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ABSTRACT 
 

Breast cancer has been one of the most widespread cancer types in women worldwide. Breast 
cancer can be treated when detected early; otherwise, it has one of the highest mortality rates 
among cancer types. Many tools can be used for detection, but computer-based diagnosis systems 
have become popular as they are cheaper and quicker. This brings incorrect detections as well. 
Hence, feature selection is an important factor that can enhance the accuracy of computer-based 
programs. This study uses genetic algorithms for feature selection within a wrapper methodology 
for breast cancer diagnosis. The proposed model has been tested with 17 different classifiers in 
order to evaluate its effectiveness. There has been an increase in training accuracy after feature 
selection was employed with genetic algorithms. The highest training accuracy was reported in 
Extra Trees, MLP, Random Forest, and Logistic at 100%, and the lowest was reported in 
GaussianNB at 0.925. Furthermore, feature selection improved validation accuracy, sensitivity, 
specificity, F1-score, Matthews Correlation Coefficient, specificity, and sensitivity. 
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forest. 
 

 

Original Research Article 



 
 
 
 

Eroltu; Int. Res. J. Oncol., vol. 6, no. 2, pp. 203-226, 2023; Article no.IRJO.106239 
 
 

 
204 

 

1.  INTRODUCTION 
 
The rapid advancements in technology-enabled 
datasets to grow and become publicly available. 
Datasets have thousands of features; as a result, 
researchers use advanced pattern detection 
methods to decipher these rich samples. 
Datasets are created for many fields, from 
biology to astrophysics, encompassing 
thousands of features. On the other hand, 
features can be either redundant or irrelevant, so 
some do not contribute to machine learning and 
deep learning models. Thus, as datasets have 
many features, it is vital to reduce the 
dimensionality of datasets and extract important 
features [1, 2, 3]. By feature reduction, the 
efficiency of the classification model can greatly 
increase. The selection of features is crucial, but 
the characteristics of the dataset should not be 
lost. Hence, it is important to classify the features 
as weak and strong [4]. This process is also 
known as data mining. Data mining has been 
used in the medical domain in order to find a 
relationship as it may be challenging for medical 
experts to diagnose with a welter of data [5]. 
Automated diagnostic systems are one of the 
fields where database analysis is applied the 
most. 
 
Breast cancer is the most prevalent invasive 
cancer among women [6]. Around 2.3 million 
women worldwide are diagnosed with breast 
cancer yearly [7]. Most patients with brain cancer 
are over fifty years old [7]. Early detection of 
breast cancer has been proven to be very 
effective in reducing the mortality rate of patients 
[7]. However, the survival rate depends on many 
factors, especially stage and molecular subtypes 
[7]. 
 
Classical methods exist in the detection of breast 
cancer, such as biopsy, physical testing, breast 
ultrasound, diagnostic mammogram, and Breast 
magnetic resonance imaging (MRI) [8]. Once 
breast cancer is detected, additional tests are 
conducted to determine if the cancer cells have 
spread within the breast or to areas of the body. 
This process is known as staging. The stage of 
breast cancer is determined by whether it is 
confined to the breast, has reached the lymph 
nodes in the armpit, or has extended beyond the 
breast. Based on the type and stage of breast 
cancer, doctors can determine the treatment 
required for you [8]. 
 
Mammography is one of the most common 
methods for breast cancer detection, which is 

utilized by radiologists. However, radiologists 
may interpret the results differently or 
inaccurately; thus, the accuracy rate of 
mammography fluctuates between 68% and 79% 
[9, 10]. Another way is a biopsy, which can be 
expensive, risky, invasive, but accurate. These 
detection techniques can categorize patients into 
a 'benign' group without breast cancer or a 
'malignant' group showing substantial signs of 
the disease [10]. Also, it is essential to note that 
benign tumors are safer than malignant tumors in 
many cases. Computer-aided systems may help 
doctors to understand the differences between 
these two categories. As mentioned before, 
feature selection, a preprocessing technique, 
may help doctors in breast cancer 
detection/classification. 
 
Three approaches to feature selection are                 
Filter, Wrapper, and Embedded [5, 11 12].                   
The filter approach scores the selected                  
subset based on the intrinsic properties                   
of the data without considering the classifier 
algorithm [13]. The wrapper method finds                    
the best set of features for a specific algorithm 
and area [4, 14]. In other words, the chosen set 
of features is determined by training and 
assessing a classifier using only the variables 
within the suggested group. The optimal feature 
subset of features is selected during the model-
building process in the embedded approach               
[5,11]. 
 

