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Abstract

Linear differential equations with polynomial coefficients are studied. Solutions near the origin and infinity
are presented for the differential equations of the second order and with two blocks of classified terms, where
the solutions u(t) near the origin and infinity are assumed to be expressed by a power series of t and t−1,
respectively, multiplied by a power of t. In the present study, it is shown that the function which is obtained
from any of these solutions by multiplying eβt or eβ/t or (1− t/α)β , is a solution of a differential equation with
two or three blocks of classified terms, where α and β are constants. Discussions are given also of multipliers

eβt
2

or eβ/t
2

. The studies are mainly made for the cases in which the singularities of the differential equation
do not change, but some studies are given for the cases when the singularities change.
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1 Introduction

In [1, 2], differential equations of order lx ∈ Z>0, with coefficients of polynomials, are studied. They take the
form:

lx∑
k=0

∞∑
m=0

ak,mt
m dk

dtk
u(t) =

lx∑
k=0

(ak,0 + ak,1 · t+ ak,2 · t2 + ak,3 · t3 + · · · ) · d
k

dtk
u(t)

= 0, t > 0, (1.1)

where ak,m for k ∈ Z[0,lx] and m ∈ Z>−1 are constants. It was assumed that a finite number of the constants
are nonzero.

Here R and Z are the sets of all real numbers and all integers, respectively, and Z[a,b] = {n ∈ Z|a ≤ n ≤ b} for
a, b ∈ Z satisfying a < b. We also use C which is the set of all complex numbers, and Z>a = {n ∈ Z|n > a},
Z<a = {n ∈ Z|n < a} for a ∈ Z, and R>a = {x ∈ R|x > a} for a ∈ R.

In [1], the terms of Equation (1.1) are reassembled as

lx∑
l=−∞

D̃l
tu(t) = 0, t > 0, (1.2)

where

D̃l
tu(t) =

lx∑
k=max{0,l}

ak,k−l · tk−l
dk

dtk
u(t), (1.3)

each of D̃l
tu(t) is called a block of classified terms.

When lx = 2, Equation (1.2) is expressed as

D̃2
tu(t) + D̃1

tu(t) + D̃0
tu(t) + D̃−1

t u(t) + D̃−2
t u(t) + · · · = 0, t > 0, (1.4)

where

D̃2
t =a2,0 ·

d2

dt2
, D̃1

t = a2,1 · t
d2

dt2
+ a1,0 ·

d

dt
, D̃0

t = a2,2 · t2
d2

dt2
+ a1,1 · t

d

dt
+ a0,0,

D̃−1
t =a2,3 · t3

d2

dt2
+ a1,2 · t2

d

dt
+ a0,1t, D̃−2

t = a2,4 · t4
d2

dt2
+ a1,3 · t3

d

dt
+ a0,2t

2, · · · . (1.5)

When we discuss a differential equation of order lx, the following condition is adopted.

Condition 1.1. We consider such a differential equation is not regarded as a differential equation of u′(t), so
that

∑∞
m=0 |alx,m| 6= 0 and

∑∞
m=0 |a0,m| 6= 0.

In [1], special attention is focussed on Equation (1.4) for the case in which there exist two nonzero blocks of
classified terms, so that the equation is expressed as

D̃l
tu(t) + D̃l−m

t u(t) = 0, m ∈ Z>0, (1.6)
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Remark 1.1. By Equation (1.5) for lx = 2, we see that Equation (1.6) for l = −1,−2, . . . are equivalent to
the one for l = 0, and the differential equation for l = 1 is equivalent to the one for l = 0 when a0,0 = 0. We
note that the differential equation for l = 2 is equivalent to a special one for l = 0. Hence we study only the
differential equation for l = 0.

In [1, 2], special attention is focussed on the solutions of

D̃0
tu(t) + D̃−1

t u(t) = 0, (1.7)

for lx = 2.

We study the differential equations belonging to Equation (1.7) for l = 0 which are given by

2D
0
tu(t) + 3D

−1
t u(t) = δ′2 · 2D0

t (a, b)u(t) + δ′1 · 1D0
t (a)u(t)− δ2t · 2D0

t (ã, b̃)u(t)− δ1t · 1D0
t (ã)u(t)

= [δ′2 · 2D0
t (a,B)− δ2t · 2D0

t (ã, B̃)]u(t) = 0, (1.8)

2D
0
tu(t) + 2D

−1
t u(t) = [2D0

t (a, b)− δ1t · 1D0
t (c̄)− δ0t] = [2D0

t (a, b)− δ1t · 1D0
t (C̃)]u(t) = 0, (1.9)

1D
0
tu(t) + 3D

−1
t u(t) = [δ1 · 1D0

t (c)− δ0 + t · 2D0
t (ã, b̃)]u(t) = [δ1 · 1D0

t (C) + t · 2D0
t (ã, b̃)]u(t) = 0,

(1.10)

where δ′2, δ′1, δ2, δ1, δ0, a, b, c, B = b+
δ′0
δ′1

, C = c− δ0
δ1

, ã, b̃, c̃, B̃ = b̃+ δ0
δ1

and C̃ = c̃+ δ0
δ1

are constants, and

2D0
t (a, b) = t2

d2

dt2
+ (1 + a+ b)t

d

dt
+ ab, 1D0

t (c) = t · d
dt

+ c. (1.11)

In [2], we studied the solutions of Equations (1.8)∼(1.10), by using the equations which are obtained from them
by putting x = 1

t
and ũ(x) = u(t). They are obtained with the aid of the following lemma.

Lemma 1.1. Let x = 1
t
, ũ(x) = u(t), and 1D0

t (c) and 2D0
t (a, b) be given in Equation (1.11). Then

t
d

dt
u(t) =−x d

dx
ũ(x), t2

d2

dt2
u(t) = [x2 d

2

dx2
+ 2x

d

dx
]ũ(x), (1.12)

1D0
t (c)u(t) =−1D0

x(−c)ũ(x), 2D0
t (a, b)u(t) = 2D0

x(−a,−b)ũ(x). (1.13)

As a consequence, corresponding to Equations (1.8)∼(1.10), we have the following equations:

[−δ2 · 2D0
x(−ã,−b̃) + δ1 · 1D0

t (−ã) + δ′2x · 2D0
x(−a,−b)− δ′1x · 1D0

t (−a)]ũ(x)

= [−δ2 · 2D0
x(−ã,−B̃) + δ′2x · 2D0

x(−a,−B)]ũ(x) = 0, (1.14)

[δ1 · 1D0
x(−c̄)− δ0 + x · 2D0

x(−a,−b)]ũ(x) = [δ1 · 1D0
x(−C̃) + x · 2D0

x(−a,−b)]ũ(x) = 0, (1.15)

[2D0
x(−ã,−b̃)− δ1x · 1D0

x(−c)− δ0x]ũ(x) = [2D0
x(−ã,−b̃)− δ1x · 1D0

x(−C)]ũ(x) = 0. (1.16)

Remark 1.2. We note that (i) Equation (1.16) is obtained from Equation (1.9), by replacing t by x, u(t) by
ũ(x), a by −ã, b by −b̃, c̃ by −c, and C̃ by −C, (ii) Equation (1.15) is obtained from Equation (1.10), by
replacing t by x, u(t) by ũ(x), ã by −a, b̃ by −b, c by −c̃, and C by −C̃, and (iii) Equation (1.14) is obtained
from Equation (1.8), by replacing t by x, u(t) by ũ(x), a by −ã, b by −b̃, ã by −a, b̃ by −b, and δ2 by 1

δ2
.

Notation 1.1. We denote Equation (1.9) for δ1 6= 0 and δ0 = 0, and for δ1 = 0 and δ0 6= 0, by Equations (1.9-1)
and (1.9-0), respectively, and those for Equation (1.10) by Equations (1.10-1) and (1.10-0), those for Equation
(1.15) by Equations (1.15-1) and (1.15-0), and those for Equation (1.16) by Equations (1.16-1). and (1.16-0).
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The special one of Equation (1.8) given by

(t
d2

dt2
+ c

d

dt
)u(t)− [t2

d2

dt2
+ (1 + ã+ b̃)t

d

dt
+ ãb̃]u(t) = 0, (1.17)

is the hypergeometric differential equation. The hypergeometric function given by

2F1(
¯
ã, b̃; c; t) =

∞∑
k=0

(ã)k(b̃)k
k!(c)k

tk, (1.18)

is a solution of Equation (1.17), where (a)k for a ∈ C and k ∈ Z>−1 denote (a)k =
∏k−1
m=0(a+m) if k > 0, and

(a)0 = 1 if k = 0.

The special one of Equation (1.9-1) given by

(t
d2

dt2
+ c

d

dt
)u(t)− (t

d

dt
+ ã)u(t) = 0, (1.19)

is Kummer’s differential equation. The confluent hypergeometric function given by

1F1(ã; c; t) =
∞∑
k=0

(ã)k
k!(c)k

tk, (1.20)

is a solution of Equation (1.19).

The special one of Equation (1.9-0) given by

(t
d2

dt2
+ c

d

dt
)u(t)− u(t) = 0, (1.21)

has the solution given by

0F1(; c; z) =

∞∑
k=0

1

k!(c)k
tk. (1.22)

The special one of Equation (1.10-1) given by

d

dt
u(t)− [t2

d2

dt2
+ (1 + ã+ b̃)t

d

dt
+ ãb̃]u(t) = 0, (1.23)

has the solution given by

2F0(ã, b̃; ; t) =

∞∑
k=0

(ã)k(b̃)k
k!

tk. (1.24)

Remark 1.3. The functions in Equations (1.18), (1.20) and (1.22), are divergent at t 6= 0, if c ∈ Z<1. The
function in Equation (1.20) is a polynomial if a ∈ Z<1, and the functions in Equations (1.18) and (1.24), are
polynomials if a ∈ Z<1 or b ∈ Z<1. If otherwise, they are infinite series. Then as functions of t ∈ C, the
functions in Equations (1.20) and (1.22), are entire functions, and the functions in Equations (1.18) and (1.24),
have radius 1 and 0, respectively, of convergence.

