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Abstract 
 

Determining whether sample differences in central tendency represent real differences in parent populations 

is a typical issue in applied research. If the conditions of normality, homogeneity of variance, and 

independence of errors are met, the t-test can be used for a two sample instance (two groups). However, the 

nonparametric equivalent is taken into account when these presumptions are violated. In order to determine 

which test is most effective and resilient to a certain distribution and sample size when samples are obtained 

from separate populations, the study compares the effectiveness and sensitivity of power of four test 

statistics. These tests were examined under normal and some skew distributions at sample size of 5, 10, 15, 

20, 25, 30, 40, 45, and 50 using simulation. The most effective test for a given distribution and sample size 

was chosen using the power of each test computed. The study found that when data are taken from a normal 

distribution and tested at small and large sample sizes, respectively, the t-test and Welch test have the highest 
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power, while the Median is the most resistant to uniform and gamma, and the Man-Whitney test is the most 

reliable for exponential distributions. 

 

 

Keywords: Gamma; exponential; Man-Whitney test; simulation; normal; t-test 

 

1 Introduction 
 

In research investigations, using statistical methods to examine the data gathered is given top priority. The 

primary focus has been on obtaining the pertinent information from the obtained data to address the study's 

intended objectives. Any researcher must be extremely careful to select the right tool for the job. Examining an 

analytical tool's resistance to assumptions' variation is another critical decision-making factor. To model the data 

effectively and make reliable inferences, numerous statistical methods have been created while taking these 

needs into account. To model the data effectively and make reliable inferences, numerous statistical methods 

have been created while taking these needs into account. During the process, it was discovered that only a small 

number of tools were dependent on various assumptions that were essential to their operation. A t-test, for 

instance, works effectively when data is gathered from a typical population. Prior to being utilized to test the 

hypothesis based on the population mean, this assumption must first be checked using the sample that was 

actually drawn. The conclusions made need not be accurate if the data do not support the assumption of 

normalcy but one nevertheless chooses to apply it [1] (Khatun, 2021). 

 

Furthermore, a good alternative value compared to the null hypothesis may have low test power. The population 

may not always act regularly and may exhibit characteristics of the heavy tail phenomenon. Outliers or extremes 

are what produce heavy tail phenomena; hence the best model for the phenomenon must be selected. A 

statistical hypothesis is a premise or claim about one or more populations that may or may not be true. 

Typically, it is a statement about a set of traits in a population distribution. It is known as a hypothesis since it is 

uncertain of its veracity. In tests of substantial difference between two independent samples, a variety of 

approaches may be employed, and each one may result in results that are considerably different. This implies 

that choosing the wrong test statistic may lead to an erroneous conclusion [2]. To prevent the spread of 

misleading information, it is essential to properly investigate a select few methods for determining whether there 

is a significant difference between variables or subjects, in particular independent samples.  

 

The relative effectiveness of the parametric t-test and the Wilcoxon Signed ranked test at various sample sizes 

on a pair and a single sample, respectively, has been studied by Akeyede et al. [3] and Edith and Nkiru [2]. This 

study examines the effectiveness and sensitivity of four test statistics to establish which test is more useful in 

various situations where samples/populations are independent. 

 

2 Related Empirical Studies 
 

Scientists that conduct empirical investigations and contribute significantly to their respective fields of study 

rely on the results of their sample data. They check to see that the right sample strategy was applied when 

gathering the respondents' responses. The assumption of normalcy served as the foundation for the majority of 

parametric testing processes, and any departure from this assumption may have an impact on their ability to 

produce accurate results. This section examines many viewpoints on the assumption of normality and the effects 

that result from violating it that have been made by scientists, some of whom have created the methodologies. 

The normal distribution has played a significant role in the advancement of statistical methods since its 

inception [4], and it holds a prominent place in the evolution of statistics. In their book on the normal 

distribution, Patel and Read [5] go into great length regarding the normal distribution and describe many of its 

key characteristics, approximations, and behaviors. It is suggested that a beginner who wants to learn about 

normal distribution start with this book before moving on to more sophisticated works that cover the topic.  The 

t-test, one of the most significant and popular parametric tests, is heavily reliant on the supposition of normality. 

