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Abstract

Motivated by the p-analogue of the exponential integral function [1], we introduce a two-parameter
generalization of the Incomplete Exponential Integral function. By using the classical H¨older’s and Young’s
inequalities, among other analytical techniques, we establish some new inequalities involving the generalized
function.
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1 Introduction
The classical exponential integral function is defined by Schloemich in [2] as

En(x) =

∫ ∞
1

t−ne−tx dt x > 0, n ∈ N. (1)

For any 1 < a < b and n ∈ N0, the incomplete exponential integral function b
aEn(x) is defined by [3] as

b
aEn(x) =

∫ b

a

t−ne−xt dt (2)

for all x > 0.

In [3] it was proved that the incomplete exponential integral function is nonincreasing and then gave the inequality
as follows,

b
aEm+n

(x
u

+
y

v

)
≤
(
b
aEum(x)

) 1
u
(
b
aEvn(y)

) 1
v (3)

where 1 < a < b, x, y > 0, u > 1 = 1
u

+ 1
v
, and m+ n, um, vn ∈ N0,

Also
b
aEn(xy) ≤

(
b
aEn(ux)

) 1
u
(
b
aEn(vy)

) 1
v (4)

where 1 < a < b, x, y > 1, n ∈ N0, u > 1, 1
u

+ 1
v

= 1, and x+ y ≤ xy.

Furthermore,
b
aEn(xy) ≥

(
b
aEn(ux)

) 1
u
(
b
aEn(vy)

) 1
v (5)

where 1 < a < b, x > 0, 0 < y < 1, n ∈ N0, 0 < p < 1 = 1
u

+ 1
v

= 1 and x+ y ≥ xy.

And finally,

b
aEn(xy) ≥

(
b
aEn

(
rxu

u

)) 1
r
(
b
aEn

(
syv

v

)) 1
s

(6)

where 1 < a < b, x, y > 1, n ∈ N0, u > 1, 0 < r < 1 and 1
u

+ 1
v

= 1 = 1
r

+ 1
s
.

And in [4] generalizations of inequalities (3),(4), (5) and (6) were established as follows,

For xi > 0, ni ≥ 0, and ui > 1, be such that uini ∈ N0, for all i ∈ Nm. Assume that 1 < a < b,
∑m
i=1 ui = 1,

and
∑m
i=1 ni ∈ N0.

b
aE

∑m
i=1 ni

(
m∑
i=1

xi
ui

)
≤

m∏
i=1

(
b
aEuini(x)

) 1
ui (7)

is valid. Which is a generalization of (3).

For n ∈ N0, xi and ui > 1 for all i ∈ Nm. Assume that 1 < a < b,
∑∞
i=1 ui = 1 and

∑m
i=1 xi ≤

∏m
i=1 xi.

Then
b
aEn

(
m∏
i=1

xi

)
≤

m∏
i=1

(
b
aEn(uixi)

) 1
ui (8)

is valid. Which is also generalization of (4).
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For n ∈ N0, 0 < xi < 1 and 0 < ui < 1 for all i ∈ Nm. Assume that 1 < a < b,
∑∞
i=1 ui = 1 and∑m

i=1 xi ≥
∏m
i=1 xi.

Then
b
aEn

(
m∏
i=1

xi

)
≥

m∏
i=1

(
b
aEn(uixi)

) 1
ui (9)

is valid. Which is also generalization of (5).

Inequality (6) is generalized as follows,

for n ∈ N0, xi > 1, ui > 1 and 0 < ri < 1 for all i ∈ Nm. Assume that 1 < a < b and
∑m
i=1 ui = 1 =

∑m
i=1 ri,

b
aEn

(
m∏
i=1

xi

)
≥

m∏
i=1

(
b
aEn

(
rix

ui
i

ui

)) 1
ri

. (10)

The focus of this paper is on the incomplete exponential integral function defined in [5] as

En(a, x) =

∫ ∞
x

t−ne−at dt x ≥ 0, a > 0, n ∈ N0 (11)

Clearly, En(a, 1) = En(a).

The p-analogue of the exponential integral function, En,p (x) is defined for x > 0, p > 1 and n ∈ N0 by [1]

En,p (x) =

∫ p

1

t−nA−xtp dt, (12)

and the i-th derivative of (12) is given by [6]

E(i)
n,p (x) =

(
lnA−1

p

)i ∫ p

1

ti−nA−xtp dt, (13)

where, En,p (x) −→ En (x) as p −→∞, Ap = (1 + 1
p
)p and E(i)

n,p (x) −→ E
(i)
n (x) as p −→∞.

The function emerges in the investigation of radiative exchanges in a two-dimensional planar medium [7].
This special function has been investigated in diverse ways (see [8], [9], [10], [11], [12], [13] and the related
references therein).

The objective of this paper is to introduce a two-parameter generalization of the incomplete exponential integral
function of (12) and to establish some properties of the function. In this paper, we will generalize inequalities
(3), (4), (5), (6), (7), (8), (9) and (10).

2 Preliminaries
We begin with the following well known results( see for instance [14], [15], [16] or [17]).

Lemma 2.1. (Holder’s Inequality ) Let η, µ > 1 and 1
η

+ 1
µ

= 1. If f(t) and g(t) are continuous real-valued
functions on [a, b], then inequality∫ b

a

|f(t)g(t)|dt ≤
(∫ b

a

|f(t)|ηdt
) 1
η
(∫ b

a

|g(t)|µdt
) 1
µ

, (14)

holds. With equality when |g(t)| = c|f(t)|η−1. If η = µ = 2, the inequality becomes Schwarz’s Inequality.