Remark 1.4. Laguerre’s differential equation is a special one of Kummer’s differential equation; see Chapter
VIII in [3], and Chapter 13 in [4].

In [5, 6, 7], the solutions of Kummer’s and the hypergeometric differential equation, given by Equations (1.19)
and (1.17), were studied with the aid of distribution theory, and of the AC-Laplace transform, that is the Laplace
transform supplemented by its analytic continuation. In the study, the following condition was adopted.
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Condition 1.2. u(t) is expressed as a linear combination of gν(t) = 1
Γ(ν)

tν−1 for t > 0 and ν ∈ S, where S is a

set of ν ∈ R>−M\Z<1 for some M ∈ Z>−1.

We then express u(t) as follows:

u(t) =
∑
ν∈S

uν−1
1

Γ(ν)
tν−1, (1.25)

where uν−1 ∈ C are constants. Because of this condition, we obtained the solutions which are expressed by a
power series of t multiplied by a power tα:

u(t) = tα
∞∑
k=0

pkt
k, (1.26)

where α ∈ C\Z<0, pk ∈ C and p0 6= 0. The solutions are obtained in [1], by the method of Frobenius; see
Section 2.4.1 in [8].

In [1], every equation of Equation (1.6) for m ∈ Z>1 is shown to reduce to a differential equation of the form
of Equation (1.7) by a change of variable. The following discussions are related with Equations (1.8)∼(1.10),
except in Section 3.4 where a case of m = 2 is treated.

In [9], the asymptotic behaviors as t → ∞ are discussed for the confluent hypergeometric function, which is a
solution of Kummer’s differential equation, in the standpoint of fractional calculus.

In [2], solutions u(t) of Equations (1.8)∼(1.10), near infinity, are obtained with the aid of corresponding solutions
ũ(x) of Equations (1.14)∼(1.16), around the origin, in the form:

u(t) = tα
∞∑
k=0

qkt
−k = ũ(x) = x−α

∞∑
k=0

qkx
k, t =

1

x
→∞, (1.27)

where α ∈ C\Z<0, qk ∈ C and q0 6= 0 are constants. Then the solutions ũ(x) of the latter, near infinity, are
obtained from the solutions u(t) of the former, around the origin, in the form:

ũ(x) = x−α
∞∑
k=0

pkx
−k = u(t) = tα

∞∑
k=0

pkt
k, x =

1

t
→∞. (1.28)

1.1 Singular points of Equations (1.8)∼(1.10) and (1.14)∼(1.16)

Remark 1.5. In Section 2.4 of [8] and Section 7.21 of [10], terminologies ”regular singular point” and ”irregular
singular point” are used. For a differential equation, which is expressed by

[(t− c)2 d
2

dt2
+ (t− c)p(t) d

dt
+ q(t)]u(t) = 0, (1.29)

where c is a constant, and p(t) and q(t) are rational functions of t. The point t = c is called a singular point, if
p(t)
t−c or q(t)

(t−c)2 is not analytic at c. If the point t = c is a singular point, it is said to be regular or irregular at

t = c, according as both p(t) and q(t) are analytic in a neighborhood of the point t = c, or not so.

In discussing the solutions around a singular point c, s-rank R(c) was introduced by

R(c) = max{1,K1(c),K2(c)/2}, (1.30)

in [11], and by R(c) = max{K1(c),K2(c)/2} in [12], where K1(c) and K2(c), respectively, are the multiplicities

of the poles of p(t)
t−c and q(t)

(t−c)2 at t = c. According as the singular point is regular or irregular, R(c) ≤ 1 or

R(c) > 1.
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Notation 1.2. When c 6=∞, we use notations R(c), K1(c) and K2(c) for Equations (1.8)∼(1.10), and notations
R̃(c), K̃1(c) and K̃2(c), in place of R(c), K1(c) and K2(c), for Equations (1.14)∼(1.16). When c = ∞, we put
R(∞) = R̃(0), K1(∞) = K̃1(0), K2(∞) = K̃2(0), R̃(∞) = R(0), K̃1(∞) = K1(0) and K̃2(∞) = K2(0), for each
pair of Equations (1.8) and (1.14), (1.9) and (1.15), and (1.10) and (1.16).

Lemma 1.2. We present a method of obtaining K1(0) and K2(0) for a differential equation of the form:

[P0(t)t2 · d
2

dt2
+ P1(t)t · d

dt
+ P2(t)]u(t) = 0, (1.31)

where P0(t), P1(t) and P2(t) are polynomials of t. Let p0 be the power of t in the lowest order term in P0(t),
and p1 and p2 are those in P1(t) and P2(t), respectively. Then Remark 1.5 shows that K1(0) and K2(0) of this
equation are given by K1(0) = p0 + 2− p1 − 1 and K2(0) = p0 + 2− p2.

Lemma 1.3. We put x = 1
t

and ũ(x) = u(t). When u(t) satisfies (1.31), by Lemma 1.1, the equation which
ũ(x) satisfies, is given by

[P0(
1

x
)x2 · d

2

dx2
+ 2P0(

1

x
)x · d

dx
− P1(

1

x
)x · d

dx
+ P2(

1

x
)]ũ(x) = 0. (1.32)

Let q0 be the power of t in the highest order term in P0(t), and q1 and q2 are those in P1(t) and P2(t), respectively.
Then K̃1(0) and K̃2(0) of this equation are given by K̃1(0) =Max{q1 − q0 + 1, 1, 0} and K̃2(0) = q2 − q0 + 2.

Remark 1.6. By the terminology given in Remark 1.5, the point t = 0 is a regular singular point of Equations
(1.8) and (1.9), and it is an irregular singular point of Equations (1.10-1) and (1.10-0). In fact, for the latter
two equations, we have R(0) = 2, K1(0) = 2 and K2(0) = 3 or 2, and R(0) = 3

2
, K1(0) = 1 and K2(0) = 3,

respectively. Applying Frobenius’ method, we see that there exist two and one solutions of the form of Equation
(1.26) for Equations (1.8) and (1.9), and Equation (1.10-1), respectively, and there exists no solution of that
form for Equation (1.10-0).

Remark 1.7. The point x = 0 is a regular singular point of Equations (1.14) and (1.16), and an irregular
singular point of Equations (1.15-1) and (1.15-0). In fact, for the latter two equations, we have R̃(0) = 2,
K̃1(0) = 2 and K̃2(0) = 3 or 2, and R̃(0) = 3

2
, K̃1(0) = 1 and K̃2(0) = 3, respectively. Applying Frobenius’

method, we see that there exist two and one solutions of the form of Equation (1.27) for ũ(x), for Equations
(1.14) and (1.16), and Equation (1.15-1), respectively, and there exists no solution of that form for Equation
(1.15-0).

From Notation 1.2 and these remarks, we obtain the following remarks.

Remark 1.8. The point x =∞ is a regular singular point of Equations (1.14) and (1.15), and it is an irregular
singular point of Equation (1.16). There exist two and one solutions of the form of Equation (1.28) for ũ(x) for
Equations (1.14) and (1.15), and Equation (1.16-1), respectively, and there exists no solution of that form for
Equation (1.16-0).

Remark 1.9. The point of t = ∞ is a regular singular point of Equations (1.8) and (1.10), and an irregular
singular point of Equation (1.9). There exist two and one solutions of the form of Equation (1.27) for u(t),
for Equations (1.8) and (1.10), and Equation (1.9-1), respectively, and there exists no solution of that form for
Equation (1.9-0).

In Section 2, we present a theorem which summarizes the results for the solution of the forms of Equations
(1.26) and (1.27) for Equations (1.8)∼(1.10), and those of the forms of Equations (1.27) and (1.28) for Equations
(1.14)∼(1.16), given in [1, 2].

1.2 Transformation of a differential equation via a function

Remark 1.10. In Section 7.3 of [10], discussion is made of the asymptotic solution for the case when the point
of infinity is an irregular singular point.
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For Equation (1.9), R(∞) = K1(∞) = K1(∞) = 2 and then we obtain the asymptotic solution of the form:

u(t) = eβ1ttα
∞∑
k=0

qkt
−k, (1.33)

where α and β1 are constants.

For Equation (1.10), the origin is an irregular singular point. In this case, R(0) = K1(0) = K1(0) = 2 we have
a solution of the form:

u(t) = eβ1/ttα
∞∑
k=0

pkt
k, (1.34)

by the corresponding argument.

In discussing the solutions of Kummer’s differential equation, we often meet solutions of the form

eβ1ttα
∞∑
k=0

pkt
k, (1.35)

where α and β1 are constants. We also meet such differential equations, that the equations are not of the form
of Equations (1.8)∼(1.10), but their solutions are of the form of Equation (1.35). This type of problems are
discussed in Section 1.1.2 of [12].

Remark 1.11. In [12], discussion is presented on the equations of the form:

Lzy(z) := [P0(z)D2
z + P1(z)Dz + P2(z)]y(z) = 0, (1.36)

where P0(z), P1(z) and P2(z) are polynomials of z, and Dz represents d
dz

. For these equations, s-homotopic
transformation, that is a transformation without increasing the singularities, is proposed, where function G(z)
is introduced, and then transformations of Lz and y(z), L̃z and v(z), are defined by L̃z = G(z)LzG(z)−1 and
v(z) = G(z)y(z), so that Equation (1.36) is transformed to L̃zv(z) = 0. In [12], a general discussion is given on
this problem, where Kummer’s equation and the hypergeometric equation are treated as special examples. We
now call this transformation of a differential equation the transformation via multiplier or function G(z).