 

Student [6] assumes that the population from which the sample was drawn is normal and develops a t-

distribution curve to represent sample means in his paper on the derivation of likely error of mean. Additionally, 

he notes that the results gained do not necessarily apply to groups that are known to not have a normal 

distribution. If one looks at population strict normalcy, the response is not always true. For the t-distribution to 
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be used in the analysis, the population does not have to be strictly normal. If the population is around typical, 

that is enough. As a result, a researcher must make sure the sample is random. Fisher [7] examined the uses of 

the t-distribution in his study. The paper provides the t-test statistic distribution for one sample and two sample 

problems under the supposition of normality. A t-distribution with the appropriate degrees of freedom can be 

used to analyze the behavior of the difference between two sample means. The variances of the two populations, 

however, have been considered to be equal. Welch [8] investigated how the equality of variances assumption 

affects the behavior of the difference between two sample means. He suggests a degree of freedom correction to 

make the sample distribution of the test statistic the t-distribution once more. It has been assumed that the 

populations independently follow normal distribution in the case of two sample means. According to Welch [9], 

the actual t-test for differences between two means with the sum of two sample sizes less two will work well 

when the variances are equal. Under unequal variances, it does not perform effectively. When comparing 

differences in means of equal numbers of data, the t-test can still be utilized under mild departures from 

normality but not extreme departures, according to Bartlett [10], who studies the impact of non-normality on t-

distribution. Additional studies on the effectiveness of these tests when non-normality is present [11]. 

 

Similar to this, Wilcoxon (1945) created an alternate method to a two sample (dependent) paired t-test that is 

now commonly known as the "Wilcoxon signed rank test." Kruskal-Wallis (1952) developed a test that can be 

used as an alternative to ANOVA, while Mann-Whitney (1947) provided a testing process as an alternative to 

the t-test (independent samples). The Friedman [12] test can be applied if one is interested in evaluating the 

hypotheses on more than two related samples. The data are sorted according to magnitude in practically all non-

parametric tests, and this ranking is also utilized to calculate the test statistic. Another significant feature of 

nonparametric methods is that for high sample sizes, the test statistic tends toward normality. The majority of 

statistical software has add-ons to calculate.   
 

There aren't many discussions over whether to use a t-test or a Wilcoxon test depending on the test's power. In 

[13], Hodges and Lehmann investigated the effectiveness of a few non-parametric alternatives to the t-test. 

Boneau [14] contrasts the t-and test's U's power. Under several non-normal distributions, Blair and Higgins [15] 

compared the power of the Wilcoxon test to that of the student t-test. The relative strength of the Mann-Whitney 

U test and the t-test is discussed by Blair and Higgins [16]. We compare the t-power test's to the Wilcoxon test's 

power for the data sets used in this study by taking into consideration a couple of these considerations. 

Nonparametric approaches may not yield accurate findings if even one of its presumptions is violated. 

Additionally, it is difficult to check the assumptions, such as symmetry, etc. The same problems that arise in 

cases of normality will also arise in this situation. The shortcomings of non-parametric tests have paved the way 

for the development of other, more reliable statistical techniques. They are referred to as "Robust Statistical 

Methods." These techniques include location estimates, interval creation, procedures for testing the relevance of 

location, one-sample and two-sample tests, etc. Due to their insensitivity to assumptions being violated, they are 

crucial un data analysis. Huber [17] examines location estimation techniques and gives a variety of techniques. 

Additionally, Huber [18] reviews various literature-based robust statistical techniques. These strategies, among 

other things, work effectively even when the data is contaminated. When there are numerous outliers and 

extreme observations in the data. 
 

Therefore this study examined the relative efficiency of four different tests of sample means from independent 

populations under Normal, Uniform, Gamma and Exponential distributions. The tests considered are t-test, 

Welch’s t-test, Median, and Mann-Whitney U test. 
 

