricate 
networks and devices in the spirit of neurobiology, 
to solve useful computational problems of the 
kind that biology does effortlessly [2]. 
 
In the field of materials science, owing to their 
diverse structures and properties, polymers 
exhibit a wide range of potential applications in 
energy storage, biomedicine, and electronic 
devices. However, it is the complexity of polymer 
materials that make theoretical modelling and 
design difficult. Different types of composites are 
shown in Fig. 2. So, there is an urgent need for a 

mathematical tool to speed up calculations. For 
this reason, artificial neural networks play an 
important role in the prediction and optimization 
of polymer composites. 
 
Trained by a large amount of data, artificial 
neural networks can accurately predict the 
properties of various polymer materials, such as 
mechanical strength, thermal conductivity, and 
electronic energy levels. The capability of 
prediction helps researchers quickly obtain the 
estimation of material properties. Additionally, 
neural networks have a wide range of 
applications in the synthesis of polymer materials. 
The synthesis of polymers is a complex process 
which needs to focus on many parameters such 
as the ratio of reactants, reaction temperature 
and pressure. Traditional trial-and-error methods 
are inefficient, while neural networks can find the 
best synthesis conditions and enable control of 
the optimization process by learning a large 
amount of experimental data. This method can 
greatly reduce the trial-and-error time and cost, 
and improve the synthesis efficiency and 
success rate. 

 

 
 

Fig. 1. Artificial neural networks [3] 
 

 
 

Fig. 2. The types of composites materials [4] 
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This paper will provide an overview of the 
research advances in artificial neural networks, 
as well as a brief review of the research 
advances in applying neural networks in the field 
of polymer science. Finally, the paper will 
introduce a few selected types of typical 
applications in polymer composites. 
 

2. ARTIFICIAL NEURAL NETWORKS  
 

2.1 Concepts of Neural Networks 
 
Different from the traditional way, artificial neural 
networks are mathematical tools to solve 
complex engineering problems inspired by the 
biological nervous system [5,6]. The basic 
components of artificial neural networks are 
neurons, similar to the terminology in 
neuroscience [7,8]. The cells in the human brain, 
which are known as neurons (Fig. 3), enable us 
to acquire the ability to memorize, think, and 
respond appropriately to the things we meet. 
 
A neuron consists of dendrites, a cell body and 
an Axon. Each neuron can connect with millions 
of neurons. When they connect, the neurons can 
deal with complex such as like communication 
and recognition at breakneck speed, which take 
only a few hundred milliseconds. Rigby et al. [9] 
proposed the use of backpropagation to train the 
neural networks. They investigated the time 

scales and feasibility of building an artificial 
neural network by manipulating single neurons 
and creating functioning synapses (Fig. 4) and 
then systematically changed the weight of 
neuronal connections. Finally, they have 
developed a model that can characterize the 
significant growth of mechanically induced 
neurons. Furthermore, they demonstrate that the 
robustness of such networks can be tested by 
axotomizing specific axons and then 
reconnecting them.  
 
It is shown that the information among the 
neurons is not transmitted linearly but                      
delivered in the neuron networks. ANNs can be 
defined as a massively parallel                             
distributed processor of simple units which can 
store experience and knowledge and put                  
it to use in natural ways similar to the human 
brain. 
 
The basic model of ANNs is shown in Fig. 5. 
Each node can receive information from different 
inputs through connections containing weights. It 
will be activated by the sum of the input weighted 
values exceeding the threshold and passes the 
signal to neighbouring nodes through a transfer 
function. The process can be represented by this 
mathematical model [1]: 
 

𝑦 = 𝑓(∑ 𝑤𝑖
𝑛
𝑖=0 𝑥𝑖 − 𝑇)                                  (1) 

 

 
 

Fig. 3. A sketch of neuron 
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Fig. 4. The way to build a neural network [9] 
 
 
In this equation, xi is the input, wi is the weight of 
it, y is the output of the node; f is the transfer 
function and T is the threshold value. The 
transfer function can be divided into line 
processes and nonlinear processes, which the 
nonlinear processes are more useful than linear 
ones. The simplest one is as follows                               
(Fig. 6). 
 