In Section 3, we present the transformation of Equation (1.9) via multiplier eβ1t or eβ2t
2

, where β1 and β2 are
constants. In Section 4, we present the corresponding study for Equation (1.10). As a consequence, we obtain
a set of solutions of the form of Equation (1.26) or (1.27), and those multiplied by eβ1t or eβ1/t, for Equations
(1.9) and (1.10). In these cases, the original equations have one regular singularity at 0 and one irregular one
at ∞, which are not changed by the transformations.

In discussing the solution of the hypergeometric differential equation, we often write solutions which are of the
form of Equation (1.26) multiplied by (1− t)β .

In Section 5, we obtain a transformed equation of Equation (1.8), by a transformation via multiplier (1 − t)β .
As a consequence, we obtain a set of solutions of the form of Equation (1.26) or (1.27), and those multiplied by
(1− t)β , for Equation (1.8). In these cases, the original equations have two regular singularities at 0 and 1, and
one irregular one at ∞, which are not changed by the transformations.

In Section 3.6, we present the transformation of Equations (1.9) via (1− t)β . In this case, the original equation
has one regular singularity at 0 and one irregular one at ∞, but the transformed equation has two regular
singularities at 0 and 1, and one irregular one at ∞. We note that the transformed equation for β = −1 is
an example of the differential differential equation for which Stewart [14] discussed the asymptotic form of the
solution around ∞. In the present example, we have explicit expressions of the solution.

In Sections 5.3 and 5.4, we present the transformation of Equation (1.8) via eβ1t and eβ1/t, respectively. In these
cases, the original equation has three regular singularites at 0, 1 and ∞, but the transformed equation has two
regular singularities at 0 and 1, and one irregular one at ∞.
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2 Solutions of Equations (1.8)∼(1.10) and (1.14)∼(1.16)

The following theorem is based on Theorem 2.2 in [1], and Theorem 2.1 and Sections 3.1∼3.5 in [2].

Theorem 2.1. We have the following solutions of the forms of Equations (1.26) and (1.27) for Equations
(1.8)∼(1.10) and (1.14)∼(1.16), where x = 1

t
.

(i). If a− b /∈ Z and ã− b̃ /∈ Z, we have two pairs of solutions of Equation (1.8):

φ−α(
δ2
δ′2
t) := (

δ2
δ′2
t)−α · 2F1(ã− α, B̃ − α; 1 + a+B − 2α;

δ2
δ′2
t), α = a, B, (2.1)

φ̃α̃(
δ′2
δ2
x) := (

δ′2
δ2
x)α̃ · 2F1(α̃− a, α̃−B; 1− ã− B̃ + 2α̃;

δ′2
δ2
x), α̃ = ã, B̃. (2.2)

Here the solutions given in (2.2) are those of Equation (1.14).

(ii). If a− b /∈ Z and δ1 6= 0, we have one pair and one solutions of Equation (1.9):

φ−α(δ1t) := (δ1t)
−α · 1F1(C̃ − α; 1 + a+ b− 2α; δ1t), α = a, b. (2.3)

ψ̃2,C̃(
1

δ1
x) := (

1

δ1
x)C̃ · 2F0(C̃ − a, C̃ − b; ;− 1

δ1
x), (2.4)

where C̃ = c̃+ δ0
δ1

. Here the solution given by (2.4) is a solution of Equation (1.15).

(iii). If a− b /∈ Z, we have one pair of solutions of Equation (1.9-0):

φ−α(δ0t) := (δ0t)
−α · 0F1(; 1 + a+ b− 2α; δ0t), α = a, b. (2.5)

(iv). If ã− b̃ /∈ Z and δ1 6= 0, we have one and a pair of solutions of Equation (1.10):

ψ2,−C(
1

δ1
t) := (

1

δ1
t)−C · 2F0(ã− C, b̃− C; ;− 1

δ1
t), (2.6)

φ̃α̃(δ1x) := (δ1x)α̃ · 1F1(α̃− C; 1− ã− b̃+ 2α̃; δ1x), α̃ = ã, b̃, (2.7)

where C = c− δ0
δ1

. Here the solutions given in (2.7) are those of Equation (1.16).

(v). If ã− b̃ /∈ Z, there exist a pair of solutions of Equation (1.10-0):

φ̃α̃(δ0x) := (δ0x)α̃ · 0F1(; 1− ã− b̃+ 2α̃; δ0x), α̃ = ã, b̃. (2.8)

Here the solutions given in (2.8) are those of Equation (1.16-0).

A proof of this theorem is given in Section 2.1.

Remark 2.1. In Theorem 2.1 (i), (ii) and (iii), statement ”a− b /∈ Z” appears. When n := −a− (−b) ∈ Z>−1,
we always have solution φ−a(t), but have solution φ−b(t) only if the power series in it is a polynomial of degree
less than n. This type of statement may appear every time when we have two solutions of the form of Equation
(1.26) or (1.27), but it is often omitted in the following.

2.1 Proof of Theorem 2.1

2.1.1 Transformation of Equatiors (1.8)∼(1.10) via a power of t

Lemma 2.1. Let 2D0
t (a, b) and 1D0

t (C̃) be given in Equation (1.11), u(t) = t−αuα(t) and α ∈ C. Then

2D0
t (a, b)u(t) = t−α · 2D0

t (a− α, b− α)uα(t), 1D0
t (C̃)u(t) = t−α · 1D0

t (C̃ − α)uα(t). (2.9)

In particular, when α = a, we have

2D0
t (0, b− a)ua(t) = [t2

d2

dt2
+ (1 + b− a)t

d

dt
]ua(t). (2.10)
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Proof. When u(t) = t−αuα(t),

u′(t) = t−αu′α(t)− αt−α−1uα(t), (2.11)

u”(t) = t−αuα”(t)− 2αt−α−1u′α(t) + α(α+ 1)t−α−2uα(t). (2.12)

By using these on the lefthand sides of Equation (2.9), we obtain the righthand sides.

Remark 2.2. Let u(t) be a solution of Equation (1.9), and ua(t) = tau(t). By comparing an equation which is
obtained by using Equations (2.9) and (2.10) in Equation (1.9), with Equation (1.19), we see that ua(t) is the
confluent hypergeomric function which appears in Equation (2.3) for α = a. By using b in place of a, we obtain
the corresponding result for ub(t). When δ1 = 0 and δ0 6= 0, we use Equation (1.9-0) in place of Equation (1.9),
and then by using Equation (1.21) in place of Equation (1.19), we obtain Equation (2.5).

Remark 2.3. Let u(t) be a solution of Equation (1.8), and ua(t) = tau(t). By comparing an equation which
is obtained by using the first equation in Equation (2.9) for a = ã and b = b̃ and Equation (2.10) in Equation
(1.8), with Equation (1.17), we see that ua(t) is the hypergeomric function which appears in Equation (2.1) for
α = a. By using b in place of a, we obtain the corresponding result for ub(t).

Remark 2.4. Let u(t) be a solution of Equation (1.10), and uC(t) = tCu(t). By comparing the equation which
is obtained from Equation (1.10), by using a = ã, b = b̃ and C̃ = C in the equations in Equation (2.9), with
Equation (1.23), we see that uC(t) is the function which appears in Equation (2.6).

2.1.2 Transformation of Equations (1.14)∼(1.16) via a power of x

Lemma 2.2. Let 2D0
t (a, b) and 1D0

t (C̃) be given in Equation (1.11), ũ(x) = xαṽ(x), and α ∈ C. Then

2D0
x(−a,−b)ũ(x) = 2D0

x(α− a, α− b)ṽ(x), 1D0
x(−C̃)ũ(x) = 1D0

x(α− C̃)ṽ(x). (2.13)

Proof. We obtain (2.13) from (2.9) by replacing t by x, u by ũ, v by ṽ, a by −a, b by −b, C̃ by −C̃, and α by
−α.

Remark 2.5. Remark 1.2 shows that we can obtain (i) Equation (1.16) from Equation (1.9), (ii) Equation
(1.15) from Equation (1.10), and (iii) Equation (1.14) from Equation (1.8). By using these processes, we can
obtain (i) Equation (2.7) from Equation (2.3), and Equation (2.8) from Equation (2.5), (ii) Equation (2.4) from
Equation (2.6), and (iii) Equation (2.2) from Equation (2.1).

2.2 Alternative representation of the solution of Equation (1.15)

In this place, following Equation 13.5.2 of [4], we introduce function U(a; b; t) as follows.

Definition 2.1. Let the solution of Equation (1.9) be given by Equation (2.3). Then

U(C̃ − α;A0 − 2α; δ1t) = (δ1t)
−C̃+α

2F0(C̃ − α; C̃ − α−A0 + 2α+ 1;− 1

δ1t
)

= (δ1t)
−C̃+α

2F0(C̃ − a; C̃ − b;− 1

δ1t
), α = a, b. (2.14)

Notation 2.1. Let φ−α(δ1t) be given by Equation (2.3), and φ̃−α(δ1t) be given by the equation which is obtained
from Equation (2.3), by replacing φ by φ̃, and 1F1 by U .

