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Integrated disaster resilience approaches are paramount for enhancing risk

management of coastal communities in subduction zones under climate-

geological risks. Cascading compounding climate-geological risks are

dynamic, interact, and evolve with time. Also, classical convolution of

hazard, vulnerability, and exposure does not allow easy implementation of

causalities and dependencies that are critical in modelling impact chains due to

cascading compounding multi-hazards. A new dynamic multi-hazard

catastrophe modelling framework is proposed to fill important research gaps

in the temporal evolution of climate-geological risks. Systemic modelling is a

key tool where time-dependent and interacting risks are explicitly modelled,

and multiple risk metrics can be computed. Furthermore, a possible new

entropy-based approach for harmonising risk metrics is presented. Such a

harmonisation can facilitate the decision-making process for disaster risk

reduction. Finally, a way forward for future implementation of the proposed

methodologies is discussed with a focus on the need for the development of

new numerical and analytical tools.
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Introduction

A globally agreed definition of risk does not exist yet (Aven

and Renn, 2009). However, it is commonly accepted that risk

analyses must account for uncertainties and produce expected

consequences described probabilistically for all possible adverse

hazardous events affecting a specific regional context (Aven et al.,

2018). For example, natural disaster risks can be related to

hazardous events of geologic nature (e.g., earthquake, tsunami,

landslide, liquefaction, and subsidence) and climate-change

phenomena (e.g., extreme weather, polar cap melting, and sea-

level rise). These two typologies of risks are currently

characterised and managed separately; however, they are not

independent (Gallina et al., 2016), and impact chains must be

modelled. An impact chain is a high-level representation of how a

specific stressor/perturbance (e.g., climatic and geologic)

propagates through a system (e.g., natural and built

environment), considering possible impacts and system

dependencies. Therefore, impact chains should be studied to

jointly account for cascading compounding hazards and avoid

neglecting possible cause-effect events in a multi-hazard

framework (Zebisch et al., 2022). For instance, it has been

demonstrated that a 50-cm sea-level rise might double the

inundation area of future tsunami events (Li et al., 2018).

Moreover, subduction earthquakes may also trigger coastal

subsidence (Wang et al., 2013), simultaneously worsening

tsunami effects and storm surges already affected by climate

change (Hallegatte et al., 2011). The last example demonstrates

how coastal communities in subduction zones are particularly

susceptible to such chains of events triggered by climatic and

geological hazards. Coastal communities are the focus of this

paper.

In more general terms, from a mathematical point of view,

risk is an operator (functional) transforming hazard,

vulnerability, and exposure into quantifiable risk metrics, such

as economic losses and casualties (Pflug and Pichler, 2014). Such

an operator is dynamic as hazards, exposure, and vulnerability

are time-dependent. Analogously to a dynamic system, the risk

may be stable (or known) or may present bifurcation leading to

instability (or unknown) and can be stationary or non-ergodic

(Der Kiureghian 2005). For example, climate risks have slow

onset (months to years), while geological risks linked to

earthquakes and tsunamis are rapid (seconds to minutes).

Climatic projections have a time horizon spanning from a

couple of decades (near-term, Kirtman et al., 2013) to a

century (long-term, Collins et al., 2013). Such slow-developing

catastrophic risks are associated with gradual, imperceptible

changes in the baseline that are unheeded until they lead to

irreversible and devastating changes (IRGC 2013). Earthquakes

and tsunamis may have projections spanning hundreds to

thousands of years (mainshocks, Cornell 1968) to a few days

(aftershocks, Yeo and Cornell, 2009). In contrast with climate

change, seismic phenomena can be modelled as a discrete series

of events rather than a continuous process. Vulnerability and

exposure modules are also time-dependent. Vulnerability can

increase because of ageing phenomena or can decrease because of

adaptation measures. Also, current guidelines, building codes,

and policy decisions will affect future situations (Galasso et al.,

2021). It is essential to underline that this paper does not address

all possible components of an impact chain potentially affecting a

specific coastal community. The scope is to present an example

considering risk components that are identified as relevant for

coastal communities in subduction zones. Also, it is essential to

clarify that the short- and long-termmentioned above depend on

the risk components under assessment and the considered

phenomena that will be modelled.