3 Methodology  
 

This study focuses on two parametric tests namely; Student t-test and Welch's t-test and two non-parametric 

tests Median and Mann-Whitney U tests of two independent samples. These tests were examined under normal 

and some skew distributions at sample size of 5, 10, 15, 20, 25, 30, 40, 45, and 50 through simulation. The 

power and Type I Error of each test were used to determine the best among the tests under a particular 

condition. The relative efficiency of these tests was examined through simulations in R statistical software. 
 

3.1 Simulation Procedures and Analysis  
 

For every sample size of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50, which considered as small to large sample sizes 

respectively, random samples were simulated using the normal, uniform, gamma, and exponential distributions. 
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The data were generated under the condition of equality of variances assumption from different aforementioned 

distributions and sample sizes. Data were also produced for variances with unequal variances using the same 

distributions and sample sizes. Each test approach was used on various sample sizes of data sets, and the test's 

power was examined in each case. Each distribution's means and variances—either the same means and the 

same variances, or separate means and variances from other family distributions—were used to simulate two 

samples from it simultaneously at each replication, resulting in independent samples. 1000 times were put 

through the process for each sample size selected.  

  

It is frequently necessary to decide whether a test is significant or not. We can investigate two inquiries 

regarding the relative worth of statistical tests by converting the p-value into a binary decision: 

 

i. What proportion of results that are noteworthy will a researcher wrongly consider to be unimportant? 

ii. How many stated significant outcomes will actually turn out to be unimportant? 

 

In fact, the number of times H0 is rejected when it is true is tallied as a Type I error, and the number of times H0 

is accepted when it is true is tallied as the test's power for each statistic under consideration. 

 

3.2 Student t-test 
 

H0 : 𝜇1 = 𝜇2 

 

In a way, this hypothesis is about the mean difference because it is true if and only if 𝜇1 - 𝜇2 = 0. Therefore, we 

compute the sample means 𝑥̅1 and 𝑥̅2 from independent samples of size n1 and n2, respectively. The next step is 

to determine whether the difference between 𝑥̅1 and 𝑥̅2 is statistically significant. To determine whether there is 

a difference between the two populations' means 

 

𝑡 =
𝑥̅1−𝑥̅2

√𝜎2(
1

𝑛1
+

1

𝑛2
)

~𝑡𝑛1+𝑛2−2                                                     (1) 

 

There are numerous names for this estimation. The phrase "the pooled unbiased estimator" as well as "Mean 

Square Within" and "Mean Square Error" have been used to refer to it. In particular, the formula for two groups 

is; 

 

𝜎̂2 =
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2
                                                              (2) 

 

Note that the resulting t-statistic has 𝑛1 +𝑛2−2 degrees of freedom 

 

3.3 Welch's t-test 
 

The two populations are thought to have normal distributions with equal variances for the purposes of the 

Student's t-test. Although the premise of normality, continuous data, and interval scales are preserved, Welch's t-

test is made to handle unequal variances.  

 

𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒−𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
                              (3) 

 

Our estimate is the difference between the two sample means when there are two independent samples. The 

hypothesized value is the difference between the two genuine population means that we assume to exist; this 

value is frequently zero (to test whether there is a difference or not between the means of the two populations). 

 

 𝑡 ′ =
(𝑥̅1−𝑥̅2)−(𝜇1−𝜇2)

𝑆𝐸
                                                     (4) 
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We estimate our standard error in a Welch's two independent sample t-test using the sample standard deviations. 

 

𝑆𝐸 = √
𝑠1

2

𝑛1
+

𝑠1
2

𝑛1
                                                                                               (5) 

 

The Welch-Satterthwaite equation is used to roughly estimate the degrees of freedom associated with these 

variance estimations. 