2. Short Literature Review 
 

Numerous studies in the literature have utilized a 
range of feature selection techniques on                   
breast cancer datasets. These techniques 
encompass the ant colony algorithm, discrete 
particle swarm optimization, the wrapper strategy 
combined with a genetic algorithm, feature 
selection rooted in support vectors, incorporating 
fisher’s linear discriminate and support vector 
machine, the rapid correlation-based feature 
selection (FCBF), its multi-threaded version, the 
decision-dependent and -independent correlation 
(DDC- DIC), the Rough set K-Means Clustering 
method, and the adjusted correlation rough set 
feature selection approach (MCRSFS)              
[5,11,15-21]. 
 
In the study, a wrapper feature selection method 
derived from a genetic algorithm was adopted. 
By employing 17 different classifiers, the impact 
of the genetic algorithm on the accuracy of these 
classifiers, using the breast cancer dataset was 
examined.  
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Table 1. Possible features for feature selection 
 

Features 

Diagnosis Fractional Dimension Mean Radius Worst 
Radius Mean Radius Standard Error Texture Worst 
Texture Mean Texture Standard Error Perimeter Worst 
Perimeter Mean Perimeter Standard Error Area Worst 
Area Mean Area Standard Error Smoothness Worst 
Smoothness Mean  Smoothness Standard Error Compactness Worst 
Compactness Mean Compactness Standard Error Concavity Worst 
Concavity Mean Concavity Standard Error Concave Points Worst 
Concave Points Mean Concave Points Standard Error Symmetry Worst 
Symmetry Mean  Fractional Dimension Standard Error Fractional Dimension Worst 
 

3. DATASET 
 

The dataset was taken from the UC Irvine 
machine learning repository [22, 23]. 
Characteristics of cell nuclei are derived from a 
digitized image taken from a fine needle aspirate 
(FNA) of a breast mass. Dr. William H. Wolberg 
has collected the data between 1989 and 1991 
[22]. This dataset used 569 patients' data along 
with 31 different features. There are 357 benign 
and 212 malignant patients. 
 

Thirty real-valued features are computed for 
each cell nucleus as it is seen in Table 1. 
 
4. CLASSIFIERS 
 

In this study, 21 different machine learning 
classifiers have been used in this study to 
compare the effectiveness of genetic algorithms. 
 

4.1 Extra Trees Classifier  
 

There are many tree-based algorithms and 
models that exist; however, it is different as 
instead of using a bootstrap replica, it grows the 
trees using the entire learning sample and 
selects cut points for nodes entirely at random 
[23]. A random subset of attributes from the 
dataset is chosen for each decision tree. The 
dataset is then divided based on random 
divisions within those attributes, with the optimal 
split being selected [24]. The Extra-Trees 
classifier makes a set of decision trees using the 
usual top-down way [25]. One of the strengths of 
this algorithm is computational efficiency [23]. 
 

4.2 AdaBoost Classifier 
 

Adaboost, as its name suggests, is a boosting 
machine learning algorithm. It combines multiple 
weak learning models and a weighted linear 
combination [25]. AdaBoost applies a step-by-
step learning method to adjust versions of the 

initial training data [26]. Adaboost operates 
iteratively, and when there are misclassified 
instances, more weight is given to other 
iterations. Weights of miscorrectly classified 
instances are raised/increased, but correctly 
classified instances are diminished [25]. The 
algorithm consistently uses the base classifier on 
the training data, altering weights in every cycle 
[25]. The final model is a linear combination of 
the models obtained from various cycles [25].  
 

4.3 Random Forest Classifier 
 

The Random Forest classifier is very similar to 
the extra trees classifier. The algorithm forms a 
group of decision trees to improve the decision 
trees' accuracy. Also, this classifier uses a 
random selection of features and a bagging 
sample method [25, 27-30]. Using bagging, every 
decision tree in the ensemble is formed from a 
resampled version of the training data. Each tree 
in the ensemble serves as a base estimator to 
establish the class label for an unlabeled sample, 
with the final decision made based on the 
majority of votes/average [25]. 
 

4.4 Bagging Classifier 
 

The bagging classifier is one of the meta-
estimators, creating models by fitting each base 
classifier on an arbitrary subsample of the 
dataset [25]. Afterward, it gathers the outcomes 
from all the models to make the final decision. 
The bagging classifiers use two different 
methods: the highest average likelihood from the 
base classifiers and majority voting, which rules 
the suspicious nodes in the network to establish 
the predicted label [25]. 
 