Lemma 2.3. By Definition 2.1 and Notation 2.1, we can use

φ̃−a(δ1t) = φ̃−b(δ1t) := ψ̃2,C̃(
x

δ1
) := (

x

δ1
)C̃ · 2F0(C̃ − a, C̃ − b; ;− x

δ1
), (2.15)

in place of Equation (2.4).
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2.2.1 Alternative representation of the solution of Equation (1.10)

Definition 2.2. Let the solution of Equation (1.16) be given by Equation (2.7). Then

U(α̃− C; Ã0 + 2α̃; δ1x) = (δ1x)−α̃+C · 2F0(ã− C, ã− C − Ã0 − 2α̃+ 1; ;− 1

δ1x
)

= (δ1x)−α̃+C · 2F0(ã− C, b̃− C; ;− 1

δ1x
), α̃ = ã, b̃. (2.16)

Notation 2.2. Let φ̃α̃(δ1t) be given by Equation (2.7), and φα̃(δ1t) be given by the equation which is obtained
from Equation (2.7), by replacing φ̃ by φ, and 1F1 by U .

Lemma 2.4. By Definition 2.2 and Notation 2.2, we can use

φã(δ1x) = φb̃(δ1x) := ψ2,−C(
1

δ1
t) := (

1

δ1
t)−C · 2F0(ã− C, b̃− C; ;− 1

δ1
t), (2.17)

in place of Equation (2.6).

2.3 Confluence of the solutions of Equations (1.8), (1.9) and (1.10)

Remark 2.6. We put δ′2 = 1, δ′1 = 0, δ1 6= 0, δ2 6= 0, B = b, B̃ = b̃ + δ1
δ2

and ã = c̃ in Equation (1.8), and
tend δ2 to 0, and then we obtain Equation (1.9-1). As a consequence, we can confirm that in the limit δ2 → 0,
the solutions given in Theorem 2.1(i) converge to those in Theorem 2.1(ii). In [12], this process is called the
confluence process, where δ2 = 1. We there replace t by t

b̃
, and ã by c̃ in Equation (1.8), tend b̃ to ∞, and then

we obtain Equation (1.9-1).

Remark 2.7. We put δ2 = 1, δ1 = 0, δ′1 6= 0, δ′2 6= 0, B̃ = b̃, B = b+
δ′1
δ′2

and a = c in Equation (1.8), and tend

δ′2 to 0, and then we obtain Equation (1.10-1) for δ1 = δ′1 and δ0 = 0. As a consequence, we can confirm that in
the limit δ′2 → 0, the solutions given in Theorem 2.1(i) converge to those in Theorem 2.1(iv). We do not have a
limit of φb+δ′1/δ′2( x

δ′2
) in Equation (2.1).

Remark 2.8. We put δ1 6= 0 and δ0 6= 0 in Equation (1.9), tend δ1 to 0, and then we obtain Equation (1.9-
0). As a consequence, in the limit δ1 → 0, we obtain the solutions given in Theorem 2.1(iii) from those in
Theorem 2.1(ii). We do not have a limit of Equation (2.4).

Remark 2.9. We put δ1 6= 0 and δ0 6= 0 in Equation (1.10), tend δ1 to 0, and then obtain Equation (1.10-
0). As a consequence, in the limit δ1 → 0, we obtain the solutions given in Theorem 2.1(v) from those in
Theorem 2.1(iv). We do not have a limit of Equation (2.6).

3 Transformations of Equations (1.9) and (1.15)

Equations (1.9) and (1.15) are expressed as follows:

[2D0
t (a, b)− δ1t · 1D0

t (C̃)]u(t) = [t2
d2

dt2
+A0t

d

dt
+ ab− δ1t(t

d

dt
+ C̃)]u(t) = 0, (3.1)

[δ1 · 1D0
x(−C̃) + x · 2D0

x(−a,−b)]ũ(x) = δ1(x
d

dx
− C̃) + x · 2D0

x(−a,−b)]ũ(x) = 0, (3.2)

where A0 = 1 + a+ b and C̃ = c̃+ δ0
δ1

.

Remark 3.1. By Lemmas 1.2 and 1.3, we have K1(0) = 1, K2(0) = 2, K̃1(0) = 2 and K̃2(0) = 3 for Equation
(3.1), and hence R(0) = R̃(∞) = 1 and R(∞) = R̃(0) = 2. From these, we conclude that Equation (3.1) has a
regular and an irregular singular point at t = 0 and t =∞, respectively, as mentioned in Remarks 1.6 and 1.9.
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Notation 3.1. In the following, we use notations (3.1-1) and (3.1-0), as in Notation 1.1. Here Equation (3.1-0)
is obtained from Equation (3.1) by replacing δ1C̃ by δ0, and the other δ1 by 0.

Lemma 3.1. By Theorem 2.1(ii) and Lemma 2.3, if a− b /∈ Z and δ1 6= 0, Equations (3.1) and (3.2) have the
solutions given by Equations (2.3) and (2.15), respectively.

Lemma 3.2. By Theorem 2.1(iii), if a− b /∈ Z, δ1 = 0, and δ0 6= 0, Equation (3.1-0) has the solutions given by
Equation (2.5).

3.1 Transformation of Equation (3.1) via an exponential function

Theorem 3.1. Let u(t) be a solution of Equation (3.1), β1 ∈ C\{0}, and

A1 = 2β1 + δ1, B1 = β1A0 + δ1C̃, B2 = β1(β1 + δ1), (3.3)

which satisfy A2
1 − 4B2 = δ2

1. Then v(t) := eβ1tu(t) is a solution of

[2D
0
t (a, b)− t(A1t

d

dt
+B1) +B2t

2]v(t) = 0. (3.4)

In the following, we use notations (3.4-1) and (3.4-0), as in Notation 3.1.

A proof of this theorem is given in Section 3.7.

3.1.1 Transformation of Equation (3.1) via a special exponential function

When δ1 6= 0, we choose β1 = −δ1, and then B2 = 0, and Theorem 3.1 becomes

Lemma 3.3. Let u(t) be a solution of Equation (3.1). Then v1(t) = e−δ1tu(t) is a solution of

[2D
0
t (a, b) + δ1t(t

d

dt
+A0 − C̃)]v1(t) = 0. (3.5)

Remark 3.2. Equation (3.5) is obtained from Equation (3.1) by replacing C̃ by A0− C̃, δ1t by −δ1t, and u by
v1, and hence we obtain the following solutions of Equation (3.5) from those of Equation (3.1) which are given
in Lemma 3.1:

ψ−α(δ1t) := (δ1t)
−α · 1F1(A0 − C̃ − α;A0 − 2α;−δ1t), α = a, b, (3.6)

ψ̃−a(δ1t) = ψ̃−b(δ1t) := ψ̃2,A0−C̃(
x

δ1
). (3.7)

Here ψ̃−α(δ1t) is given by the equation which is obtained from Equation (3.6), by replacing ψ by ψ̃, and 1F1 by
U , as in Notation 2.1.

3.1.2 Solutions of Equations (3.1), (3.2) and (3.4)

We now present a lemma which is obtained by replacing the roles of Equations (3.1) and (3.5) in Lemma 3.3,
and hence replacing δ1 by −δ1, C̃ by A0 − C̃, and u by v1.

Lemma 3.4. When v1(t) is a solution of Equation (3.5), u(t) = eδ1tv1(t) is that of Equation (3.1).

Lemma 3.5. Lemma 3.1 and Lemma 3.4 with Remark 3.2 show that we have the following eight solutions of
Equation (3.1) :

φ−α(δ1t) = eδ1tψ−α(δ1t), α = a, b; φ̃−a(δ1t) = φ̃−b(δ1t) := φ̃2,C̃(
x

δ1
),

eδ1tψ̃−a(δ1t) = eδ1tψ̃−b(δ1t) := eδ1/xψ̃2,A0−C̃(
x

δ1
). (3.8)
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Remark 3.3. The third and fourth pairs of solutions in Equation (3.8) are the asymptotic solutions of
Equation (3.1), of the form of Equation (1.33), which appear when R(∞) = 2, as mentioned in Remark 1.10.

Lemma 3.6. Theorem 3.1 and Lemma 3.5 show that the functions given in Equation (3.8), multiplied by eβ1t

or eβ1/x, are solutions of Equation (3.4).

3.1.3 Transformation of Equation (3.1-0) via an exponential function

We put δ1 = 0 and δ0 6= 0, we obtain the following theorem from Theorem 3.1.

Theorem 3.2. Let u(t) be a solution of Equation (3.1-0), β1 ∈ C\{0}, and Equation (3.4-0) denote (3.4) in
which A1, B1 and B2 are given by A1 = 2β1, B1 = A0β1 + δ0 and B2 = β2

1 , which satisfy A2
1 = 4B2. Then

v(t) = eβ1tu(t) is a solution of Equation (3.4-0).

Lemma 3.7. Theorem 3.2 and Lemma 3.2 show that the functions given in Equation (2.5), multiplied by eβ1t,
are solutions of Equation (3.4-0).

3.2 Eight solutions of Kummer’s differential equation (1.19)

When b = 0, δ1 = 1, δ0 = 0, c̃ = ã and a = c − 1, A0 = c, C̃ = ã, and Equation (3.1) becomes Kummer’s
differential equation (1.19), and hence Lemma 3.5 shows that we have the following solutions of Equation (1.19):

φ0(t) = etψ0(t), φ1−c(t) = etψ1−c(t), φ̃0(t) = φ̃1−c(t), etψ̃0(t) = etψ̃1−c(t), (3.9)

where

φ0(t) := 1F1(ã; c; t), φ1−c(t) := t1−c · 1F1(ã+ 1− c; 2− c; t), (3.10)

ψ0(t) := 1F1(c− ã; c; t), ψ1−c(t) := t1−c · 1F1(1− ã; 2− c; t), (3.11)

and φ̃0(t), φ̃1−c(t), ψ̃0(t) and ψ̃1−c(t) are given with the aid of Equations (3.10) and (3.11) as in Notation 2.1
and Remark 3.2.

These solutions of Equation (1.19) are called Kummer’s eight solutions; see Equations 13.1.12∼14 in [4].