Importantly, risk is systemic and multi-component because

interconnectivity between systems is one of the features of

modern society (IRCG 2018). When consequences are

assessed and quantified, in addition to the heterogeneous

nature of the cascading hazards, multiple heterogeneous risk

metrics are produced, e.g., economic losses, loss of lives, and

environmental damage (Chakraborty et al., 2021; Cremen et al.,

2022). Such metrics represent the critical input to policy

development. Furthermore, risk metrics should also integrate

local socioeconomic facets as future mitigation actions must

accommodate a mechanism to achieve more equitable risk

allocations among stakeholders considering gender, cultural,

socioeconomic, and demographic balance (Peacock et al.,

2014; Howell and Elliott, 2018). Harmonising existing

quantifiable risk metrics and defining new ones, accounting

for different responses/attitudes to risk, is still an outstanding

task. Also, risk acceptability limits (e.g., limits of the as low as

reasonably practicable or ALARP region) have not been defined

yet. This becomes even more important when impact chains are

directly modelled.

Several studies have defined general multi-risk frameworks

(e.g., Marzocchi et al., 2012; Selva 2013; Mignan et al., 2014; Liu

et al., 2015; Ming et al., 2015), and the multi-risk assessment due

to cascading hazards presents several challenges (Schmidt et al.,

2011; Kappes et al., 2012; Gill and Malamud, 2016). For example,

De Risi and Goda (2016) and Goda and De Risi (2018)

demonstrated how to treat the case of earthquake-tsunami

hazards and risks by adapting the performance-based

earthquake engineering approach to the multi-hazard case.

Cremen et al. (2022) recently presented a detailed review of

existing methodologies to model and quantify future risk from

natural hazards. They also mention a general approach for the

way forward to the application. Also, Dunant et al. (2021)

presented a novel approach based on graph theory where the

multi-risk problem is transformed into and visualised as a

network where the nodes are the hazard sources and the

components of the built environment, and the links are the

impact-related correlation between the nodes. Building upon the

literature and considering the shortcomings identified

previously, it is evident that future research on risk
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assessment for coastal communities in subduction zones should

focus on:

• Modelling the risk dynamically considering the time-

dependence of the impact-chains facets;

• Modelling the risk under cascading compounding climate-

geological hazards systemically; and

• Aggregating heterogeneous risk metrics with single risk/

resilience indicators to facilitate risk management and

implement future mitigation actions.

In this perspective paper, a discussion of these three aspects

and some suggestions for possible implementations of these

research topics are provided. Specifically, the authors’ opinion

is provided on these topics as there are no broadly accepted

methodologies to approach them. First, the dynamic nature of

risk is presented with emphasis on the time dependence of the

risk components. The implementation of a stress-test framework

for risk management is discussed, where a stress test is a

simulation intended to establish the ability of a system (e.g.,

communities facing subduction zones) to deal with crises (e.g.,

multiple cascading hazards) considering available resources both

in the short- and long-term. Then, a new systemic approach for

risk modelling is proposed. Finally, a potential homogenisation

technique of risk metrics is presented.

Dynamic risks for coastal
communities

In assessing the risk, particular emphasis should be devoted

to the temporal aspect because cascading events depend on the

time scale. The equation below incorporates such time

dependency.

Risk(time)� Hazard(time)× Exposure(time)× Vulnerability(time) (1)

Multi-hazards and compound effects on coastal communities

are challenging to model and forecast. Probabilistic

methodologies exist (Behrens et al., 2021). However,

developing a holistic time-dependent model capable of

accounting for multiple hazard sequences and time-dependent

exposure-vulnerability remains outstanding. Ultimately, the

dynamic nature of the risk and its components is of

paramount importance for long-term planning and risk

management. Figure 1A depicts a schematic representation of

the problem for coastal communities in subduction zones.

Regarding the hazard assessment, it has been demonstrated

that climate change can affect the risk for coastal communities

(McInnes et al., 2003; Kato and Afifuddin, 2021). Therefore, the

time dependence involves at least two aspects: 1) sea-level rise

and 2) seismic sequences. Sea-level rise projections are built on

historical data (Church and White, 2011) and simulation-based

FIGURE 1
(A) Cascading compounding climate-geological hazards and effects. (B) Network-based schematisation of the dynamic risk for coastal
communities in subduction zones.
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climate projections. The simulation-based climate projections

(following the Intergovernmental Panel on Climate Change

IPCC, Allan et al., 2021) are mainly focused on assessing the

melting of glaciers due to the temperature rise; the glacier

melting, in turn, changes the mean sea level on a monthly to

annual scale. Climate change can also affect tropical cyclones and

extra-tropical cyclones (Roberts et al., 2020; Ninomiya et al.,

2021) as well as storm surges (Mori et al., 2019, 2021), making

their size and intensity stronger and making their track and

forward velocity even more unpredictable (Knutson et al., 2020).