4.5 Gaussian Naive Bayes Classifier 
 

The naive Bayes technique is largely applied in 
machine learning models as it has a 
computational efficiency. This algorithm has a 
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low variance value and a high cost of bias. It 
uses incremental learning, which means 
estimations can be updated. It operates on the 
premise that each individual parameter 
independently influences the outcome variable. It 
uses probabilities so thoughtless to noise [31]. 
 

4.6 Category Boosting Classifier 
 
Category Boosting is a machine learning 
algorithm designed to handle categorical 
features. It is one of the gradient-boosting 
frameworks that build an ensemble of decision 
trees in a sequential manner. Moreover, for 
reducing overfitting, it has an algorithm to     
encode categorical features and uses L2 
regularization. 
 

4.7 LightGBM Classifier 
 
“Light Gradient Boosting (LightGBM) is a 
gradient-boosting framework using tree-based 
learning algorithms [32, 33].” It is effective in 
training large datasets and with high-dimensional 
features. Gradient-based One-Side Sampling 
helps to retain data instances with large 
gradients. Gradient-based one-sided sampling 
helps to maintain data instances with large 
angles. It randomly samples a small portion of 
data instances with small gradients, reducing the 
data used in each iteration with minimal loss in 
accuracy [32, 33]. Moreover, it can achieve faster 
training times compared to other gradient-
boosting algorithms [32, 33]. 
 

4.8 Quadratic Discriminant Analysis 
(GDA) 

 
Quadratic Discriminant Analysis (QDA) is a 
classification method used in statistics, 
probabilistic, and machine learning. QDA is a 
generalization of Linear Discriminant Analysis in 
order to handle where each class has its own 
covariance matrix rather than assuming a 
common covariance matrix for all classes [34, 
35]. GDA is used for classifying data into multiple 
classes based on the maximization of the 
posterior class probability. For each class, it 
computes the likelihood of a data point belonging 
to that class based on its Gaussian distribution 
[34, 35]. Afterward, it multiplies this likelihood by 
the prior probability of that class. The class with 
the highest posterior probability is the predicted 
class for the data point. The decision boundary is 
derived by setting the posterior probabilities of 
two classes to be equal. 
 

4.9 Support Vector Machine Classifier 
 
The Support Vector Machine (SVM) is a small-
sample learning method. Also, it is a supervised 
machine learning algorithm used for classification 
tasks and regression [36]. It finds the hyperplane, 
decision boundaries, that best divides a dataset 
into classes. Thus, it is mostly accurate in 
separable and non-separable problems [37]. 
However, when the number of input features is 
more than 3, it has more than two-dimensional 
planes. 
 

4.10 Linear Regression 
 
Linear regression is a type of supervised 
machine learning algorithm/classifier. When 
there is only one independent feature, it is 
termed Univariate Linear Regression. However, if 
there are multiple features, it is referred to as 
Multivariate Linear Regression. The algorithm 
aims to identify the optimal linear equation to 
estimate the dependent variable's value using 
the independent variables. 
 

4.11 Gradient Boosting Classifier 
 
The Gradient Boosting Classifier is a popular 
machine learning algorithm used for classification 
and regression. It is an ensemble learning 
method. It converts weak learners into strong 
learners, and it was built stage-wise. It uses                
the decision trees as base learners. The 
algorithm is effective for classifying complex 
datasets. It is based on probability and 
approximately correct learning. The objective is 
to minimize the loss between the actual and 
predicted class values. 
 

4.12 K-nearest Neighbors Classifier 
 
K-nearest neighbors are one of the most 
common classifiers used in machine learning. 
However, it is a very simple an effective 
algorithm for classification and regression. 
However, it just memorizes and uses the training 
set directly during the test set. Also, it is non-
parametric, which means it does not make any 
assumptions about the underlying data 
distribution. There is a distance metric that 
measures the distance between data points 
using Euclidean distance. After this phase, the 
number of nearest neighbors to consider when 
making a classification decision. It classifies an 
unknown point based on the majority class 
among its k nearest neighbors. 
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4.13 Logistic Classifier 
 

The logistic classifier is an algorithm that is used 
in machine learning and statistics. It is used for 
predicting a categorical outcome variable, and 
the outcome comes in the form of a binary 
outcome variable. It uses the sigmoid function in 
order to squeeze a linear equation between 0 
and 1. Logistic regression creates a linear 
decision boundary in the feature space. 
 

4.14 Multinomial Naive Bayes 
 

The Multinomial Naive Bayes algorithm is built on 
top of Naive Bayes and is useful for 
classification. It counts each occurrence of each 
class in the training data and calculates the 
probability of each class and the possible state of 
each given class. For additional data points, the 
algorithm computes each class, calculates the 
posterior probability, and assigns the class the 
highest probability. Furthermore, it does not 
require high memory and is still unsuitable for 
continuous features. 
 