 

The statistic's degree of freedom is determined as follow 

 

𝑑𝑓 ′ =
(

𝑠1
2

𝑛1
+

𝑠1
2

𝑛1
)

2

𝑠1
4

𝑛1
2(𝑛1−1)

+
𝑠2

4

𝑛2
2(𝑛2−1)

                                                                    (6) 

 

 3.4 Median Test 
 

In a random sample of size nj, where the two populations are measured at least on an ordinal scale, let xi 

represent the i observation. The two samples are combined into one sample of size 





2

1

212,1;
j

nnjnjn observations, which is then, sorted either from the largest to the smallest or from 

the smallest to the largest in order to apply the two sample median test by ranks. In the absence of ties, any 

randomly chosen observation in the combined sample is equally likely to be greater or less than any other 

observation in the sample and, as a result, is equally likely to receive any one of the ranks assigned to the 

observations. This justifies the hypothesis of equal population medians. Let   

 





jn

i

ijj rR
1

                                                                                                       (7) 

 

be the average rank divided by the sum of the ranks given to the observations selected from population j for j=1, 

2, and  

 


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i j
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j

j

j
n
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n

R
r

1

.
                                                                                           (8) 

  

The overall mean rank is  

   


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That is,     
2

1
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)1( 



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n

n

nn
r            (9) 

 

The total variance of all the ranks is 
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Currently, the total squared variation between the observed sample mean rank or treatment group mean rank and 

their overall mean rank r is 
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Now the quadratic form, 
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That is,  

 

)1(3
)1(
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n
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nnn
Q
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has approximately a chi-square distribution with 1121 k degree of freedom for sufficiently large n, 

and may be used to test the null hypothesis of equal population medians. The null hypothesis is rejected at α 

level of significance if 
2

1,1

2

 Q  otherwise the null hypothesis is accepted. Note that equation 5 can be 

alternatively expressed as has a chi-square distribution that, for sufficiently big n, has 1121 k degree 

of freedom and can be used to test the null hypothesis that the population medians are equal. If the null 

hypothesis is accepted in all other cases, it is rejected at the level of significance if 
2

1,1

2

 Q . Keep in 

mind that equation (5) can also be written as 
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Or when further simplified yields 
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Hence, the test statistic of equation (6) can be equivalently written as: 

 

)1()(

))((12

21

2

2121

2

12212






nnnnnn

RnRn
Q         (14) 

 

If n1 and n2 are both at least (5), the test statistic of equations (6) and 8 is adequate and produces good results. 

Equation (8) further simplifies to mnn  21  if the two samples are equal. 

 

   1

))((12
2

2

12212






mmm

RnRn
Q          (15) 

 

3.5 Mann-Whitney U test  
 

The Mann-Whitney U test is a non-parametric test; therefore it makes no assumptions about how the scores will 

be distributed. The test's underlying presumptions are listed below. 

 

i. The observations made by each group independently of the other. 

ii. The results are ordered (i.e. one can at least say, if any two observations, which is the greater). 

iii. The chance of an observation from one population (X) exceeding an observation from the second 

population (Y) equals the likelihood of an observation from Y exceeding an observation from X under 

the null hypothesis since the distributions of both groups are equal. In other words, there is asymmetry 

between populations in terms of the likelihood of a larger observation being drawn at random.  

iv. The likelihood that an observation from one population (X) will surpass an observation from a different 

population (Y), after ties are taken into account, is not equal to 0.5 under the alternative hypothesis. A 

one-sided test can also be used to express the alternative, as in the following example: 

    5.05.0  YXPYXP . 

 

𝑈 = 𝑛1𝑛2 −
𝑛1(𝑛2+1)

2
− ∑ 𝑅𝑖

𝑟2
𝑖=𝑟1+1                                                     (16) 

 

Where: 

U = Mann-WhitneyU test 

1n  = sample size one 

2n = Sample size two 

iR  = Rank of the sample size 

 

4 Results and Discussion 
 

Data were simulated from normal and normal distributions of two different independent populations at different 

sample sizes. In the first instance, the variances of the two populations were set equal and each test was applied 

on the data generated in which power is recorded. The simulations and analyses were carried out with 1000 

iterations and their average values were recorded for all categories in Table 1 and 8 for equal and unequal 

variances respectively. The best test was determined by the power of the test and discussions were presented at 

the beneath of each table. 