Sea level rise and storm surges can modify the bathymetry and

accelerate coastal erosion. Also, for very low-probability cases,

tsunamis may arrive on top of high astronomical tides and peaks

of storm surges or in succession with short intervals, producing

even more catastrophic effects. Time dependence on the seismic

models requires a different level of sophistication, spanning from

simple probabilistic renewal processes to fault rupture scenarios

based on paleoseismicity (Abaimov et al., 2008; Field et al., 2015;

Goda, 2019). The seismic issue is even more complicated when

splay faults are considered because they affect both the tsunami

generation and the time dependency of the problem (Moore

et al., 2007). The interaction of seismic and tsunami hazards with

climate change is not trivial for small to medium size tsunamis.

Alhamid et al. (2022) presented an innovative framework where

nonstationary sea-level rise due to climate change based on a

non-Poisson stochastic renewal process is considered prior to the

tsunami assessment. The multi-hazard problem becomes even

more complex when ground conditions are considered

dependent on climate change and sea-level rise (e.g., Ishii and

Mori, 2020).

The exposure component is time-dependent (Calderón and

Silva, 2021). Exposure to multiple hazards in active subduction

zones is growing because more population migrates to and lives

in coastal regions for economic reasons. Such long-term

exposure has steadily increased over the last decades and will

continue to evolve due to adaptation to climate change.

Expansion of cities and towns occurs with urbanisation; such

long-term dynamic behaviour can be computed with several

methods, such as SLEUTH (Mesta et al., 2022). Urbanisation

may be rapid and unplanned in some parts of the world (De Risi

et al., 2018), leading to inequalities in coping with hazards and

climate change (González-Dueñas and Padgett, 2022). In the case

of tsunamis, the exposure in terms of human life also has a short-

term variation due to the evacuation triggered by early-warning

systems (Muhammad et al., 2021).

Several models exist in the literature regarding the

vulnerability component, and they must adapt and change

with time (Cremen et al., 2022). For example, in the case of

tsunami fragility models (De Risi et al., 2017a; 2017b), existing

models do not account for 1) time-dependent ageing (i.e., long-

term effect) and 2) compounding effects due to cascading

hazards (i.e., short-term effect); therefore, advancements are

still needed for portfolio of structures (Attary et al., 2021).

Also, vulnerability is strongly affected by codified designs and

guidelines; today’s policy decisions will affect tomorrow’s

situation (Galasso et al., 2021). Moreover, built environment

components may change in the future due to climate change

adaptation.

Finally, regarding the resilience dimension of the problem,

together with the risk assessment discussed above, there is also a

need to model and monitor how human activities recover after a

shock (Eyre et al., 2020). This aspect introduces an additional

temporal dimension to the problem as the system struck by a

catastrophe must also be followed up in the months and years

after the shock (Sharma et al., 2018; Doorn et al., 2019).

In summary, to perform a sound risk assessment considering

the dynamic nature of the problem, it is necessary to:

• Account for the cascading compounding effects due to the

multi-hazard context by constructing a rational description

of the impact chain.

• Describe the temporal renewal process for each hazard,

independently and jointly, considering the dependencies

identified in the description of the impact chain.

• Describe the interface among natural, built, and human-

societal environments.

• Identify the system at risk (ISO 13824, 2020), i.e., the

exposure and characterisation of the time-evolution of the

exposure components.

• Identify the vulnerability components and their long-term

and short-term variability due to ageing and hazard

sequences and interactions.

• Describe the time dimension of the recovery after a single

shock or a sequence of shocks to feed resiliency models.

A practical and versatile way to implement these aspects is to

use simulation-based probabilistic procedures after

implementing the problem with a systemic representation.

Such an implementation will also allow running simulations

(e.g., stress tests) on possible implications associated with specific

new disaster risk reduction policies that may have a long-term

effect on the exposure and vulnerability of the components of the

built environment. Stress tests are a perfect tool to assess how

coastal communities can cope with severe future hazardous

scenarios and ensure that there are enough resources to

withstand extreme shocks, thereby facilitating the

implementation of workable solutions in socially acceptable

and equitable ways.