4.15 Decision Tree 
 

Decision Tree is a hierarchical decision-support 
framework that uses a tree-structured 
representation of choices and their potential 
outcomes. It is a supervised machine-learning 
algorithm that can be used for regression and 
classification problems. It is one of the most 
interpretable machine learning algorithms, but it 
has a possibility to overfit, especially when the 
tree is deep. It uses a tree-like model for 
decision-making and splits the dataset into two or 
more homogeneous sets based on the most 
significant attribute at each level. 
 

4.16 Multilayer Perceptron 
 

A multilayer perceptron is a multilayer neural 
network that has three hidden layers/neurons. 
Neurons utilize a nonlinear activation function 
and are uniquely capable of classifying data that 
is not linearly separable.  
 

4.17 Stochastic Gradient Descent 
 

Stochastic Gradient Descent is an optimization 
technique frequently employed in machine 
learning to identify the model parameters that 
yield the closest match between predicted and 
observed outcomes. For classification tasks, the 
algorithm utilizes a straightforward Stochastic 
Gradient Descent (SGD) learning process, which 
accommodates multiple loss functions and 
penalties. 

5. GENETIC ALGORITHM 
 
Originating in the 1960s and 1970s by John 
Holland and his team, the genetic algorithm (GA) 
is an abstraction of biological evolution rooted in 
Charles Darwin's theory of natural selection [38]. 
It is likely that Holland pioneered the application 
of crossover and recombination, mutation, and 
selection in the exploration of adaptive and 
artificial systems, which will be discussed in this 
research paper [38]. As a problem-solving 
strategy, these genetic operators are pivotal to 
the genetic algorithm [38]. In the time since, 
numerous genetic algorithm variants have 
emerged, addressing a broad spectrum of 
optimization challenges, ranging from graph 
coloring and pattern recognition to both discrete 
and continuous systems [38]. 
 
In the evolutionary algorithms, genetic algorithms 
stand out due to the vast range of their 
applications. Using an iterative process, a 
Genetic Algorithm is employed for Search and 
Optimization to determine the best solution 
among multiple options. A Genetic Algorithm is 
essential in identifying the optimal 
hyperparameters and their values to enhance a 
deep learning model's performance and can be 
used to find the most suitable number of features 
when constructing machine learning models. 
 

Some of the important terminology for genetic 
algorithms are population, phenotype, 
chromosome, and fitness score. Fig. 1 shows the 
general structure of the genetic algorithms. 
 

5.1 Initial Population 
 
The Genetic Algorithm Process begins with 
Population Initialization. Within the current 
generation, the population represents a subset of 
solutions. Each individual possesses a gene 
sequence, often referred to as DNA. An 
individual's DNA signifies a potential solution to 
the targeted problem, and it must be structured 
appropriately. Hence, it is essential to initialize 
each individual to guarantee they possess some 
form of DNA. In the context of genetic algorithms, 
it is crucial to preserve the population's diversity 
to avoid an issue called premature convergence. 
This term in evolutionary algorithms refers to the 
algorithm settling before achieving the best 
possible solution. There are two ways of 
population initialization. The first one is random 
initialization, which initializes the population with 
completely random gene values. When gene 
values are randomly assigned, possible genetic
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Fig. 1. General structure of genetic algorithms 
 

diversity increases within the population. The 
second method is heuristic initialization, which 
uses heuristics to solve a complex issue. 
 

5.2 Selection 
 

The selection process is essential in genetic 
algorithms. Each individual has the fitness value 
of their corresponding DNA. The fitness value of 
an individual indicates its optimality, showing 
how close it is to the best solution compared to 
others. When the fitness function doesn't 
produce superior fitness values, the genetic 
algorithm might struggle to generate top-notch 
solutions. Once a proper fitness function is 
established, each individual's fitness is 
determined. The population is then organized 
based on these fitness levels, and a portion of 
those with the lowest fitness is removed. 
However, a few with lower fitness remain to 
maintain genetic variety within the group [39]. 
 

5.3 Reproduction: Crossover and 
Mutation 

 

After the selection process, reproduction takes 
place. Reproduction happens through crossover 
and mutation. Crossover, which is simply the 
mating. Crossing over occurs when genes from 
the two most fit parents are mixed randomly to 
create a new solution or genotype. Depending on 

the segments of genes swapped from the 
parents, this can be a one-point or multi-point 
crossover. The primary goal of crossover is to 
produce new descendants from individuals with 
high fitness, thereby enhancing the population's 
overall fitness. Once a new population emerges 
from selection and crossover, it undergoes 
random alterations via mutation. Mutation serves 
as a random method to modify a genotype, 
fostering diversity within the population and 
aiding in discovering enhanced and more 
efficient solutions. The algorithm's search space 
broadens when enough new genes are 
introduced by randomly modifying the genes of 
the next generation's offspring. 
 