Remark 3.4. The last pair of solutions in Equation (3.9) are the asymptotic solutions of Equation (1.19), which
are solutions of the form of Equation (1.33), mentioned in Remark 1.10.

3.3 Whittaker’s differential equation

We write Whittaker’s differential equation as

t2 · d
2

dt2
W (t) + (

1

4
− µ2 + κt− 1

4
t2)W (t) = 0, (3.12)

see Section 16.1 of [13], Section 7.1 of [3], and Equation 13.1.31 of [4]. We see that this equation is Equation
(3.4) in which v = W , and

1 + a+ b = 0, ab =
1

4
− µ2, A1 = 0, B1 = −κ, B2 = −1

4
. (3.13)

We now consider a, b, A0, δ1, δ0, β1, C̃ and c̃, which are given by δ0 = 0 and

a = −µ− 1

2
, b = µ− 1

2
, A0 = 0, δ1 = 1, β1 = −1

2
, C̃ = c̃ = −κ, (3.14)

so that Equations (3.3) and (3.13) are satisfied. In using the solutions of Equation (3.1) given by Equation (3.8),
we use φκ,−α in place of φ−α given in Equation (2.3) and φ−κ,−α in place of ψ−α given in Equation (3.6).
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Lemma 3.6 shows that the equations in Equation (3.8), multiplied by eβ1t, give solutions of Equation (3.12). In
fact, if 2µ /∈ Z, the first two pairs of solutions in Equation (3.8) then give Whittaker’s functions:

Mκ,µ(t) := e−t/2φκ,µ+ 1
2
(t) = M−κ,µ(t) := et/2φ−κ,µ+ 1

2
(t), (3.15)

where

φ±κ,µ+ 1
2
(t) := tµ+ 1

2 · 1F1(∓κ+ µ+
1

2
; 2µ+ 1;±t), (3.16)

see Section 16.10 of [13]; and the last two pairs of solutions there give

W±κ,µ(t) := e−t/2φ̃±κ,µ+ 1
2
(t) = W±κ,−µ(t) := e−t/2φ̃±κ,−µ+ 1

2
(t), (3.17)

where φ̃±κ,µ+ 1
2
(t) are given with the aid of Equation (3.16) as in Notation 2.1 and Remark 3.2, see Section 16.3

of [13], and Equations 13.1.32 and 13.1.33 in [4].

3.4 Parabolic cylinder function

The differential equation satisfied by the parabolic cylinder functions is

(
d2

dx2
∓ 1

4
x2 − ã)w(x) = 0, (3.18)

see Chapter VI, Section 4 in [3], Chapter 19 in [4].

We put t = x2 and v(t) = w(x). Then we have the following equation for v(t):

(4t · d
2

dt2
+ 2

d

dt
∓ 1

4
t− ã)v(t) = 0. (3.19)

This equation can be regarded as Equation (3.4), in which a = 0, b = − 1
2
, δ0 = 0, and

A1 = 2β1 + δ1 = 0, B1 = (1 + b)β1 + c̃δ1 =
1

4
ã, B2 = β1δ1 + β2

1 = ∓ 1

16
. (3.20)

The parameters a, b, A0, δ0, δ1, β1. C̃ and c̃ which satisfy these, are given by δ0 = 0 and

a = 0, b = −1

2
, A0 =

1

2
, δ1 =

1

2
q±, β1 = −1

2
δ1 = −1

4
q±, C̃ = c̃ =

1

4
+

ã

2q±
, (3.21)

where q+ represents 1 or −1, and q− represents i or −i. The solutions of Equation (3.19), given in Lemma 3.6,
are

e−δ1t/2φ0(δ1t) = eδ1t/2ψ0(δ1t), e−δ1t/2φ1/2(δ1t) = eδ1t/2ψ1/2(δ1t),

eδ1t/2ψ̃0(δ1t) = eδ1t/2ψ̃1/2(δ1t), e−δ1t/2φ̃0(δ1t) = e−δ1t/2φ̃1/2(δ1t), (3.22)

where δ1 = 1
2
q±,

φ0(δ1t) := 1F1(
1

4
+

ã

2q±
;

1

2
; δ1t), φ1/2(δ1t) := (δ1t)

1/2 · 1F1(
3

4
+

ã

2q±
;

3

2
; δ1t), (3.23)

ψ0(δ1t) := 1F1(
1

4
− ã

2q±
;

1

2
; δ1t), ψ1/2(δ1t) := (δ1t)

1/2 · 1F1(
3

4
− ã

2q±
;

3

2
; δ1t), (3.24)

and φ̃0(δ1t), φ̃1/2(δ1t), ψ̃0(δ1t) and ψ̃1/2(δ1t) are given with the aid of Equation (3.23) as in Notation 2.1 and
Remark 3.2.

The corresponding solutions of Equation (3.18) are obtained from Equation (3.22), by replacing t by x2. The
first three solutions thus obtained, for q+ = 1, are given in Equations 19.2.1∼19.2.4, 19.8.1 and 19.8.2 in [4] for
ã = a.
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3.5 Transformation of Equation (3.1) via a product of two exponential
functions

Theorem 3.3. Let u(t) be a solution of Equation (3.1), β1 ∈ C, β2 ∈ C\{0}, and

A1 = 2β1 + δ1, A2 = −4β2, B1 = A0β1 + C̃δ1,

B2 =β2
1 + β1δ1 − 2(1 +A0)β2, B3 = 2(2β1 + δ1)β2, B4 = 4β2

2 , (3.25)

so that

B3

2A1
=
B4

A2
= −β2, A2

1 − 2[2B2 − (1 +A0)A2] = δ2
1 6= 0, (3.26)

are satisfied. Then w(t) = eβ2t
2

eβ1tu(t) is a solution of

[2D
0
t (a, b)− t(A1t

d

dt
+B1) + t2(A2t

d

dt
+B2) +B3t

3 +B4t
4]w(t) = 0. (3.27)

This fact and Lemma 3.4 show that the functions given in Equation (3.8), multiplied by eβ2t
2

eβ1t, are solutions
of Equation (3.27).

A proof of this theorem is given in Section 3.7.

Remark 3.5. By using Lemmas 1.2 and 1.3 for Equation (3.27), we obtain R(0) = 1, and K̃1(0) = 2, K̃2(0) = 4,
and hence R(∞) = R̃(0) = 2. This shows that we have the same singularities for this equation as for Equations
(3.1) and (3.4).

In the following, we use notations (3.27-1) and (3.27-0), as in Notation 3.1.

3.5.1 Transformation of Equation (3.1-0) via a product of two exponential functions

Theorem 3.4. Let u(t) be a solution of Equation (3.1-0), β1 ∈ C and β2 ∈ C\{0}, so that

B3

2A1
=
B4

A2
= −β2, A2

1 − 2[2B2 − (1 +A0)A2] = 0, (3.28)

are satisfied. Then w(t) = eβ2t
2

eβ1tu(t) is a solution of Equation (3.27-0), and hence the functions given in

Equation (2.5), multiplied by eβ2t
2

eβ1t, are solutions of Equation (3.27-0).

See Theorem 3.3 for the case in which the second equation in Equation (3.28) is not satisfied.

3.6 Transformation of Equations (3.1) and (3.1-0) via a function

Theorem 3.5. Let u(t) be a solution of Equation (3.1), and β ∈ C\{0}. Then v(t) = (1−ρt)βu(t) is a solution
of

2D
0
t (a, b)v(t) + [2ρβ(1− ρt)−1 − δ1]t · t d

dt
v(t) + [ρ2β(1 + β)t2(1− ρt)−2

+ ρβ(A0 − δ1t)t(1− ρt)−1 − δ1C̃t]v(t) = 0. (3.29)

This fact and Lemma 3.5 show that solutions of Equation (3.29) are obtained from the first two pairs of functions
given in Equation (3.8), by multiplying (1 − ρt)β, and from the last two pairs of functions, by multiplying
(ρt)β(1− 1

ρt
)β.

In the following, we use notations (3.29-1) and (3.29-0), as in Notation 3.1.

A proof of this theorem is given in Section 3.8.
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Lemma 3.8. Theorem 3.5 and Lemma 3.2 show that the functions given in Equation (2.5), multiplied by
(1− ρt)β, are solutions of Equation (3.29-0).

By putting β = −1 in (3.29) and then multiplying it by (1− ρt), we obtain

Lemma 3.9. Let u(t) be a solution of Equation (3.1), and

A1 = 2ρ+ δ1, B1 = ρA0 + δ1C̃, A2 = δ1ρ, B2 = ρδ1(1 + C̃). (3.30)

Then v(t) = (1− ρt)−1u(t) is a solution of

[(1− ρt) · 2D0
t (a, b)− t(A1 · t

d

dt
+B1) + t2(A2 · t

d

dt
+B2)]v(t) = 0. (3.31)

The solution of Equation (3.31) are given by those of Equation (3.29) in Theorem 3.5 for β = −1.

Lemma 3.10. Let u(t) be a solution of Equation (3.1-0), and Equation (3.31-0) be Equation (3.31), in which
A1 = 2ρ, B1 = ρA0 + δ0, A2 = 0 and B2 = ρδ0. Then v(t) = (1− ρt)−1u(t) is a solution of Equation (3.31-0),
and hence the functions given in Equation (2.5), multiplied by (1− ρt)−1, are solutions of Equation (3.31-0).

Remark 3.6. In this case, the original Equation (3.1) has one regular singularity at 0 and one irregular one
at ∞, but the transformed Equations (3.29) and (3.31) have two regular singularities at 0 and 1, as shown by
Remark 1.5, and one irregular one at ∞, with R(∞) = R̃(0) = 2, since Lemma 1.3 shows that K̃1(0) = 2 and
K̃2(0) = 3. We note that the transformed Equation (3.31) is an example of the differential equation, of which
Stewart [14] discussed the asymptotic form of the solution around ∞. In the present example, we have explicit
expressions of the solutions given in Lemma 3.9 for β = −1.