Systemic implementation for coastal
communities

The idea proposed herein builds upon the work of Gill and

Malamud (2016) and Dunant et al. (2021). The suggested

underlying analytical framework consists of a probabilistic
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graph/network-based simulator of multi-hazard risks accounting

for long-term and short-term variability by treating temporally

evolving hazards, exposures, and vulnerabilities as nodes

connected with causality and dependency links. Eventually, all

causality and dependency must be characterised and mapped

against simulated outputs consisting of quantifiable risk

measures (Figure 1B). It is essential to underline that in this

paper, almost all the risk components are mainly related to

natural hazards and climate change; however, if other non-

natural hazard-related phenomena must be accounted for, this

is still possible due to the modularity of the proposed

implementation (see the dashed lines in Figure 1B). Also, the

systemic implementation using network-based tools is the

natural approach for modelling the network of networks

schematisation if built-human-societal interactions are going

to be implemented explicitly (Dueñas-Osorio et al., 2007).

In general, fault and logic trees are convenient tools

accounting for all possible circumstances and consequences in

an impact chain framework. However, these tools may not be

sufficient for the simulation-based procedure because the

structure of any decision tree is designed to represent the

order of the events and not necessarily their occurrence time

(Cabasino et al., 2013). Bayesian Networks (BNs), Dynamic

Bayesian Networks (DBNs), and Petri Nets (PNs) allow for

overcoming such a problem (Kabir and Papadopoulos, 2019).

BNs and DBNs have a flexible structure that enables easy

uncertainty propagation and allow leveraging expert

knowledge and problem characteristics; however, there are no

clear semantic guidelines for developing BNs. DBNs are an

extension of BNs, allowing the implementation of the time

dimension, and have been used to model time-varying factors

and cascading effects in coastal regions (Gonzalez-Duenas and

Padgett, 2021), as well as the resilience of systems (Kammouh,

Gardoni, and Cimellaro 2020). PNs are well suited for modelling

complex, distributed, and concurrent systems (Peterson, 1981)

and come with solid semantic development guidelines allowing

more coherent models (Kabir and Papadopoulos, 2019).

Therefore, PNs, although potentially more computationally

expensive than BNs, may be the way forward for the dynamic

quantification of risk due to cascading compounding climate-

geological hazards.

A PN, also known as place/transition net, is commonly used

to describe discrete events in a dynamic system. Such a

schematisation is a bipartite graph composed of two node

typologies: places and transitions. Places can be connected

only to transitions, and transitions can be connected only to

places. Arrows/arcs/edges represent the flow of information

between transitions and conditions, i.e., the relationships

between places are characterised via transitions. Also,

inhibition arcs exist. Usually depicted with circles, places

represent the components of the system. The status of each

component is described by tokens (usually depicted with black

dots within places) representing the measure of activities of a

given system entity. Such tokens represent intermediate results

and can be binary or have numerical values attached to them

(i.e., coloured PN). The transitions, conventionally represented

with bars or boxes, are operations ruling the progression of the

simulation downstream of the network. Tokens travel across

the net as transitions are experienced. The transition is

conditioned by the status of the states connected to it, by

the nature of the arcs, and can be governed by time (i.e., timed

PN). Tokens travelling in the network will activate a specific

state status and/or will bring some numerical values with

them. Therefore, transition nodes can account for cascading

events containing the temporal properties described in the

“Dynamic risks for coastal communities” section and simplify

the assessment of compound consequences. Ultimately, PNs

allow the schematisation of the order and occurrence of the

events, which are defined deterministically, and both places

and transitions can be modelled probabilistically. The

network, at any given time, is a single scenario. Running

the network many times will allow to create a stochastic

catalog of multi-hazard events that can be post-processed

probabilistically.

To improve the understanding of the potential modelling, the

impact chain for the tsunami risk is described with reference to

Figure 1. The subduction zone (SZ) and the splay fault (SF) can

generate an earthquake (E), potentially leading to a tsunami (T).