5.4 Termination 
 

This part is the last step of the genetic algorithm. 
When the genes of the next generation's 
offspring are randomly modified, the algorithm's 
search space expands due to the introduction of 
sufficient new genes. If the termination conditions 
are met, the evolutionary algorithm can be 
terminated, and output can be seen. 
 

6. METHODOLOGY 
 

The hardware used for this experiment has a 2,4 
GHz Quad-Core Intel Core i5, 8 GB RAM 2133 
MHz LPDDR3, and Tesla P100-PCIE GPU.  
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Fig. 2. Flowchart and proposed model for this study 
 
Experiment has been performed using Python 
code. The breast cancer dataset was 
independently fed into 17 different classifiers. 
The proposed model (Fig. 2) has been applied to 
the Wisconsin breast cancer dataset. 
 

Flowchart of the working genetic algorithm and 
proposed model that is used in this study can be 
seen below: 
 

In the proposed model, there are 80 
chromosomes in each population. The mutation 
rate has been set to 0.15. There is a single-point 
crossover at the midpoint of the chromosome. 
The number of generations has been developed 
to 10. 
 
Each feature selection is different for different 
classifiers and algorithms. For instance, for the 
AdaBoost Classifier, selected features are radius 

mean, area mean, smoothness mean, concavity 
mean, texture standard error, area standard 
error, smoothness standard error, compactness 
standard error, fractal dimension standard error, 
texture worst, perimeter worst, area worst, 
smoothness worst, compactness worst, 
concavity worst, concave points worst. However, 
for the decision tree classifier, the selected 
features are radius mean, texture mean, 
perimeter mean, smoothness mean, 
compactness mean, concave points mean, 
fractal dimension mean, radius standard error, 
texture standard error, smoothness standard 
error, concave points standard error, symmetry 
standard error, fractal dimension standard error, 
radius worst, texture worst, smoothness worst, 
compactness worst, concavity worst, symmetry 
worst, fractal dimension worst. Thus, genetic 
algorithms have helped to make predictions by 
reducing the features in the dataset. 
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The dataset has been splitted into 50/50, 60/40, 
70/30, 80/20, 90/10 for the training and test set, 
but the ratio of 80/20 has been kept because it 
has led to the highest accuracy among other 
ratios. 
 

7. RESULTS 
 

“Performance metrics of the model were 
calculated to ascertain the reliability of the study 
[40].” Some of the metrics that have been used in 
this study can be seen below: Sensitivity (Sens), 
Specificity (Spec), F1-score (F1), Matthews 
Correlation Coefficient (MCC) 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

=
(𝑇𝑃 ∙ 𝑇𝑁) − (𝐹𝑃 ∙ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 

 
Before employing a genetic algorithm for feature 
selection, the accuracy of various classifiers and 
algorithms can be observed below. 
 
After employing a genetic algorithm for feature 
selection, there was an increase in accuracy for 
most of the classifiers, although some of the 
classifiers did not have any improvement. Table 
3 shows the extracted features using a genetic 
algorithm. 
 
Table 4 shows the true positive (TP), True 
Negative (TN), False Positive (FP), Training 
Accuracy (TA), Validation Accuracy (VA), 
Sensitivity (Sens), Specificity (Spec), F1-score 
(F1), Matthews Correlation Coefficient (MCC), 
and Time of each classifier; more information can 
be found in the appendix section. 

 
After feature selection, there has been an 
increase in training accuracy and                       
performance metrics. All the models had a 
training accuracy higher than 0.9500;                         
however, without feature selection, nine of the 
classifiers fell below this threshold. The time 
required for training varied widely, ranging                  
from 7.82 seconds for GaussianNB to 1298.99 
seconds for MLP. Below, you may                      
find the summary of the table and 
maximum/minimum values for each performance 
metric. 