Lemma 2.2. (Young’s Inequality) Let a, b > 0, η, µ > 1, and 1
η

+ 1
µ

= 1. Then inequality

ab ≤ aη

η
+
bµ

µ
, (15)

holds.
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3 Definition of A Two-Parameter Generalization of the Incomplete
Exponential Integral

Definition 3.1. Let x > 0, v ≥ 1, p > 1, and n ∈ N0. Then, the function is defined as

En,p (x, v) =

∫ p

v

t−nA−xtp dt, (16)

where, En,p (x, 1) = En,p (x), En,p (x, v) −→ En (x, v) as p −→ ∞, E1,p (1, v) −→ Γ (0, v) as p −→ ∞ and
En,p (x, v) = xn−1En,p (xv, v).

3.1 Some Properties and Inequalities of En,p(x, v)

Lemma 3.2. The recursive relation

lnAxpEn,p(x, v) = v−nA−vxp − p−nA−pxp − nEn+1,p(x, v), (17)

holds for n ∈ N0, v ≥ 1.

Proof. Using (16) and by means of integration by parts

En,p(x, v) =

∫ p

v

t−nA−xtp dt

=

[
−
t−nA−xtp

lnAxp

]p
v

− n

lnAxp

∫ p

v

t−(n+1)A−xtp dt

=
1

lnAxp

[
v−nA−vxp − p−nA−pxp − nEn+1,p(x, v)

]
,

which concludes the proof.

Theorem 3.3. Let p > 1 and m,n ∈ N0 such that ηm, µn ∈ N0.
Then, the inequality

En,p

(
m∏
i=1

xi, v

)
≤

m∏
i=1

(En,p(ηixi, v))
1
η i , (18)

holds for x, y > 0, v ≥ 1, η > 1 and 1
η

+ 1
µ

= 1,

Proof. Using (16) and Hölder’s inequality for integrals, we have

En,p

(
m∏
i=1

xi, v

)
≤ En,p

(
m∑
i=1

xi, v

)

=

∫ p

v

t−nA
−t(

∑m
i=1 xi,v)

p dt

=

∫ p

v

(
m∏
i=1

t
− n
ηi A−(xi,v)t

p

)
dt

≤
m∏
i=1

(∫ p

v

t−nA−ηi(xi,v)tp dt

) 1
ηi

=

m∏
i=1

(En,p(ηixi, v))
1
η i .
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Which is a generalization of (3) and (7)

Theorem 3.4. Let p > 1 and m,n ∈ N0 such that ηm, µn ∈ N0.
Then, the inequality

E∑m
i=1 ni,p

(
m∑
i=1

xi, v

ηi

)
≤

m∏
i=1

(Eηi,ni,p(x, v))
1
η i , (19)

holds for x, y > 0, v ≥ 1, η > 1 and 1
η

+ 1
µ

= 1,

Proof. Using (16) and Hölder’s inequality for integrals, we have

E∑m
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)
=
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p
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v
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) 1
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1
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Which is also generalization of (4) and (8)

Theorem 3.5. Let p > 1 and m,n ∈ N0 such that ηm, µn ∈ N0.
Then, the inequality

En,p

(
m∏
i=1

xi, v

)
≥

m∏
i=1

(En,p(ηixi, v))
1
η i , (20)

holds for x, y > 0, v ≥ 1, η > 1 and 1
η

+ 1
µ

= 1,

Proof. Using (16) and Hölder’s inequality for integrals, we have

En,p

(
m∏
i=1

xi, v

)
≥ En,p

(
m∑
i=1

xi, v

)

=

∫ p

v

t−nA
−t(
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i=1 xi,v)

p dt

=

∫ p

v

(
m∏
i=1

t
− n
ηi A−(xi,v)t

p

)
dt

≥
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i=1

(∫ p

v

t−nA−ηi(xi,v)tp dt

) 1
ηi

=
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i=1

(En,p(ηixi, v))
1
η i .

Which is also generalization of (5) and (9)
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Theorem 3.6. Let p > 1 and m,n ∈ N0 such that ηm, µn ∈ N0.
Then, the inequality

En,p

(
m∏
i=1

xi, v

)
≥

m∏
i=1

(
En,p

(
ri

(
xηii , v

ηi

))) 1
ri

, (21)

holds for x, y > 0, v ≥ 1, η > 1, 1
η

+ 1
µ

= 1 and
∏m
i=1 xi, v ≤

∑m
i=1

x
ηi
i ,v

ηi

Proof. Using (16) and Hölder’s inequality for integrals, we have
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(∑m

i=1

x
ηi
i
,v

ηi

)
p dt

=

∫ p

v

 m∏
i=1

t
− n
ri A

−
(
x
ηi
i
,v

ηi

)
t

p
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(
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.

Which is also a generalization of (6) and (10)

4 Conclusion
we introduced a two-parameter generalization of the Incomplete Exponential Integral function. By using
the classical H¨older’s and Young’s inequalities, among other analytical techniques, we established some new
inequalities involving the generalized function. Furthermore, we generalized inequalities (3), (4), (5), (6), (7),
(8), (9) and (10).
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