 

Table 1 shows the power of the various tests evaluated in this study at various sample sizes. At varied sample 

sizes, all tests, with the exception of the median tests, reject the incorrect hypotheses and accept the correct 

alternatives. They do, in fact, have test-taking power. The t-test, in particular, shows the strongest rejection; 

especially at a small sample size.Table 1 shows the power of the various tests evaluated in this study at various 

sample sizes. At varied sample sizes, all tests, with the exception of the median tests, reject the incorrect 

hypotheses and accept the correct alternatives. They do, in fact, have test-taking power. The t-test, in particular, 

exhibits the strongest rejection, especially at smaller sample numbers. 
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Table 2 displays the results of an analysis of data generated by a uniform distribution with equal variances. The 

table shows that the two non-parametric tests have higher rejection to the incorrect hypothesis at = 0.05 than 

their parametric counterparts at smaller sample sizes, i.e. from 5 to 25, where the median is the best among 

them. However, between sample sizes of 30 and 50, which are considered big sample sizes, the parametric t-test 

has the maximum power when compared to non-parametric tests. 

 

Table 1. Average powers of test statistics for data generated from normal distribution when variance are 

equal 

 

Sample Size Test statistics 

T-test Welch’s t- test  Median test Mann-Whitney U test 

5 4.179 x10
-9

 6.145 x10
-9

 1.0000 0.0079 

10 6.884x10
-15

 1.186 x10
-14

 1.0000 1.083 x10
-5

 

15 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 1.289 x10
-8

 

20 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 1.451 x10
-11

 

25 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 1.582 x10
-14

 

30 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 <2.2 x10
-16

 

35 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 <2.2 x10
-16

 

40 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 <2.2 x10
-16

 

45 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 <2.2 x10
-16

 

50 <2.2 x10
-16

 <2.2 x10
-16

 1.0000 <2.2 x10
-16

 

 

Table 2. Average powers of test statistics for data generated from uniform distribution when variance are 

equal 

 

Sample Size Test statistics 

T-test Welch’s t- test  Median test Mann-Whitney U test 

5 0.0383 0.0669 0.0188 0.1508 

10 4.171e-04 1.166e-03 9.766 e-06 1.083e-05 

15 1.094e-06 1.634e-05 3.052e-08 9.025e-08 

20 1.199e-06 1.172e-05 5.909 e-08 1.831e-06 

25 1.751e-10 1.664e-08 7.749e-11 9.118e-11 

30 5.967e-10 2.075e-08 2.974e-05 1.266e-10 

35 8.024e-16 1.579e-12 2.088e-07 2.407e-12 

40 3.275e-11 1.563e-09 2.114e-05 5.906e-09 

45 9.526e-15 3.199e-12 4.667e-09 4.792e-13 

50 1.124e-15 5.159e-13 2.231e-10 4.895e-13 

 

Table 3. Average powers of test statistics for data generated from gamma distribution when variance are 

equal 

 

Sample size                                                  Test statistics 

T-test Welch’s t- test Median test Mann-Whitney U test 

5 0.3087 0.3382 0.9688 0.0556 

10 0.1656 0.1820 0.9990 0.0007 

15 0.1868 0.1974 0.9990 0.0001 

20 0.4002 0.4053 1.0000 5.024e-07 

25 0.0982 0.1046 1.0000 6.972e-08 

30 0.0510 0.0558 1.0000 3.567e-11 

35 0.1051 0.1052 1.0000 3.118e-09 

40 0.0269 0.0298 1.0000 5.77e-12 

45 0.0021 0.0028 1.0000 <2.2e-16 

50 0.0010 0.0013 1.0000 9.81e-11 
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Mann-Whitey's rejection of the null hypothesis in Table 3 appears to be strongest across all sample size 

categories and so has the maximum power. When comparing the power of their rejections of null hypotheses, 

the two parametric tests appear to be better than the median test as the sample size increases, with the t-test 

having the best power in that category. 