 

Table 2. Accuracies of different classifiers 
 

Classifier Training Accuracy 

Extra Trees 0.973684 
AdaBoost 0.973684 
GaussianNB 0.973684 
MLP 0.973684 
LGBM 0.973684 
CatBoost 0.964912 
Random Forest 0.964912 
SGD 0.964912 
Bagging 0.964912 
QDA 0.956140 
Gradient Boosting 0.956140 
KNeighbors 0.956140 
Logistic 0.956140 
RadialSVM 0.947368 
PolySVM 0.947368 
MultinomialNB 0.938596 
Decision Tree 0.938596 
 

8. DISCUSSION  
 

In various studies, the advantages of                     
using Genetic Algorithms for feature                
selection have been well-documented                
[41,42]. This study designs a feature selection 
model that employs Genetic Algorithms to 
pinpoint relevant features, which is particularly 
useful when dealing with problems with many 
features. 
 

When compared with 17 classifiers without any 
feature selection, the results indicate that feature 
selection has improved performance metrics. 
Table 6 presents a comparative analysis of 
classification accuracies from other studies that 
employed different feature selection methods for 
the same dataset. 
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Table 3. Classifiers and extracted features 
  

Classifier Extracted Features 

ExtraTrees radius mean, area mean, smoothness mean, concavity mean, texture standard error, area standard error, smoothness 
standard error, compactness standard error, fractal dimension standard error, texture worst, perimeter worst,  area worst, 
smoothness worst, compactness worst,  concavity worst, concave points worst 

AdaBoost radius mean, texture mean, perimeter mean, area mean, smoothness mean, concavity mean, texture standard error, area 
standard error, compactness standard error, concave points standard error, symmetry standard error, fractal dimension 
standard error, radius worst, texture worst, smoothness worst, compactness worst, symmetry worst 

GaussianNB radius mean, area mean, compactness mean, concavity mean, concave points mean, symmetry mean, perimeter standard 
error, concavity standard error, concave points standard error, texture worst, perimeter worst, concave points worst 

MLP radius mean, perimeter mean, compactness mean, concave points mean, symmetry mean, radius standard error, area 
standard error, compactness standard error, symmetry standard error, fractal dimension standard error, radius worst, 
texture worst, concavity worst 

LGBM  texture mean, area mean, smoothness mean, concave points mean, symmetry mean, fractal dimension mean, area 
standard error, smoothness standard error, compactness standard error, concave points standard error, fractal dimension 
standard error, texture worst, smoothness worst, concavity worst 

CatBoost  area mean, smoothness mean, compactness mean, concavity mean, radius standard error, texture standard error, area 
standard error, smoothness standard error, compactness standard error, fractal dimension standard error, perimeter worst, 
area worst, smoothness worst 

RandomForest  area mean, smoothness mean, compactness mean, concavity mean, radius standard error, texture standard error, area 
standard error, smoothness standard error, compactness standard error, fractal dimension standard error, perimeter worst, 
area worst, smoothness worst 

SGD  texture mean, area mean, smoothness mean, symmetry mean, texture standard error, perimeter standard error, 
compactness standard error, concavity standard error, fractal dimension standard error, texture worst, perimeter worst, area 
worst, concavity worst, fractal dimension worst 

Bagging  area mean, smoothness mean, compactness mean, concavity mean, radius standard error, texture standard error, area 
standard error, smoothness standard error, compactness standard error, fractal dimension standard error, perimeter worst, 
area worst, smoothness worst 

QDA  texture mean, area mean, smoothness mean, symmetry mean, texture standard error, perimeter standard error, 
compactness standard error, concavity standard error, fractal dimension standard error, texture worst, perimeter worst, area 
worst, concavity worst, fractal dimension worst 

GradientBoosting  radius mean, texture mean, smoothness mean, concavity mean, symmetry mean, fractal dimension mean, perimeter 
standard error, smoothness standard error, concavity standard error, fractal dimension standard error, perimeter worst, 
compactness worst, concavity worst, symmetry worst, fractal dimension worst 
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Classifier Extracted Features 

KNeighbors  texture mean, perimeter mean, smoothness mean, concavity mean, concave points mean, symmetry mean, area standard 
error, smoothness standard error, concave points standard error, symmetry standard error, fractal dimension standard error, 
perimeter worst, smoothness worst, concavity worst, concave points worst, fractal dimension worst 

Logistic  texture mean, perimeter mean, smoothness mean, concavity mean, concave points mean, symmetry mean, area standard 
error, smoothness standard error, concave points standard error, symmetry standard error, fractal dimension standard error, 
perimeter worst, smoothness worst, concavity worst, concave points worst, fractal dimension worst 

RadialSVM  radius mean, texture mean, smoothness mean, concavity mean, area standard error, smoothness standard error, 
compactness standard error, concavity standard error, radius worst, texture worst, smoothness worst, concavity worst, 
concave points worst, symmetry worst, fractal dimension worst 

