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ABSTRACT 
 

Forecasting potential evapotranspiration (PET) is of great importance in effectively managing 
irrigation systems. This article centers around models designed to simulate future PET levels for the 
Kalaburagi district. The study calculates potential evapotranspiration using temperature data in 
degrees Celsius, employing the Thornthwaite method, and prediction is performed using the 
Seasonal Autoregressive Moving Average (SARIMA) method. These models are developed based 
on autocorrelation function (ACF) and partial autocorrelation function (PACF) analysis. Model 
selection is based on minimizing Akaike Information Criteria (AIC) and Bayesian Information 
Criteria (BIC) values. The chosen models for different stations in Kalaburagi, Chincholi,            
Sedam, Chittapur, Aland, Jewargi, and Afzalpur respectively are SARIMA (1,0,1)(2,1,0)12, 
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SARIMA(1,0,1)(2,1,0)12, SARIMA(1,0,0)(2,1,0)12, SARIMA(1,0,1)(2,1,0)12, SARIMA (1,0,1) (2,1,0) 
12, and SARIMA(1,0,1)(2,1,0)12. The results indicate that the models developed for Jewargi and 
Chincholi stations show particular promise compared to the other two stations, with all four models 
performing well. These models have the potential to significantly enhance decision-making in 
irrigation planning and command area management practices, contributing to improved water 
resource management. 
 

 
Keywords: ACF; PACF; SARIMA; PET. 
 

1. INTRODUCTION 
 
Evapotranspiration (ET) represents a vital part of 
the hydrologic cycle, as it accounts for the 
majority of precipitation on land returning to the 
atmosphere [1]. “Globally, ET consumes 
approximately 60% of the annual surface 
precipitation. Precise ET quantification holds 
significant importance for a variety of 
applications, including crop production, water 
resource management, and environmental 
assessment” [2]. In agricultural contexts, ET 
plays a pivotal role in the water balance, directly 
impacting crop quality and yield. Thus, accurately 
measuring ET is essential for effective irrigation 
and water resource management. 
 
ET data for agricultural crops have become 
increasingly crucial in both irrigation and water 
resource management. This process is 
predominantly influenced by various hydrological 
parameters, such as temperature, relative 
humidity, solar radiation, wind speed, and other 
climatic factors. 
 
“Stochastic models take into account time-
dependent variations and encompass random 
effects inherent to the ET process. Stochastic 
linear models, including those applied to ET time 
series data, facilitate the integration of on-farm 
systems with the primary irrigation system, 
enabling real-time operation. One of the most 
powerful models for forecasting time series 
datasets is the autoregressive integrated moving 
average (ARIMA) model. In ARIMA, the forecast 
of a variable is a linear combination of its 
previous state and the previous forecast error. 
ARIMA is renowned for its adaptability to the 
characteristics of time series data and has seen 
widespread use in hydrological time series 
modeling” [3]. 
 
ARIMA models have been applied across various 
regions and climatic conditions to address 
different purposes. For example, ARIMA was 
utilized to predict rainfall in the Rahuri region, 
India [3], and to analyze evapotranspiration in the 

same region [4]. Seasonal ARIMA models were 
crafted for the Jordan Valley [5], while Asadi et 
al. (2014) applied ARIMA to forecast 
evapotranspiration in humid and semi-humid 
regions. Time series modeling, extensively 
detailed by Salas et al. [6], plays a crucial role in 
comprehending and forecasting various 
hydrological phenomena. 
 
“A comprehensive understanding of 
evapotranspiration is indispensable for 
watershed management, meteorological and 
hydrological modeling, and effective water 
resource management, especially in irrigated 
agriculture” [7]. ET exerts a significant influence 
on crop water requirements (CWR), constituting 
over 95% of ET. Analyzing historical ET data is 
pivotal for addressing irrigation-related 
challenges and optimizing water resource 
management. 
 
The primary objective of this study is to establish 
a time series model for analyzing and forecasting 
potential evapotranspiration in the Kalaburagi 
district. 
 

2. MATERIALS AND METHODOLOGY 
 
Kalaburagi is an administrative district located in 
the Indian state of Karnataka and serves as the 
largest city in the North Karnataka region, also 
known as Kalyana-Karnataka. Geographically, 
this district spans between 76°04' and 77°42' 
east longitude and 17°12' and 17°46' north 
latitude, covering a total area of 10,951 square 
kilometers. 
 
The district is bordered by Vijayapura district of 
Karnataka and Solapur district of Maharashtra 
state to the west, Bidar district and Osmanabad 
district of Maharashtra state to the north,                  
Yadgir district to the south, and Sangareddy and 
Vikarabad districts of Telangana state to the 
east. Kalaburagi district is situated entirely        
on the Deccan Plateau, with elevations           
ranging from 300 to 750 meters above mean sea 
level. 
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Two major rivers, the Krishna and the Bhima, 
traverse the district, contributing to its 
geographical and ecological characteristics. 
 