Both short-term and long-term earthquake occurrences should

be properly modelled and implemented. Strong subduction

earthquakes can trigger ground subsidence (GS) that can

affect the tsunami assessment as it changes the topography of

the site of interest, changing the inundation consequently. At the

same time, climate change (CC) can affect sea level rise (SLR) and

storm surges (SS). These two phenomena, on one hand,

accelerate coastal erosion (CE) and change the bathymetry

(BC), affecting the propagation of the waves; on the other

hand, SLR and SS can be concurrent or close in time to

tsunami events, making the impact even worse. CC can also

directly impact the built environment with two competing effects,

either 1) accelerating ageing phenomena and deteriorating the

strength characteristics of the physical elements of the built

environment, or 2) reducing the vulnerability through

mitigation actions. Also, CC can affect the ground conditions

(GC) that, in turn, modify the seismic site response (SR) under the

built environment. The seismic actions (E) and site effects (SE) can

reduce the strength of the built environment that can also be

affected by a tsunami (T). The risk assessment should be

conducted on the exposure (EX) that should account for long-

term (urban expansion UE) and short-term (tsunami evacuation

TE) variations. EX and UE are also affected by T as preferential

urban expansion schemes and potential relocation policies may be

needed. This brief presentation of the impact chains shows the

challenge of recognising possible scenarios and comprehensively

accounting for possible links. This example is not exhaustive,

further hazards and dependency links can be added, e.g.,
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earthquake-induced landslides potentially blocking evacuation

routes.

Risk metrics homogenisation

The systemic simulation-based implementation of the

dynamic risk framework presented above will simplify the

convolution of the different system components to assess

economic losses, loss of lives, and even CO2 emissions due

to the need to repair and rebuild the built environment. The

aspect of human life is always a delicate topic; a broadly

accepted approach consists of adopting the Life Quality

Index, LQI, with regard to natural, anthropogenic, and

technological risks (Rackwitz, 2002; Goda and Hong, 2006).

A key aspect associated with the multi-dimensionality of such

quantifiable risk metrics/indices is the need for

homogenisation. A broadly acceptable principle to

harmonise all risk metrics is not yet available. This makes

difficult for risk managers to decide which metric to prioritise

and which one to use in designing disaster policies.

It is, therefore, evident that a new quantifiable risk/

resilience metric/index addressing local needs is required

by accounting for multiple aspects and different responses/

attitudes to risks and socioeconomic characteristics (necessary

to simplify equitable risk appraisal and resource allocation).

Ultimately, such indexes must make disaster policies

straightforward through risk-informed early actions,

proposing viable risk mitigation options, and making use of

generalised cost-benefit tools.

A way of harmonising multiple risk metrics can be acquired

from the entropy-based approach for multi-criteria problems

(Hwang and Yoon, 1981). The entropy-based approach is

conventionally adopted when multiple alternatives are

available, and each alternative is assessed against a plethora of

criteria. Adapting the entropy-based methodology to the

framework presented in this paper consists of substituting the

alternatives with values obtained with the simulation-based

approach. Specifically, let L be a matrix with m rows (equal to

the number of simulations) and n columns (equal to the number

of risk metrics); therefore, the generic term lij of the matrix L is

the loss for the simulation i corresponding to the risk metric j.

Being lij computed from the dynamic framework presented

above, these values will account already for the time

dimension. The different columns of L cannot be represented

on the same plot as they have heterogeneous units (e.g., dollars,

casualties, and kgCO2e). However, the columns can be combined

with a weighted sumwhere the weights can be computed with the

entropy-based approach.

First, the terms of L must be normalised as follows:

pij � lij
∑m

i�1lij
. (2)

Second, the entropy for each jth risk metric can be computed

as follows:

ej � − 1
ln(m)∑

m

i�1pij · ln(pij). (3)

Third, the weights can be calculated for each risk metric using

the following relationship:

wj � 1 − ej
n − ∑n

j�1ej
(4)

Such weights can account for subjectivity by introducing

further weights (Guo et al., 2017). Finally, the dimensionless

values pij can be combined using the weights computed in Eq. 4.

This will allow obtaining a loss curve with a single metric

accounting for multiple criteria. If this curve is calculated for

multiple risk mitigation strategies, this approach will simplify

stakeholders’ decision-making processes.

Pathway to future research
development

In this paper, a perspective on future research on dynamic

risk assessment under cascading compounding climate-

geological hazards is presented. Three main aspects are

discussed: 1) the dynamic nature of risk, 2) the systemic

modelling needed to account for impact chains due to

cascading and compounding multi-hazards, and 3) the

outline of a procedure on how to harmonise risk metrics.

Although a real case study or application is not provided,

this paper paves the way for potential future research by

defining a theoretical background. Therefore, future efforts

are needed to develop tools to implement such an approach

and demonstrate the viability and replicability of the procedure

in multiple regions. The proposed methodologies may have a

broader impact as they overcome the classical risk integration

and can be adapted to other multi-hazard contexts.
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