 

According to Table 4, which demonstrates the relative performance of the tests with respect to data obtained 

from an exponential distribution of equal variances, the Mann-Whitney test has the best power with strong 

rejection of the incorrect hypothesis, followed by the median test. The t-test is the superior of the two parametric 

tests, and the power of all tests increases as sample size increases. 

 

Table 4. Average powers of test statistics for data generated from exponential distribution when variance 

are equal 

 

Sample Size                                                  Test statistics 

T-test Welch’s t- test Median test Mann-Whitney U test 

5 0.1901 0.2244 0.5000 0.8413 

10 0.0020 0.0050 0.0010 0.0007 

15 0.0004 0.0013 0.0004 3.507e-06 

20 0.0037 0.0060 0.0060 3.364e-05 

25 4.768e-06 2.744e-05 2.98e-08 3.085e-12 

30 3.69e-06 1.764e-05 2.887e-08 1.537e-11 

35 7.782e-07 4.35e-06 1.836e-08 2.514e-13 

40 2.428e-09 4.498e-08 7.467e-10 4.184e-14 

45 2.141e-08 1.741e-07 4.667e-09 2.459e-12 

50 6.8e-09 6.377e-08 2.231e-10 1.851e-13 

 

Table 5. Average powers of test statistics for data generated from normal distribution when variance are 

different 

 

Sample Size Test statistics 

T-test Welch’s t- test  Median test Mann-Whitney U test 

5 1.046 x10
-7

 1.008 x10
-7

 1 0.007937 

10 3.356 x10
-11

 6.262 x10
-12

 1 1.083 x10
-5

 

15 3.212x10
-16

 3.089 x10
-16

 1 1.289 x10
-8

 

20 2.432 x10
-16

 2.387 x10
-16

 1 1.451 x10
-11

 

25 <2.2 x10
-16

 <2.2 x10
-16

 1 1.582e-14 

30 <2.2 x10
-16

 <2.2 x10
-16

 1 <2.2 x10
-16

 

35 <2.2 x10
-16

 <2.2 x10
-16

 1 <2.2 x10
-16

 

40 <2.2 x10
-16

 <2.2 x10
-16

 1 <2.2 x10
-16

 

45 <2.2 x10
-16

 <2.2 x10
-16

 1 <2.2 x10
-16

 

50 <2.2 x10
-16

 <2.2 x10
-16

 1 <2.2 x10
-16

 

 

Table 5 shows the relative performance of the four tests, using power as a criterion for evaluation, when the 

variances of the two sample data generated from normal are not equal. It was discovered that the Welch's t- test 

has the strongest rejection value to the wrong null hypothesis than other tests and indeed has the highest power, 

followed by the parametric test. However, as the sample size increases, their power becomes stronger and the t-, 

Welch's analogue test, and 

 

Table 6 indicates that the two non-parametric tests had higher rejection to the erroneous null hypothesis and 

power at = 0.05 than their parametric equivalents at various sample sizes, with the Mann-Whitney test 

performing the best. The t-test has the lowest power as sample size increases and hence is the weakest of the 

four tests, followed by the Welch parametric test. 
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Table 6. Average powers of test statistics for data generated from uniform distribution when variance are 

different [19] 

 

Sample Size Test statistics 

T-test Welch’s t- test Median test Mann-Whitney U test 

5 0.9179 0.9184 0.8125 0.6905 

10 0.8551 0.8539 0.6230 0.6030 

15 0.8654 0.8646 0.5000 0.4748 

20 0.8762 0.8671 0.5881 0.4211 

25 0.7699 0.7006 0.7878 0.7437 

30 0.4151 0.4083 0.8998 0.1381 

35 0.1339 0.1380 0.02048 0.01299 

40 0.9669 0.9670 0.3179 0.0886 

45 0.7794 0.7800 0.5000 0.4552 

50 0.5046 0.5061 0.4439 0.4227 

 