3.7 Proofs of Theorems 3.1 and 3.3

Theorems 3.1 and 3.3 are proved with the aid of the following lemma.

Lemma 3.11. Let v(t) = eβnt
n

u(t). Then

t
d

dt
u(t) = t

d

dt
[e−βnt

n

v(t)] = te−βnt
n

[
d

dt
v(t)− nβntn−1v(t)], (3.32)

t2
d2

dt2
u(t) = t2

d2

dt2
[e−βnt

n

v(t)] = t2e−βnt
n

[
d2

dt2
v(t)− 2nβnt

n−1 d

dt
v(t)

−n(n− 1)βnt
n−2v(t) + n2β2

nt
2n−2v(t)]. (3.33)

By using these, with Equation (1.11), we obtain

eβnt
n

2D0
t (a, b)u(t) = eβnt

n

[t2
d2

dt2
+A0 · t

d

dt
+ ab]u(t)

= [2D0
t (a, b)− 2nβnt

n · t d
dt
− n(n− 1 +A0)βnt

n + n2β2
nt

2n]v(t), (3.34)

−δ1teβnt
n

1D0
t (C̃)u(t) =−δ1t(t

d

dt
− nβntn + C̃)v(t). (3.35)

Lemma 3.12. When n = 1, by using Equations (3.34) and (3.35), we have

eβ1t[2D0
t (a, b)− δ1t · 1D0

t (C̃)]u(t)

= [2D
0
t (a, b)− (2β1 + δ1)t · t d

dt
− (β1A0 + δ1C̃)t+ β1(β1 + δ1)t2]v(t) = 0. (3.36)

Proof of Theorem 3.1. When u(t) satisfies (3.1), Equation (3.36) is satisfied, and the equation satisfied by
v(t) = eβ1tu(t) is given by Equation (3.36).
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Lemma 3.13. By using Equation (3.36), with Equations (3.34) and (3.32) for n = 2, we have

eβ2t
2

eβ1t[2D0
t (a, b)− δ1t · 1D0

t (C̃)]u(t)

= [2D
0
t (a, b)− ((2β1 + δ1)t+ 4β2t

2)t
d

dt
− (β1A0 + δ1C̃)t

+(β1(β1 + δ1)− 2(1 +A0)β2)t2 + 2β2(2β1 + δ1)t3 + 4β2
2t

4]w(t) = 0, (3.37)

where the terms involving β2 in Equation (3.37) are added to the terms in Equation (3.36).

Proof of Theorem 3.3. When u(t) satisfies (3.1), Equation (3.37) is satisfied, and the equation satisfied by

w(t) = eβ2t
2

eβ1tu(t) is given by Equation (3.37).

3.8 Proof of Theorem 3.5

Theorem 3.5 is proved with the aid of the following lemma.

Lemma 3.14. Let β ∈ C\{0} and v(t) = (1− ρt)βu(t). Then

t
d

dt
u(t) = t

d

dt
[(1− ρt)−βv(t)] = t(1− ρt)−β [

d

dt
v(t) + ρβ(1− ρt)−1v(t)], (3.38)

t2
d2

dt2
u(t) = t2

d2

dt2
[(1− ρt)−βv(t)] = t2(1− ρt)−β [

d2

dt2
v(t)

+2ρβ(1− ρt)−1 d

dt
v(t) + ρ2β(β + 1)(1− ρt)−2v(t)]. (3.39)

By using these, with Equation (1.11), we have

(1− ρt)β2D0
t (a, b)u(t) = (1− ρt)β [t2 · d

2

dt2
+A0 · t ·

d

dt
+ ab]u(t)

= 2D0
t (a, b)v(t) + 2ρβ(1− ρt)−1t · t d

dt
v(t)

+[ρ2β(β + 1)(1− ρt)−2t2 +A0ρβ(1− ρt)−1t]v(t), (3.40)

(1− ρt)β1D0
t (c)u(t) = (1− ρt)β [t

d

dt
+ c]u(t) = t

d

dt
v(t) + [ρβ(1− δt)−1t+ c]v(t). (3.41)

Proof of Theorem 3.5. Let v(t) = (1− ρt)βu(t). When u(t) satisfies (3.1),

(1− ρt)β [2D0
t (a, b)− δ1t · 1D0

t (c̃)− δ0t · 0D0
t ]u(t) = 0, (3.42)

is satisfied. Then by using Equations (3.40) and (3.41) in Equation (3.42), we obtain an equation which is
satisfied by v(t), that is Equation (3.29).

4 Transformations of Equations (1.10) and (1.16)

Equations (1.10) and (1.16) are expressed as follows:

[δ1 · 1D0
t (C) + t · 2D0

t (ã, b̃)]u(t) = δ1(t
d

dt
+ C)u(t) + t[t2

d2

dt2
+ (2− Ã0)t

d

dt
+ ãb̃]u(t) = 0, (4.1)

[2D0
x(−ã,−b̃)− δ1x · 1D0

x(−C)]ũ(x) = [x2 d
2

dx2
+ Ã0 · x

d

dx
+ ãb̃− δ1x(x

d

dx
− C)]ũ(x) = 0, (4.2)

where Ã0 = 1− ã− b̃ and C = c− δ0
δ1

. This equation has an irregular and a regular singular point at t = 0 and
t =∞, respectively, as mentioned in Remarks 1.6 and 1.9.
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In the following, we use notations (4.2-1) and (4.2-0), as in Notation 3.1.

As stated in Remark 1.2, Equation (1.16) is obtained from Equation (1.9), by replacing variable t by x and
parameters. In particular,

Remark 4.1. Equation (4.2) is obtaind from Equation (3.1), by replacing t by x, u(t) by ũ(x), a by −ã, b by
−b̃, c̃ by −c, A0 by Ã0, and C̃ by −C. As a consequence, the results for the former equation, are obtained from
the corresponding results for the latter, which are given in Section 3. We note here that when a replacement of
t by x occurs, replacements of φ by φ̃, and of ψ by ψ̃ occur.

Lemma 4.1. By Theorem 2.1(iv) and Lemma 2.4, if a− b /∈ Z and δ1 6= 0, Equations (4.2) and (4.1) have the
solutions given by Equations (2.17) and (2.7), respectively.

Lemma 4.2. By Theorem 2.1(v), if ã − b̃ /∈ Z, δ1 = 0 and δ1 6= 0, Equation (4.2-0) has the solution given by
Equation (2.8).

4.1 Transformations of Equations (4.2) and (4.1) via an exponential function

By Remark 4.1, we have the following theorem from Theorem 3.1.

Theorem 4.1. Let ũ(x) and u(t) be solutions of Equations (4.2) and (4.1), respectively, β1 ∈ C\{0}, and A1,
B1 and B2 be obtained from Equation (3.3), by replacing A0 by Ã0, and C̃ by −C. Then ṽ(x) = eβ1xũ(x) is a
solution of

[2D0
x(−ã,−b̃)− x(A1x

d

dx
+B1) +B2x

2]ṽ(x) = 0, (4.3)

and v(t) = eβ1/tu(t) is a solution of

[2D0
t (ã, b̃)−

1

t
(−A1t

d

dt
+B1) +B2

1

t2
]v(t) = 0. (4.4)

See Theorem 4.2 in Section 4.1.3 for the case of A2
1 − 4B2 = 0.

4.1.1 Transformation of Equation (4.2) via a special exponential function

When δ1 6= 0, we choose β1 = −δ1. Then Theorem 4.1 becomes to

Lemma 4.3. Let ũ(x) be a solution of Equation (4.2). Then ṽ1(x) = e−δ1xũ(x) is a solution of

[2D0
x(−ã,−b̃) + δ1x(x

d

dx
+ Ã0 + C)]ṽ1(x) = 0. (4.5)

Remark 4.2. Equation (4.5) is obtained from Equation (4.2) by replacing C by −Ã0 − C, δ1x by −δ1x, and
ũ by ṽ1, and hence we obtain the following solutions of Equation (4.5) from those of Equation (4.2) which are
given by Equations (2.7) and (2.17):

ψ̃α̃(δ1x) := (δ1x)α̃ · 1F1(α̃+ Ã0 + C; Ã0 + 2α̃;−δ1x), α̃ = ã, b̃, (4.6)

ψã(δ1x) = ψb̃(δ1x) := ψ2,Ã0+C(
1

δ1
t) := (

1

δ1
t)Ã0+C · 2F0(ã+ Ã0 + C, b̃+ Ã0 + C; ;

1

δ1
t). (4.7)

Here ψã(δ1t) and ψb̃(δ1t) are given by the equations which are obtained from Equation (4.6) for α̃ = ã and,
α̃ = b̃, respectively, by replacing ψ̃ by ψ, and 1F1 by U , as in Notation 2.1.
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4.1.2 Solutions of Equations (4.2), (4.1), (4.3) and (4.4)

We confirm the following lemma by using Remark 4.1 and Lemma 3.1, with the aid of Theorem 2.1 (i) and (iv),
Lemmas 2.3 and 2.4, and Remarks 3.2 and 4.2.

Lemma 4.4. Lemma 4.2 shows that, if ã− b̃ /∈ Z, we have the following solutions of Equations (4.2) and (4.1):

φ̃α̃(δ1x) = eδ1xψ̃α̃(δ1x), α̃ = ã, b̃; (4.8)

φã(δ1x) = φb̃(δ1x) := φ2,−C(
t

δ1
), eδ1xψã(δ1x) = eδ1xψb̃(δ1x) := eδ1/tψ2,Ã0+C(

t

δ1
). (4.9)

Lemma 4.5. Theorem 4.1 and Lemma 4.4 show that, if ã− b̃ /∈ Z, the functions given in Equations (4.8) and
(4.9), multiplied by eβ1x or eβ1/t, are solutions of Equations (4.3) and (4.4), respectively.