PolySVM  radius mean, perimeter mean, area mean, concavity mean, concave points mean, fractal dimension mean, perimeter 
standard error, area standard error, concavity standard error, concave points standard error, symmetry standard error, 
texture worst, perimeter worst, smoothness worst, concavity worst, fractal dimension worst  

MultinomialNB  perimeter mean, area mean, smoothness mean, compactness mean, concavity mean, concave points mean, fractal 
dimension mean, perimeter standard error, area standard error, fractal dimension standard error, radius worst, texture 
worst, perimeter worst, smoothness worst, concavity worst, symmetry worst 

DecisionTree  radius mean, texture mean, perimeter mean, smoothness mean, compactness mean, concave points mean, fractal 
dimension mean, radius standard error, texture standard error, smoothness standard error, concave points standard error, 
symmetry standard error, fractal dimension standard error, radius worst, texture worst, smoothness worst, compactness 
worst, concavity worst, symmetry worst, fractal dimension worst 
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Table 4. Classifiers and performance evaluation 
 

Classifiers TP FP TN FP TA VA Sens Spec Prec NPV FPR FDR FNR F1  MCC Time(s) 

Extra Trees 65 2 44 3 1.0000 0.9561 0.9559 0.9565 0.9701 0.9362 0.0435 0.0299 0.0441 0.9630 0.9094 14.597 
AdaBoost 69 2 41 2 0.9912 0.9649 0.9718 0.9535 0.9718 0.9535 0.0465 0.0282 0.0282 0.9718 0.9253 197.39 
GaussianNB 71 0 39 4 0.9250 0.9649 0.9467 1.0000 1.0000 0.9070 0 0 0.0533 0.9726 0.9266 7.82 
MLP 70 1 4 39 1.0000 0.9561 0.9459 0.9750 0.9859 0.9070 0.0250 0.0141 0.0541 0.9655 0.9068 1298.99 
LGBM 69 2 41 2 0.9912 0.9649 0.9718 0.9535 0.9718 0.9535 0.0465 0.0282 0.0282 0.9718 0.9253 224.51 
CatBoost 71 0 41 2 0.9912 0.9825 0.9726 1.0000 1.0000 0.9535 0 0 0.0274 0.9861 0.9630 864.42 
Random 
Forest 

71 0 42 1 1.0000 0.9912 0.9861 1.0000 1.0000 0.9767 0 0 0.0139 0.9930 0.9814 608.55 

SGD 71 0 35 8 0.9737 0.9298 0.8987 1.0000 1.0000 0.8140 0 0 0.1013 0.9467 0.8553 12.73 

Decision 
Tree 

70 1 39 4 0.9737 0.9649 0.9467 1.0000 1.0000 0.9070 0 0 0.0533 0.9726 0.9266 23.06 

QDA 67 4 41 2 0.9825 0.9391 0.9571 0.9111 0.9437 0.9318 0.0889 0.0563 0.0429 0.9504 0.8719 10.75 

Gradient 
Boosting 

71 0 41 2 0.9912 0.9825 0.9726 1.0000 1.0000 0.9535 0 0 0.0274 0.9861 0.9630 452.80 

KNeighbors 71 0 40 3 0.9825 0.9737 0.9595 1.0000 1.0000 0.9302 0 0 0.0405 0.9793 0.9447 28.50 
Logistic 70 1 41 2 1.0000 0.9737 0.9722 0.9762 0.9859 0.9535 0.0238 0.0141 0.0278 0.9790 0.9439 277.44 
Radial SVM 71 0 39 4 0.9649 0.9649 0.9467 1.0000 1.0000 0.9070 0 0 0.0533 0.9726 0.9266 48.33 
Poly SVM 71 0 39 4 0.9649 0.9649 0.9467 1.0000 1.0000 0.9070 0 0 0.0533 0.9726 0.9266 31.30 
MultinomialNB 71 0 37 6 0.9561 0.9474 0.9221 1.0000 1.0000 0.8605 0 0 0.0779 0.9595 0.8907 9.40 
Bagging 70 1 40 3 0.9825 0.9649 0.9589 0.9756 0.9859 0.9302 0.0244 0.0141 0.0411 0.9722 0.9253 97.31 
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Table 5. Maximum/Minimum values for each performance metrics 
 

Metric Maximum Values Minimum Values 

TP (True Positive) 71 (Multiple Classifiers) 65 (Extra Trees) 

FP (False Positive) 4 (QDA) 0 (Multiple Classifiers) 

TN (True Negative) 42 (Random Forest) 4 (MLP) 

TA (Training Accuracy) 1.0000 (Extra Trees, MLP, 
Random Forest, Logistic) 