Table 7. Average powers of test statistics for data generated from gamma distribution when variance are 

different [19] 

 

Sample Size Test statistics 

T-test Welch’s t- test Median test Mann-Whitney U test 

5 0.3116 0.3409 0.000968 0.05556 

10 0.5254 0.5262 0.000599 0.00105 

15 0.1983 0.2087 0.0002151 0.0002151 

20 0.3307 0.3368 2.241e-08 9.249e-07 

25 0.5343 0.5346 1.75e-12 1.75e-07 

30 0.061 0.06585 <2.2e-16 4.126e-10 

35 0.51 0.5121 <2.2e-16 4.503e-08 

40 0.02781 0.03073 <2.2e-16 9.769e-11 

45 0.002199 0.002896 <2.2e-16 <2.2e-16 

50 0.3828 0.3848 <2.2e-16 9.878e-10 

 

Table 7 shows that the median test is the best of the four tests at all sample sizes for data simulated from the 

Gamma distribution with unequal variances, followed by the Man-Whitney U test. Because of its low rejection 

values, the Welch test performs the worst in this scenario. It was also discovered that Mann Whitney and 

median tests have the strongest erroneous hypotheses, at 5% level of significance, as sample sizes increase, 

particularly from 30 onward, and so have the highest power in that category. 

 

Table 8. Average powers of test statistics for data generated from exponential distribution when variance 

are different [19] 

 

Sample Size Test statistics 

T-test Welch’s t- test Median test Mann-Whitney U test 

5 0.2875 0.3187 0.78658 0.87732 

10 0.003012 0.00219 0.0007863 0.0008653 

15 0.00014 0.00023 0.0005431 3.673e-06 

20 0.00011 0.0004 0.005909 3.4523e-05 

25 3.120e-06 2.744e-05 2.432e-08 2.112e-12 

30 2.781e-06 2.064e-05 2.768e-12 1.307e-11 

35 1.987e-07 2.001e-06 <2.2e-16 3.210e-13 

40 1.098e-09 1.498e-08 <2.2e-16 4.329e-14 

45 1.145e-09 1.241e-07 <2.2e-16 2.452e-13 

50 1.044e-09 1.377e-08 <2.2e-16 3.145e-13 
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Table 8 shows that both non-parametric tests had higher rejection values to the erroneous null hypothesis than 

their parametric counterparts from sample sizes of 5 to 50, classifying them as the best with the median test as 

the best. As sample size grows, the performance of all tests improves [20].  

 

5 Conclusion 
 

This study revealed the two parametric tests that are more efficient and perform better than nonparametric 

counterpart on data from normal distribution with the t-test as the best when variances of the two independent 

sample data are the same while Witch test is the best when variances are not equal, most especially at lower 

sample sizes. However as sample size increased from 30, the median test of non-parametric test compete with 

them.  From the result (data) generated from uniform and gamma distributions, Man-Whitney test is the best 

when variances are equal while median test is the best when variances are unequal at smaller sample sizes. As 

sample size increases, the parametric the parametric tests seem to be better than Mann-Whitney. Hence, it was 

also noted that, the performance of the median test increases as sample size was increased based on conditions 

used.  

 

Furthermore, the Mann-Whitney has the best when data follows exponential distribution followed by median 

test. The t-test is the best between the two parametric tests and the power of all the tests improve as sample size 

increases. From sample size of 35 to 50, which can be classified as large sample sizes, median test is the best 

among the non-parametric tests. 

 

6 Recommendation  
 

The following recommendations are made from our findings; 

 

i. Welch’s t-test can be used at smaller sample sizes with equal variances while Median test for smaller 

sample sizes in normal distribution with unequal variance. 

ii. Mann Whitney U test can be used for the skewed distributions when variances are equal. 

iii. Median test can be used for all the distributions for unequal variance at smaller sample size under both 

criteria.  

iv. This study also suggested for further study in considering other distributions like Cauchy, Weilbull, etc. 

and parametric and non-parametric statistics beyond two sample/populations 
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