4.1.3 Transformations of Equations (4.2-0) and (4.1-0) via an exponential function

When δ1 = 0 and δ0 6= 0, Theorem 4.1 becomes to the following theorem.

Theorem 4.2. Let ũ(x) and u(t) be a solution of Equations (4.2-0) and (4.1-0), β1 ∈ C\{0}, and Equations (4.3-
0) and (4.4-0), respectively, denote (4.3) and (4.4) in which A1, B1 and B2 are given by A1 = 2β1, B1 = β1Ã0+δ0,
and B2 = β2

1 , which satisfy A2
1 = 4B2. Then ṽ(x) = eβ1xũ(x) and v(t) = eβ1/tu(t) are solutions of Equations

(4.3-0) and (4.4-0), respectively.

Lemma 4.6. Theorem 4.2 and Lemma 4.2 show that, if ã − b̃ /∈ Z, the functions given in Equation (2.8),
multiplied by eβ1x, are solutions of Equation (4.3-0).

4.2 Kummer’s differential equation for Equation (4.2-1)

When b̃ = 0, ã = 1− c̃ and c = −a, Equation (4.2-1) becomes

[·2D0
x(c̃− 1, 0)− δ1x · 1D0

x(a)]ũ(x) = 0, (4.10)

which is obtained from Kummer’s differential equation given by Equation (1.19), by replacing c by c̃, ã by a,
t by δ1x, and u(t) by ũ(x). As a consequence, we obtain Kummer’s eight solutions of Equation (4.10), from
Equations (3.9) and (3.10) by replacing c by c̃, ã by a, and t by δ1x.

4.3 Transformations of Equations (4.2) and (4.1) via a product of two
exponential functions

By Remark 4.1, we have the following theorem from Theorem 3.3.

Theorem 4.3. Let ũ(x) and u(t) be solutions of Equations (4.2) and (4.1), respectively, β1 ∈ C\{0}, β2 ∈ C\{0},
and A1, A2, and B1 ∼ B4 be obtained from Equation (3.25), by replacing A0 by Ã0, and C̃ by −C. Then

w̃(x) = eβ2x
2

eβ1xũ(x) is a solution of

[2D0
x(−ã,−b̃)− x(A1x

d

dx
+B1) + x2(A2x

d

dx
+B2) +B3x

3 +B4x
4]w̃(x) = 0, (4.11)

and w(t) = eβ2/t
2

eβ1/tu(t) is a solution of

[2D0
t (ã, b̃) +

1

t
(A1t

d

dt
−B1) +

1

t2
(−A2t

d

dt
+B2) +B3

1

t3
+B4

1

t4
]w(t) = 0, (4.12)

and hence ihe functions given in Equations (4.8) and (4.9), multiplied by eβ2x
2

eβ1x or eβ2/t
2

eβ1/t, are solutions
of Equations (4.11) and (4.12), respectively.

In the present case, A2
1− 2[2B2− (1 + Ã0)A2] = δ2

1 6= 0 is satisfied. The case when this does not hold, is treated
in Theorem 4.4 in Section 4.3.1.
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4.3.1 Transformations of Equations (4.2-0) and (4.1-0) via a product of
two exponential functions

When δ1 = 0 and δ0 6= 0, Theorem 4.3 becomes the following theorem.

Theorem 4.4. Let ũ(x) and u(t) be a solution of Equations (4.2-0) and (4.1-0), respectively, β1 ∈ C, β2 ∈ C\{0},
and A1, A2, and B1 ∼ B4 be obtained from Equation (3.25), by replacing A0 by Ã0. Then w̃(x) = eβ2x

2

eβ1xũ(x)

and w(t) = eβ2/t
2

eβ1/tu(t) are solutions of Equations (4.11-0) and (4.12-0), respectively, and hence the functions

given in Equation (2.8), multiplied by eβ2x
2

eβ1x, are solutions of Equation (4.11-0).

5 Transformation of Equation (1.8)

We now consider Equation (1.8) for δ′2 = 1, δ′1 = 0, δ2 = 1, δ1 = 0, which is expressed by

[2D
0
t (a, b)− t · 2D0

t (ã, b̃)]u(t)

= [t2
d2

dt2
+A0 · t

d

dt
+ ab]u(t)− t[t2 d

2

dt2
+ (1 + ã+ b̃)t

d

dt
+ ãb̃]u(t) = 0, (5.1)

where A0 = 1 + a+ b. By putting x = 1
t

and ũ(x) = u(t) in this equation, by Lemma 1.1, we obtain

[2D̃
0
x(−ã,−b̃)− x · 2D̃0

x(−a,−b)]ũ(x) = 0. (5.2)

Lemma 5.1. By Theorem 2.1(i) and its proof in Section 2.1, if a− b /∈ Z and ã− b̃ /∈ Z, we obtain the following
solutions of Equations (5.1) and (5.2):

φ−α(t) := t−α · 2F1(ã− α, b̃− α;A0 − 2α; t), α = a, b, (5.3)

φ̃ã(x) :=xã · 2F1(ã− a, ã− b; 1 + ã− b̃;x), φ̃b̃(x) := xb̃ · 2F1(b̃− a, b̃− b; 1− ã+ b̃;x). (5.4)

5.1 Transformation of Equation (5.1) via a function

Theorem 5.1. Let u(t) be a solution of Equation (5.1), and

A=A0 − b̃, B = A0 − ã, β = ã+ b̃−A0 + C = −A−B +A0 + C. (5.5)

Then v(t) = (1− t)βu(t) is a solution of

(1− t)t2 d
2

dt2
v(t) + [A0 − (1 +A+B − 2C)t]t

d

dt
v(t)

+ [ab−ABt+ CA0(t+
t2

1− t )− C(A+B − C)
t2

1− t ]v(t) = 0. (5.6)

Proof. Let v(t) = (1− t)βu(t). When u(t) satisfies (5.1),

(1− t)β [2D0
t (a, b)− t · 2D0

t (ã, b̃)]u(t) = 0, (5.7)

is satisfied. Then by using Equation (3.40) divided by (1− t)2, in (5.7), we obtain

(1− t)t2 d
2

dt2
v(t) + [A0 − (1 + ã+ b̃− 2β)t]t

d

dt
v(t)

+ [ab− ãb̃t+A0β(t+
t2

1− t )− (ã+ b̃− β)β
t2

1− t ]v(t) = 0, (5.8)

which is satisfied by v(t). This can be rewritten as Equation (5.6).
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5.1.1 Transformation of Equation (5.1) via a special function

We now consider the case of β = ã+ b̃−A0 in Theorem 5.1. Then we obtain the following lemma from Theorem
5.1.

Lemma 5.2. Let u(t) be a solution of Equation (5.1), and β, A and B be given by

β = ã+ b̃−A0, A = ã− β = −b̃+A0, B = b̃− β = −ã+A0. (5.9)

Then v1(t) = (1− t)βu(t) is a solution of

(1− t)t2 d
2

dt2
v1(t) + [A0 − (1 +A+B)t]t

d

dt
v1(t) + (ab−ABt)v1(t) = 0. (5.10)

Remark 5.1. Equation (5.10) is obtained from Equation (5.1), by replacing ã by A, b̃ by B, and u by v1. By
using Lemma 5.1, we have solutions of Equation (5.10), given by

ψ−α(t) := t−α · 2F1(−ã+A0 − α,−b̃+A0 − α;A0 − 2α; t) = (1− t)βφ−α(t), α = a, b, (5.11)

ψ̃−ã+A0(x) :=x−ã+A0 · 2F1(−ã+A0 − a,−ã+A0 − b; 1− ã+ b̃;x) = x−β(1− x)βφ̃b̃(x), (5.12)

and the equation which is obtained from Equation (5.12) by exchanging ã and b̃, where β = ã+ b̃−A0.

5.1.2 Solutions of Equation (5.1)

We now present a lemma which is obtained by replacing the roles of Equations (5.1) and (5.10), and hence
replacing ã by A, b̃ by B, u by v1, and β by −β.

Lemma 5.3. Let v1(t) be a solution of Equation (5.10), and β, ã and b̃ be given by Equation (5.9), so that

−β = A+B −A0, ã = A+ β, b̃ = B + β. (5.13)

Then u(t) = (1− t)−βv1(t) is a solution of Equation (5.1).