2.1 Thornthwaite Method (Potential 
evapotranspiration) 

 
The potential evapotranspiration is calculated by: 
 

PET=16K (
10T

I
)

m

 

 
Where T is monthly mean temperature (°C); I is 
heat index calculated as the sum of 12 month 
index values; m is the coefficient dependent on I. 
 

m=6.75 × 10−7·I3 – 7.71 × 10−7·I2 + 1.79 × 10 

−2·I + 0.492. 
 
K is a correction coefficient computed as a 
function of the latitude and month [8]. 
 

2.2 Auto Correlation Test (Box Ljung test) 
 

The null hypothesis, denoted as H0, in the Box-
Ljung Test asserts that the model exhibits no 
lack of fit, essentially meaning the model is an 
appropriate fit for the data. In simpler terms, it 
suggests that the model is a good representation 
of the data. On the other hand, the alternative 
hypothesis, denoted as Ha, suggests that the 
model does display a lack of fit, indicating that it 
may not accurately represent the data. 
 

When the p-value obtained from the Box-Ljung 
Test is statistically significant, it leads to the 
rejection of the null hypothesis. In such cases, it 
suggests that the time series data does exhibit 
autocorrelation, implying that the model may not 
be a suitable fit for the data [9]. 
 

2.3 Stationary Test (Dickey fuller test) 
 

In the context of time series analysis, a time 
series is considered to be stationary in the weak 
sense when its statistical characteristics, such as 
means and variance, remain constant and do not 
change over time. Conversely, when the 
calculated p-values are greater than 0.05, it 
indicates that the series is non-stationary. 
Achieving a stationary form for the time series is 
essential for it to be fitted to stochastic models, 
as highlighted by Patil et al. [10]. 
 

2.4 Description of the Stochastic Models  
 

Stochastic models, which are also known as time 
series models, have found extensive application 

in the analysis of time series data across 
mathematical, economic, and engineering fields. 
These modeling techniques offer a systematic 
and analytical approach to simulate and forecast 
the behavior of complex and unpredictable 
hydrological systems. Additionally, they enable 
the measurement of the accuracy of the 
forecasts, as demonstrated by Mishra and Desai 
in [11]. 
 

 2.5 ARIMA Models  
 
“Autoregressive (AR) models and moving 
average (MA) models can be combined to create 
a specific and effective class of time series 
models known as autoregressive integrated 
moving average (ARIMA) models. In ARIMA 
models, the current value of a time series is 
described as a linear combination of 'p' lagged 
values and a weighted sum of 'q' previous 
deviations, along with a random parameter” [12]. 
 
ARIMA models are typically applied to time 
series data that exhibit stationarity. However, 
they can also be used with non-stationary data 
by differencing the series. Box and Jenkins [13] 
introduced a novel forecasting tool, the ARIMA 
methodology, which focuses on analyzing the 
stochastic characteristics of time series 
independently, rather than constructing single or 
simultaneous equation models. 
 
ARIMA models enable the representation of each 
variable using its own lagged values and 
stochastic error terms. The general non-seasonal 
ARIMA model consists of an AR component of 
order p and an MA component of order q, 
operating on the dth difference of the time series, 
denoted as zt. Therefore, a model in the ARIMA 
family is defined by three parameters (p, d, q), 
with each parameter taking zero or positive 
integral values, as described by Mishra and 
Desai in [11]. 
 
The general non-seasonal ARIMA model may be 
written as: 
 

∅(B)∇Zt

d = θ(B)at 

 
Where, θ (B) are polynomials of order p and q 
respectively. The non-seasonal AR operator of 
order p can be written as: 
 

∅(𝐵) = (1 − ∅1𝐵 − ∅2𝐵2 − ⋯ ∅𝑝𝐵𝑝) 

 

and non-seasonal MA operator of order q is 
written as: 
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𝜃(𝐵) = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ 𝜃𝑞𝐵𝑞) 
 

2.6 Seasonal ARIMA Models 
 

Many time series exhibit cyclic patterns, often 
following an annual cycle in hydrological time 
series due to the Earth's rotation around the sun. 
These cyclic patterns make such series cyclically 
non-stationary. By removing the deterministic 
cyclic effects from a series, the ARIMA (Auto 
Regressive Integrated Moving Average) 
approach can be applied to model the stochastic 
component of the series, as described by 
Gorantiwar et al. in [14]. 
 

To address seasonality and cyclic patterns in 
time series, Box et al. [15] introduced a 
standardized version of the ARIMA model, 
known as the Seasonal ARIMA (SARIMA) model. 
SARIMA models are designed to handle time 
series data with both non-seasonal and seasonal 
non-stationarity. A significant advantage of the 
SARIMA family of models is their ability to 
describe time series with only a few model 
parameters, accounting for non-stationarity both 
within seasons and throughout the data. In 
general, a SARIMA model is denoted as ARIMA 
(p, d, q) (P, D, Q)s, where (p, d, q) represents the 
non-seasonal component of the model, and (P, 
D, Q)s represents the seasonal component of the 
model. 
 