𝑦 = {
0, … 𝑖𝑓 ∑ 𝑤𝑖

𝑛
𝑖=0 𝑥𝑖 > 𝑇

1,… 𝑖𝑓 ∑ 𝑤𝑖
𝑛
𝑖=0 𝑥𝑖 < 𝑇

                           (2) 

 
The sigmoid function is also used for the 
activation function for its continuity. The curve of 
the function is shown in Fig. 6. 
 

𝑦 =
1

1+exp(−𝛽𝑥)
                                              (3) 

 
 

Fig. 5. The basic model of ANNs [3] 
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Fig. 6. Transfer function 
 

2.2 Development of Artificial Neural 
Networks 

 
The development process of the ANNs started in 
the 1940s. In 1943, Mcculloch and Pitts [1] found 
that the events and the relations of neurons can 
be treated using propositional logic and for any 
logical relational equation that satisfies a 
particular condition, a neural network whose 
behaviour agrees with its description can be 
found. Thus, they proposed the M-P model, 
which became the beginning of the research 
work on artificial neural networks. Based on the 
M-P model, Rosenblatt [10] introduced the 
Perceptron model which has the fundamental 
principles of modern neural networks in 1957. It 
is an M-P model with continuously adjustable 
weights that can classify and discriminate 
specific input vector patterns. This model was the 
inaugural neural network in the true sense of the 
word. Rosenblatt demonstrated that the sensors 
of two-layers could classify inputs. They also 
proposed a research direction for three-layer 
sensors with concealed processing elements. 
Rosenblatt’s model encompasses some of the 
fundamentals of modern neural computers and 
represents a breakthrough in methodology and 
technology. A decade later, Perceptron, which 
was written by Minsky and Papert [11] in 1969, 
has been published to present a mathematical 
theory of the class of machines. The book points 
out that linear perception cannot simply solve the 
problem of classifying two kinds of linearly 
indivisible samples, which gave a strong hit to 
the artificial neural network research at that time. 

 
After a decade-long downturn, Hopfield et al. [12] 
designed a model based on neurobiology, 
surprisingly, it was readily applicable to 
integrated circuits in 1982. By using integrated 
circuits to implement corresponding models, their 
asynchronous parallel processing capabilities 
can be used to provide fast solutions to some 
special classes of computational problems. 
Meanwhile, Hopfield has proposed a continuous 
neural network and taken it into application [13]. 
Hopfield model has galvanized a large group of 
scholars to study neural networks and continue 
to explore this field. 
 
Kirkpatrick et al. [14] first used the SA (Simulated 
Annealing) algorithm to solve combinatorial 
optimization problems in 1983. SA algorithm is a 
stochastic optimization algorithm based on the 
Monte Carlo iterative solution strategy. The 
purpose is to provide an efficient approximate 
solution for problems with NP complexity, which 
overcomes the shortcomings of other 
optimization processes that tend to fall into local 
minima and the dependence on initial values. In 
1986, Rumelhart et al. [15] proposed the back 
propagation (BP) algorithm to solve the weight 
correction problem of multi-layer neural networks. 
After that, the ability of multi-layer neural 
networks came into view. In 1991, Haken 
introduced synergy to neural networks. He 
believes that cognitive processes are 
spontaneous. In 1994, Liao et al. [16] re-
examines the mathematical theory of CNNs 
(cellular neural networks) in-depth and 
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summarizes and refines a series of theoretical 
results. 
 
By the 20th century, deep learning (DL), which 
was proposed by Hinton et al [17], made its way 
into the history books. Essentially, deep learning 
is an extension of machine learning. Deep 
learning is the construction of a model with 
multiple hidden layers and through large-scale 
data training to obtain a large number of 
representative feature information. DL break the 
traditional limitation of the number of layers, and 
the layers can be chosen according to the needs. 
Generative adversarial networks were introduced 
by Goodfellow et al. [18] in 2014, which showed 
an idea about the competition between two 
neural networks that can produce new data. 
Recently, deep learning algorithms have been 
applied to analyse big data [19]. 
 
After several decades of development, neural 
networks have been successfully applied in 
many fields such as artificial intelligence [20,21], 
pattern recognition [22-24], signal processing 
[25,26], optimization [27-29], prediction [30,31], 
etc. Prediction is one of the main functions of 
neural networks. ANNs can predict financial 
stability, which performs quite excellently in the 
economic, and management fields [32,33]. 
Additionally, ANNs have been used in the 
judgment of policymaking by predicting the 
probability of success or failure [34]. ANNs can 
also be used to predict climatic change which is 
a great help for people’s daily production 
activities. 