Lemma 5.4. Let β = ã + b̃ − A0, and φ−α(t), φ̃−ã(x) and φ̃−b̃(x) be given in Lemma 5.1, and ψ−α(t),

ψ̃−ã+A0(x) and ψ̃−b̃+A0
(x) be given in Remark 5.1. Then Lemma 5.3 shows that we have the following solutions

of Equation (5.1):

φ−α(t) = (1− t)−βψ−α(t), α = a, b, (5.14)

φ̃ã(x) =xβ(1− x)−βψ̃−b̃+A0
(x), φ̃b̃(x) = xβ(1− x)−βψ̃−ã+A0(x). (5.15)

5.2 24 solutions of the hypergeometric differential equation

When b = 0 and c = 1 + a, a = c − 1, A0 = c, and Equation (5.1) becomes the hypergeometric differential
equation:

[2D
0
t (c− 1, 0)− t · 2D0

t (ã, b̃)]u(t) = (t2
d2

dt2
+ ct

d

dt
)u(t)− t[t2 d

2

dt2
+ (1 + ã+ b̃)t

d

dt
+ ãb̃]u(t)

= 0. (5.16)

By putting x = 1
t

and ũ(x) = u(t) in Equation (5.16), by Lemma 1.1, we obtain

[2D̃
0
x(−ã,−b̃)− x · 2D̃0

x(1− c, 0)]ũ(x)

= [x2 d
2

dx2
+ Ã0x

d

dx
+ ãb̃]ũ(x)− x[x2 d

2

dx2
+ (2− c)x d

dx
]ũ(x) = 0. (5.17)
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With the aid of Lemma 5.4, we obtain the following solutions of Equations (5.16) and (5.17):

φ0(t) := 2F1(ã, b̃; c; t) = (1− t)c−ã−b̃ · 2F1(c− ã, c− b̃; c; t), (5.18)

φ1−c(t) := t1−c · 2F1(1 + ã− c, 1 + b̃− c; 2− c; t)

= (1− t)c−ã−b̃t1−c · 2F1(1− ã, 1− b̃; 2− c; t), (5.19)

φ̃ã(x) :=xã · 2F1(ã+ 1− c, ã; 1 + ã− b̃;x)

= (1− x)c−ã−b̃xã · 2F1(−b̃+ 1,−b̃+ c; , 1− ã+ b̃;x), (5.20)

and the equation which is obtained from Equation (5.20) by exchanging ã and b̃, These are eight of Kummer’s
24 solutions of Equation (5.16); see Equations 15.5.3-14 in [4], and [15].

We put t = 1− η and u(t) = y(η) in Equation (5.16). Then we obtain

[2D̃
0
η(ã+ b̃− c, 0)− η · 2D̃0

η(ã, b̃)]y(η)

= [η2 d
2

dη2
+ (1 + ã+ b̃− c)η d

dη
]y(η)− η[η2 d

2

dη2
+ (1 + ã+ b̃)η

d

dη
+ ãb̃]y(η) = 0. (5.21)

This equation is obtained from (5.16), by replacing c by 1 + ã + b̃ − c, t by η, and u by y, and hence with the
aid of Equations (5.18)∼(5.20), we obtain the following solutions of Equation (5.21):

2F1(ã, b̃; 1 + ã+ b̃− c; η) = (1− η)1−c · 2F1(1 + b̃− c, 1 + ã− c; 1 + ã+ b̃− c; η), (5.22)

ηc−ã−b̃ · 2F1(c− b̃, c− ã; Ã0 + c; η) = (1− η)1−cηc−ã−b̃ · 2F1(1− ã, 1− b̃; Ã0 + c; η), (5.23)

η−ã · 2F1(c− b̃, ã; 1 + ã− b̃; η−1) = (1− η−1)1−cη−ã · 2F1(1− b̃, 1− c+ ã; 1 + ã− b̃; η−1), (5.24)

and the equation which is obtained from Equation (5.24) by exchanging ã and b̃, By putting η = 1− t in these
equations, we obtain eight of Kummer’s 24 solutions of Equation (5.16).

When we put ũ(x) = xãw̃(x), Lemma 2.2 shows that w̃(x) satisfies

[2D̃
0
x(0, ã− b̃) −x · 2D̃0

x(ã+ 1− c, ã)]w̃(x) = [x2 d
2

dx2
+ (1 + ã− b̃)x d

dx
]w̃(x)

−x[x2 d
2

dx2
+ (2− c+ 2ã)x

d

dx
+ ã(1− c+ ã)]w̃(x) = 0. (5.25)

Remark 5.2. We confirm that Equation (5.25) is obtained from Equation (5.16), by replacing t by x, u by w̃,
c by 1 + ã− b̃, and b̃ by 1− c+ ã.

The solutions of Equation (5.25), which correspond to Equations (5.22)∼(5.24), are obtained from these by the
replacements stated in Remark 5.2, and the replacement of η by ζ, where ζ = 1− x = t−1

t
. They are

2F1(ã, 1− c+ ã; 1− c+ ã+ b̃; ζ) = (1− ζ)−ã+b̃ · 2F1(1− c+ b̃, b̃; 1− c+ ã+ b̃; ζ), (5.26)

ζc−ã−b̃ · 2F1(c− b̃, 1− b̃; 1 + c− ã− b̃; ζ) = (1− ζ)−ã+b̃ζc−ã−b̃ · 2F1(1− ã, c− ã; Ã0 + c; ζ), (5.27)

ζ−ã · 2F1(c− b̃, ã; c; ζ−1) = (1− ζ−1)b̃−ãζ−ã · 2F1(c− ã, b̃; c; ζ−1), (5.28)

ζ−1+c−ã · 2F1(1− b̃.1− c+ ã; 2− c; ζ−1) = (1− ζ−1)b̃−ãζ−1+c−ã · 2F1(1− ã, 1− c+ b̃; 2− c; ζ−1),

(5.29)

where ζ−1 = 1
1−x = t

t−1
and 1 − ζ−1 = 1

1−t . By multiplying these equations by xα̃, and then replacing ζ by

1 − 1
t

and x by 1
t
, we obtain the remaining eight of Kummer’s 24 solutions of Equation (5.16); see Equations

15.5.3-14 in [4], and [15].
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5.2.1 24 solutions of Equation (5.1)

Let u(t) be a solution of Equation (5.1) and α ∈ C. Then Lemma 2.1 shows that uα(t) = tαu(t) is a solution of
the following equation:

[2D
0
t (a− α, b− α)− t · 2D0

t (ã− α, b̃− α)]uα(t) = 0. (5.30)

Comparing this with Equation (5.16), we see that 24 solutionns of Equation (5.30), are obtained from 24 solutions
of Equation (5.16), which are given by Equations (5.18)∼(5.19), (5.22)∼(5.23), (5.26)∼(5.29), by replacing ã by
ã− b, b̃ by b̃− b, and c− 1 by a− b, and then multiplying t−b.

5.3 Transformation of Equation (5.1) via an exponential function

Theorem 5.2. Let u(t) be a solution of Equation (5.1), and β1 ∈ C\{0}. Then v(t) = eβ1tu(t) is a solution of

[2D
0
t (a, b)− t · 2D0

t (ã, b̃)]v(t)− 2β1(t− t2)t
d

dt
v(t)

+ [−β1A0t+ β1(1 + ã+ b̃+ β1)t2 − β2
1t

3]v(t) = 0. (5.31)

Proof. In this case, u(t) satisfies

eβ1t[2D
0
t (a, b)− t · 2D0

t (ã, b̃)]u(t) = 0. (5.32)

By using Equation (3.34) for n = 1 in this equation, we obtain (5.31).

The solutions of Equation (5.31), which correspond to solutions of Equation (5.1), given in Lemma 5.3, are
obtained from the latters by multiplying by eβ1t.

5.4 Transformations of Equations (5.1) and (5.2) via an exponential function

Since Equation (5.2) is obtained from Equation (5.1) by replacing t by x, u(t) by ũ(x), a by −ã, b by −b̃, ã by
−a, b̃ by −b, we obtain the following theorem by using Theorem 5.2.

Theorem 5.3. Let x = 1
t
, u(t) and ũ(x) be solutions of Equations (5.1) and (5.2), respectively, and β1 ∈ C\{0}.

Then w̃(x) = eβ1xũ(x) is a solution of

[2D̃
0
x(−ã,−b̃)−x · 2D̃0

x(−a,−b)]w̃(x)− 2β1(x− x2)x
d

dx
w̃(x)

+ [−β1Ã0x+ β1(1− a− b+ β1)x2 − β2
1x

3]w̃(x) = 0, (5.33)

and w(t) = eβ1/tu(t) is a solution of

[2D̃
0
t (ã, b̃)−

1

t
· 2D̃0

t (a, b)]w(t) + 2β1(
1

t
− 1

t2
)t
d

dt
w(t)

+ [−β1Ã0
1

t
+ β1(1− a− b+ β1)

1

t2
− β2

1
1

t3
]w(t) = 0. (5.34)

Proof. Equation (5.34) is obtained from Equation (5.33), by using Lemma 1.1.

Lemma 5.5. Theorem 5.3 and Lemma 5.4 show that the functions given in Equations (5.15) and (5.14),
multiplied by eβ1x or eβ1/t, are solutions of Equation (5.34) or (5.33).

178



Morita; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 157-180, 2023; Article no.JAMCS.104148

6 Conclusion

In [1, 2], the concept of block of classified terms is introduced to a linear differential equation with polynomial
coefficients, and solutions of the forms of Equations (1.26) and (1.27) near the origin and infinity, respectively,
are presented for Equations (1.8) and (1.10), which consist of two blocks of classified terms. The solutions are
summarized in Section 2.

In Section 3∼5, Equations (1.9), (1.10) and (1.8) are expressed by Equations (3.1), (4.1) and (4.2), and (5.1)
and (5.2), in this order, and solutions of the forms of Equation (1.26) or (1.27), multiplied by eβ1t = eβ1/x or
eβ1/t = eβ1x or (1 − t)β or x−β(1 − x)β , are given for Equations (3.4), (4.4) and (5.6), which are obtained by
a transformation of Equations (3.1), (4.1) and (5.1), via eβ1t or eβ1/t or (1− t)β . These transformed equations
consist of three blocks of classified terms.

In [12], transformations of a differential equation without change of singularities are discussed as in Remark 1.11.
We note that the differential equations obtained by transformations in Section 3, except in Sections 3.6∼3.8, are
regarded as differential equations in a group. Those in Sections 4 and 5, except in Sections 5.3 and 5.4, are also
regarded as those in a group.

In Sections 3.6, and 5.3 and 5.4, differential equations are obtained by a transformation from Equations (1.9) and
(1.8), respectively. They have different singularities from their respective original equations. One in Section 3.6
is an example of the differential equations, the asymptotic behavior of which was discussed by Stewart [14].
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