0.925 (GaussianNB) 

VA (Validation Accuracy) 0.9912 (Random Forest) 0.9298 (SGD) 

Sens (Sensitivity) 1.0000 (Multiple Classifiers) 0.8987 (SGD) 

Spec (Specificity) 1.0000 (Multiple Classifiers) 0.9070 (Multiple Classifiers) 

Prec (Precision) 1.0000 (Multiple Classifiers) 0.9070 (Multiple Classifiers) 

NPV (Negative Predictive 
Value) 

0.9767 (Random Forest) 0.8140 (SGD) 

FPR (False Positive Rate) 0.0889 (QDA) 0 (Multiple Classifiers) 

FDR (False Discovery 
Rate) 

0.0563 (QDA) 0 (Multiple Classifiers) 

FNR (False Negative 
Rate) 

0.1013 (SGD) 0.0139 (Random Forest) 

F1 (F1 Score) 0.9930 (Random Forest) 0.9467 (SGD) 

MCC (Matthews 
Correlation Coefficient) 

0.9814 (Random Forest) 0.8553 (SGD) 

Time 1298.99 (MLP) 7.82 (GaussianNB) 

 
Table 6. Comparison of other proposed methods [5, 11, 43, 44] 

 

Classifier This Study 
(Random Forest) 

ANN SVM Graph-Based PS-Classifier 

Test Accuracy 99.12% 96.70% 96.50% 96.40% 96.90% 

 
Table 6 indicates that Random Forest is the most 
effective classifier for feature selection using 
genetic algorithms. Additionally, this study has 
outperformed many other methods in the 
literature as seen in Table 6. The use of genetic 
algorithms has yielded a significant improvement 
in accuracy compared to traditional methods like 
Threshold Variance and Pearson Correlation for 
feature selection.  
 

9. FUTURE PERSPECTIVES 
 
The process of selecting features has been the 
focus of a significant investigation into using GAs 
for the classification, diagnosis, or prediction of 
cancer. Although many of the articles that were 
considered performed to a level of accuracy of 
over 90%, the vast majority of them either 
focused on a single type of cancer or only did so 
on some of the datasets that were taken into 
consideration. Cancer classifiers or diagnostic 
tools should be able to recognize at least various 
forms of cancer in one organ for efficient 
application in industrial settings. However, in 
order to accomplish this, a multi-objective fitness 
function would need to be implemented, and 

numerous datasets would need to be formatted 
into a single bigger dataset. Calculating the 
fitness of each individual requires the classifier 
that is being used for the fitness function to be 
cross-validated numerous times in each 
generation. This can add to a substantial 
computational cost. Furthermore, many options 
for the classifier are used for classification, either 
after feature selection parameter optimization or 
both. 
 

10. CONCLUSION 
 
In the proposed model, feature selection has 
been conducted using a genetic algorithm for 
breast cancer detection. The model has been 
evaluated with 17 different classifiers, and the 
highest test accuracy was achieved with the 
Random Forest Classifier (99.12%). The results 
show that selecting appropriate features can 
improve classification performance. This 
research demonstrates that a genetic algorithm 
is effective for feature selection and suggests 
that future studies could explore its applicability 
to other types of cancer, such as brain, prostate, 
and kidney. 
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APPENDIX 
 

 
 

Fig. 1. Confusion matrix of extra trees classifier 
 

 
 

Fig. 2. Confusion matrix of adaboost classifier 
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Fig. 3. Confusion matrix of gaussian naive bayes classifier 
 

 
 

Fig. 4. Confusion matrix of categorical boosting classifier 
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Fig. 5. Confusion matrix of random forest classifier 
 

 
 

Fig. 6. Confusion matrix of bagging classifier 
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Fig. 7. Confusion matrix of light gradient boosting machine classifier 
 

 
 

Fig. 8. Confusion matrix of quadratic discriminant analysis machine classifier 
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Fig. 9. Confusion matrix of stochastic gradient descent classifier 
 

 
 

Fig. 10. Confusion matrix of gradient boosting classifier 
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Fig. 11. Confusion matrix of k-nearest neighbors classifier 
 

 
 
 
 

Fig. 12. Confusion matrix of logistic regression classifier 
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Fig. 13. Confusion matrix of radial kernel support vector machine classifier 
 

 
 

Fig. 14. Confusion matrix of polynomial kernel support vector machine classifier 
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Fig. 15. Confusion matrix of multilayer perceptron classifier 
 
 

 
 

Fig. 16. Confusion matrix of multinomial naive bayes classifier 
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Fig. 17. Confusion matrix of multi-layer perceptron classifier 
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