 
ANNs also focus on the field of medicine. Sardari 
et al. [35] hoped that predicting the structure of 
the AIDs will guide pathology research and 
treatment modalities. There are also applications 
in biological signal detection and analysis. As a 
type of adaptive dynamical system, artificial 
neural networks can be utilized for self-adaptive 
learning, parallelism, and distributed storage. As 
opposed to the traditional way of solving the 
problem of biomedical signal analysis, these 
abilities can be used to solve the problem of 
analysing biomedical signals in a revolutionary 
way, which opens up new opportunities for 
medical research and development. 

 
In this section, we talk about the concept and 
review the development and applications of 
artificial neural networks. Artificial neural 
networks are tools to solve complex engineering 
problems. From 1943 to the present, the 
development of artificial neural networks has 

gone through rise, ebb, revival and flourishing. 
There are some popular artificial neural networks 
such as Perceptron, Hopfield model, SA 
algorithm and BP algorithm being reviewed in the 
chapter. As technology advances, so does 
artificial neural network technology. In the future, 
neural networks will be applied to more fields. 
 

3. ARTIFICIAL NEURAL NETWORKS IN 
POLYMER COMPOSITES 

 

Polymer composites are widely applied in various 
modern industries for properties like high 
strength, high ductility, translucency, impact 
resistance, etc. Polymer composites typically 
consist of two phases: a continuous phase and a 
dispersed phase [36]. According to the nature of 
the recruitment material classification, polymers 
can be divided into plastic, rubber and fibre. 
Different types of polymer composites can be 
used in various fields. Due to the complex 
structure and properties of polymers, it is very 
difficult to accurately design the structure of the 
polymerized material and to regulate the 
properties of the polymerized material. Advances 
in neural networks and artificial intelligence 
breathe new life into the polymer materials field.  
 

One of the applications of ANNs is for the design 
of materials. ANNs can be trained using material 
data to predict the properties of new materials. 
By analysing data on the physical and chemical 
properties of the material, a model can be built to 
predict novel materials, such as solubility [37] 
and solvent activity [38]. Furthermore, it is 
possible to optimize the molecular structure of 
materials, to obtain the desired material 
performance by using artificial neural networks. 
The structure parameters of polymeric materials 
can be used as inputs, with material performance 
as outputs, to construct a neural network model. 
This model can then be optimized to improve the 
molecular structure of the polymeric material [39]. 
Additionally, neural networks can utilize existing 
functional material data for learning and 
predicting intriguing new materials to guide the 
functional design of polymer composites. The 
use of neural networks for model training and 
prediction can accelerate the development 
process of new functional materials and enhance 
the efficiency of material discovery.  
 
Artificial neural networks are also useful in 
predicting the characteristics of composite 
materials such as mechanical properties [40] and 
thermal properties [41]. The density of a material 
can be predicted by available data of the 
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materials. By inputting the molecular structure 
parameters and composition of the polymerized 
material, the characteristics are compared by 
neural network models with the experimentally 
measured values, thus verifying the accuracy of 
the model. The mechanical properties of 
polymeric materials are also one of the important 
indicators for their application, including modulus 
of elasticity, tensile strength, fracture toughness 
and so on. The mechanical properties can be 
predicted by establishing a neural network model, 
and provide guidance for engineering 
applications The thermal properties of polymeric 
materials determine the range of applications of 
the materials in high and low temperature 
environments. By analysing data, the thermal 
conductivity, coefficient of thermal expansion and 
other performance parameters of the new 
material can be predicted. 
 
There are also some applications of artificial 
neural networks in materials optimization. The 
performance of polymeric materials is affected by 
the formulation, and the neural network algorithm 
can be used to predict the optimal material 
formulation for a specific performance 
requirement based on the statistical laws of the 
available data. The process parameters (e.g., 
temperature, pressure, reaction time, etc.) of 
polymerized materials have an important 
influence on the material properties. Neural 
networks can predict the relationship between 
process parameters and material properties, and 
improve the properties of polymerized materials 
by optimizing the process parameters [42]. 
 
The application of artificial neural networks to 
polymeric materials brings new opportunities and 
challenges for research and applications in the 
field of materials science. By predicting material 
properties, optimizing molecular structures, 
predicting performance parameters, and 
optimizing material formulations and process 
parameters, neural networks provide new 
solutions for the design, development, and 
optimization of polymeric materials. The next 
chapter of the paper will review several typical 
applications of artificial neural networks for 
polymer composites. 

4. APPLICATIONS OF ARTIFICIAL 
NEURAL NETWORKS IN POLYMER 
COMPOSITES 

 

4.1 Neural Network for the Design of 
Materials 

 
Design of materials focuses on the                          
prediction and function approximation      
concerning materials performance. The main 
difficulty is to solve the relationship among                              
composition, process and properties. In             
2007, Sun et al. [43] used BP neural                                  
network to predict the properties of the lead-free 
solders. After obtaining the best algorithm and 
parameter by BP neural network, In 
Striketthrough. Bi, Sb, RE Cu were added to Sn-
Ag alloy to explore the effect of the addition of 
different elements on shear strength, tensile 
strength and solidification temperature. Then 15 
groups of data were selected for model training, 
and 3 groups for prediction. The comparison data 
are shown in Table 1. 
 
Table 1 shows that the error between the 
experimental data and the prediction data is 
almost less than 5%, only one of them reaches             
7% for the less experimental data available or 
the measuring mistake. It is clear that the 
predicted data are in good agreement with the 
experimental results.  
 
Li et al. [37] reviewed the solubility prediction of 
gases in polymer based on ANNs, briefly stating 
the principle, progress and performance of 
different ANN algorithms. The paper compares 
the accuracy of different models (CSAPSO-BP 
ANN, CSAPSO-KCM RBF ANN, CSAPSO-FCM 
RBF ANN, and CSAPSO-KHM RBF ANN) for 
predicting the solubility of ScCO2 in 4 polymers 
(PP, PLGA, PS and CPEs). The result is shown 
in Fig. 7. 
 
The result shows that the CSAPSO-C RBF ANN 
model performs better than other models and it is 
workable to predict new experimental data under 
the same conditions by the CSAPSO-C RBF 
ANN model. 

 
Table 1. The comparison of the test data and predicted data [43] 

 

Tensile strength Shear strength Solidification temperature 

Test Prediction Error Test Prediction Error Test Prediction Error 

77.47 74.89 3.22% 26.96 29.08 7.29% 184.40 187.80 1.81% 
72.85 72.88 0.04% 31.84 32.41 4.94% 213.56 203.80 4.57% 
77.94 75.85 2.67% 38.95 38.91 0.14% 198.83 204.80 2.92% 



 
 
 
 

Niu and Zhang; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 67-79, 2023; Article no.AJRCOS.106712 
 
 

 
74 

 

 
 

 
 
 

Fig. 7. Prediction of ScCO2 in 4 polymers [37] 
 
A backpropagation feed-forward neural network 
has been used these years because it is fast and 
simple to implement, and there is no need to 
adjust the parameters. Xie and Grossman [44] 
have developed a novel framework called a 
crystal graph convolutional neural network, which 
can directly extract and analyse material 
properties based on the connections between 
atoms in the crystal. The model is trained with 
104 data points, and finally has achieved high 
accuracy in prediction. This paper advances the 
field of materials and provides new experiences 
for the design of crystalline materials. 
 

4.2 Neural Network for the Performance 
Prediction of Materials 

 

4.2.1 Fatigue life 
 

Fatigue life is the most important parameter of 
fibre composites. Lee et al. [45] found it possible 
to model constant-stress fatigue behaviour with 
ANNs. For carbon-fibre composites, ANNs can 

produce accurate stress/R-ratio/median-life 
surfaces with a relatively small experimental 
database. The model can also be used for 
design, even though it is not as good at 
predicting minimum life as it is at predicting 
medium life [46]. 
 

4.2.2 Wear properties  
 

The purpose of wear properties prediction is to 
perform material property, sliding agent property 
evaluation, and friction mechanism analysis. 
Jiang et al. utilized ANNs to successfully 
calculate the specific wear rate, frictional 
coefficient and some properties. To enhance the 
comprehensive of the analysis, 3D plots are 
established that showcase the predicted wear 
and mechanical characteristics, taking into 
account variations in material compositions and 
testing conditions. The result exhibits a strong 
agreement with the data, highlighting the 
reasonable accuracy of the methodology. 
Gyurova et al. [47] predicted the sliding friction 

(a) (b) 

(c) (d) 
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Fig. 8. Plot of experimental Tg(K) vs. calculated Tg(K) 
 
and wear properties by 124 independent pin-on-
disk sliding wear tests of polyphenylene sulfide 
(PPS) matrix composites and performed 
excellent in comparing with the measure results. 
 
4.2.3 Thermal properties 
 
One of the most important thermal properties of 
polymer composites is the glass transition 
temperature, Tg, which is a predecessor for 
predicting and understanding mechanical and 
other properties such as heat capacity, 
coefficient of thermal expansion, and viscosity. 
Liu et al. [48] investigates the relationship 
between various molecular descriptors and the 
glass transition temperature of polymers. To 
establish a predictive model, both stepwise 
multiple linear regression (MLR) analysis and 
back-propagation artificial neural network (ANN) 
techniques were employed. The final optimized 
ANN structure, consisting of 4-[4-2]2-1 layer, 
demonstrated strong performance with a training 
set root mean square error (RMSE) of 11K 
(R=0.973) and a prediction set RMSE of 17K 
(R=0.955). Fig. 8 presents the comparison 
between experimental Tg(K) and calculated Tg(K), 
which shows brilliant accuracy in the prediction of 
glass transition temperature. 
 
Polymer composites are excellent materials for 
thermal protection, which are applied in the fields 
of military, aircraft construction, etc. Based on BP 
neural network, a model of the thermal response 
of polymer composites without surface recession 
is established by Zhang et al. [41] with the 
purpose of improving thermal protection 
performance. Then they explore the relationship 
between bond line temperature and piecewise 

porosity distribution. According to the results, the 
approach can be well applied to the optimization 
of thermal protection conditions. 

 
4.3 Neural Network for the Optimization 

of Materials 
 
In an industrial process, exothermic reactive 
operations occur frequently. It is necessary to 
predict the temperature behaviour in an accurate 
method to avoid danger. In polymerization, 
specific materials are matched to specific 
reaction temperatures. Kuroda et al. [49] applied 
ANNs in modelling the behaviour of temperature 
in a polymerization process. The input nodes of 
the cooling and heating process are integrated 
into one node to improve accuracy and 
adaptability. The result shows that the model can 
be a useful tool for the temperature control 
system. 
 
Chan et al. [50] introduces a novel approach 
utilizing backpropagation neural networks to 
model free radical polymerization in high-
pressure tubular reactors. The study utilizes 
industrial data to train the neural network, 
enabling the prediction of various crucial 
parameters along the reactor, including the 
temperature profile and polymer properties. To 
validate the effectiveness of the neural network 
model, a comparison is made with predictions 
from mechanistic models reported in the 
literature. The findings demonstrate that the 
neural network model exhibits great promise in 
accurately capturing and predicting the behaviour 
of free radical polymerization in the reactors. This 
approach presents a valuable contribution to the 
field of polymer science and offers an alternative 
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to traditional mechanistic modelling techniques. 
Zhang focuses on the batch reactor, applying 
ANNs to predict the optimal control profile of the 
reactors. The result is much more reliable and 
accurate [51]. 
 
Allan et al. [52] utilized ANNs to predict the 
structure and properties of polypropylene fibres 
with key manufacturing parameters for input and 
fibre properties, crystal order and other 
parameters for output. The prediction was 
accurate and was able to apply in the simulation 
of manufacturing process. 
 
Stephen et al. [53] employed a combination of 
finite element analysis (FEA) and artificial neural 
networks using multilayer perceptron architecture 
to forecast the impact resistance characteristics 
of hybrid and non-hybrid fabric reinforced 
polymer (FRP) composites. The proposed 
approach, combining FEA and ANNs, enables 
accurate prediction of the residual velocity (Vr) 
outcomes, thus allowing assessment of the 
impact behaviour of different hybrid and non-
hybrid composites. The FEA and ANNs results 
revealed that the stacking sequence significantly 
influences the impact resistance of FRP 
composites. The highest penetration resistance 
was observed in specimens with Kevlar layers in 
the front and back (K/K/K sample). 
 

4.4 Other Related Applications 
 
Polyethylene as a thermoplastic has been 
increasingly popular in many fields. Due to the 
excellent performance of Ziegler-Natta catalysts 
in producing polyolefin with a wide range of 
molecular weights and copolymer compositions, 
researchers have employed this type of catalyst 
in simulating the polymerization process. The 
EIX (ethylene index) is the key to the process. 
Since it is difficult to measure the EIX, Maleki et 
al. [54] introduced ANNs to calculate and predict 
the EIX. The estimation task was carried out 
using the Multi-Layer Perceptron, Radial Basis, 
Cascade Feed-forward, and Generalized 
Regression Neural Networks. The results clearly 
indicated that the Multi-Layer Perceptron model 
outperformed other artificial neural network (ANN) 
models in terms of performance. 
 
Rabiej et al. [55] utilized an artificial neural 
network that is designed to identify a specific 
polymer based on its Wide-angle X-ray 
Diffraction (WAXD) curve. The identification 
process involves comparing the unknown 
polymer's diffraction curve to a database of 

standard WAXD curves. The identification of the 
unknown polymer entails comparing the total 
activation signals calculated for each standard 
curve in the database with those calculated for 
the WAXD curve of the polymer. The standard 
curve with the highest degree of similarity to the 
investigated curve is chosen based on the total 
activation signals. 
 
Dubdub et al. [56] presents the catalytic pyrolysis 
of a constant-composition mixture of zeolite β 
and polyethylene terephthalate (PET) polymer 
using thermogravimetric analysis (TGA) at 
varying heating rates. An artificial neural network 
was utilized to predict the remaining weight 
fraction, using temperature and heating rate as 
input variables. The results demonstrated that 
the ANN was able to accurately predict the 
experimental values (R2 > 0.999), even when 
provided with new data. 

 
4.5 Summary 
 
This chapter focuses on the review of typical 
applications of artificial neural networks in 
polymer composites. ANNs require a large 
amount of data as support to accurately predict 
the desired parameters and the accurate input 
and output.  
 
Current application cases of neural networks in 
polymerization are presented in terms of material 
design, performance prediction, and process 
structure optimization, respectively. By training a 
neural network model with the data of polymer 
structures and corresponding properties, it is 
possible to accurately predict the properties of 
new polymers, which reduces the trial-and-error 
process in polymer design. In addition, neural 
networks have been utilized in the field of 
polymer characterization. This enhances the 
development of high-performance polymer 
materials. Furthermore, neural networks have 
shown great potential in the prediction of polymer 
stability and degradation behaviour. By analysing 
the chemical structure and environmental factors, 
these networks can predict the degradation rate 
and lifetime of polymers. 
 

5. CONCLUSION AND PROSPECT 
 
Artificial neural networks have emerged as a 
powerful tool in the field of polymer research. 
These networks, inspired by the structure and 
functioning of the human brain, have been 
extensively used for various applications related 
to polymers. Overall, artificial neural networks 
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have revolutionized the field of polymers by 
enabling accurate property prediction, optimizing 
polymerization processes, interpreting 
characterization data, and predicting stability and 
degradation behaviour. As these networks 
continue to advance, they hold tremendous 
promise for further advancements in the design 
and development of novel polymer composites. 
 

Several challenges that need to be addressed for 
the successful application of neural networks in 
the field of polymers. First, acquiring and 
processing the necessary data is of utmost 
importance. Polymer materials possess complex 
structures and diverse properties. It is necessary 
to get a vast amount of experimental and 
simulation data to effectively train neural network 
models. Furthermore, the accuracy and reliability 
of the data are critical in ensuring the overall 
accuracy and reliability of the trained models. 
Another challenge lies in improving the 
explanatory power of neural network models. 
The models are often considered black boxes, 
lacking the ability to provide specific explanations. 
This limitation hampers the understanding of the 
underlying mechanisms and undermines the 
interpretability of the models. Therefore, it is 
crucial to explore methods and techniques that 
enhance the interpretability of neural network 
models to better comprehend the relationships 
between polymer structure, properties, and 
performance. Addressing these challenges 
requires a lot of efforts combining polymer 
science, materials engineering, and data analysis 
techniques. Additionally, exploring techniques 
such as interpretability algorithms and 
visualization tools specific to polymer systems 
can aid in extracting meaningful insights from the 
neural network models and providing relevant 
explanations for their predictions. 
 

Taking these things into account, these 
advancements will contribute to the development 
of more accurate and interpretable neural 
network models, facilitating the progress of 
polymer research and applications. By combining 
experimental and simulation tools, neural 
networks can accelerate the development of 
materials and encourage the various applications 
of polymer materials. We are looking forward to 
the further application and development of neural 
networks in polymers. 
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