∅𝑝(𝐵)𝛷𝑝(𝐵𝑠)𝛻𝑑𝛻𝑠
𝐷𝑍𝑡 =  𝜃𝑝(𝐵)𝜑𝑄(𝐵𝑠)𝑎𝑡  

 

where p is the order of non-seasonal auto-
regression, d the number of regular differencing, 
q the order of non-seasonal MA, P the order of 
seasonal auto-regression, D the number of 
seasonal differencing, Q the order of seasonal 
MA, s is the length of season,   seasonal AR 
parameter of order P, seasonal MA parameter of 
order Q. 
 

2.6.1 Model identification  
 

The initial step in the analysis involves identifying 
a suitable ARIMA model that can effectively 
capture the behavior of the time series data. To 
accomplish this, the behavior of the time series is 
examined, with a focus on the autocorrelation 
function (ACF) and the partial autocorrelation 
function (PACF), as suggested by Mishra and 
Desai in [11] and Hsin-Fu Yeh and Hsin-Li Hsu in 
[16]. The ACF and PACF provide valuable 
information for determining the appropriate order 
of the ARIMA model. They assist in suggesting 
the types of models that might be appropriate for 
modeling the data. [17]. 

Following the ACF and PACF analysis, the final 
ARIMA model is selected using statistical criteria 
such as the Akaike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC), as 
recommended by Prasad et al. in [18]. These 
criteria serve to rank the candidate models, with 
the models having the lowest AIC and BIC 
values considered the best-fitting models. The 
mathematical forms of AIC and BIC are as 
follows: [Further content related to AIC and BIC 
may be included here]. 
  

AIC= -2 log (L) + 2k and SBC= -2 log (L) + k 
ln(n).  

 
Where k is number of parameters in the model; L 
is the likelihood function of the ARIMA model; 
and n is the number of observations. 
 
2.6.2 Parameter estimation 
 
Once the appropriate ARIMA model has been 
identified, the next crucial step is to estimate the 
model parameters. The estimation process 
involves determining the values for the 
autoregressive (AR) and moving average (MA) 
components of the model. These parameter 
values are calculated using the Maximum 
Likelihood method. 
 
After estimating the AR and MA parameters, it is 
important to conduct statistical tests to ascertain 
their significance. This step ensures that the AR 
and MA parameters are statistically meaningful 
and contribute significantly to the model's ability 
to explain the underlying patterns in the time 
series data. 
 
2.6.3 Diagnostic checking 
 
Diagnosing the ARIMA model is a critical and 
final step in the model development process. It 
involves assessing the suitability of the chosen 
model. Various diagnostic statistics and residual 
plots are examined to determine if the residuals 
exhibit any correlation or follow a white noise 
pattern. 
 

In this study, one of the diagnostic tools used is 
the residual autocorrelation function (RACF). The 
RACF is employed to evaluate whether the 
residuals behave like white noise. If the residuals 
exhibit a pattern or correlation in the RACF, it 
suggests that the model might need further 
refinement or that there is additional           
information in the data that the model has not 
captured [19]. 
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2.6.4 Drought forecasting 
 
To predict potential evapotranspiration (PET), the 
study employed the best-fit models identified 
from historical data. After generating these 
predictions, fundamental statistical properties 
were computed and tested to determine whether 
the predicted data maintained the basic statistical 
characteristics of the observed PET series. 
 
This assessment included examining various 
statistical measures, such as correlation 
coefficients (R), Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE), which 
were used to quantify the relationship and 
accuracy of the observed and predicted data. 
These metrics provide insights into how well the 
predictions align with the observed PET series, 
helping to assess the model's performance [20]. 
 

2.7 Input Dataset and Software 
 
The time series temperature data (both 
maximum and minimum) were collected from the 
Zonal Agricultural Research Station (ZARS) in 
Kalaburagi. The dataset covers the years from 
1990 to 2021. For the purpose of model 
development, data from 1990 to 2019 were 
utilized, while data from 2020 to 2021 were 
reserved for validation. 
 
The estimation of potential evapotranspiration 
was carried out using Microsoft Excel, and 
SARIMA models were developed using R Studio 

software. This approach allowed for the 
development and validation of models to          
predict potential evapotranspiration based   on 
the temperature data collected from 1990 to 
2019. 
 

3. RESULTS AND DISCUSSION 
 
The model development process included 
essential prerequisite tests, which encompassed 
checks for stationary and autocorrelation. 
Autocorrelation tests were conducted using the 
Box test, and the corresponding probability levels 
are presented in Table 1. The results indicated 
that the test statistics for the Box test, along with 
the associated Chi-square values and P-values, 
were as follows: 187.17 (0.01), 185.64 (0.01), 
172.77 (0.01), 182.4 (0.01), 187.26 (0.01), 99.88 
(0.01), and 189.64 (0.01) for the locations 
Kalaburagi, Chincholi, Sedam, Chittapur, Aland, 
Jewargi, and Afzalpur, respectively. These 
values were deemed significant at a 5% level of 
significance, indicating the presence of 
autocorrelation in the data. 
 
Conversely, the Augmented Dickey-Fuller 
(adf.test) was employed to assess whether the 
data exhibited stationarity or not. The results 
indicated the presence of seasonality in the data. 
Consequently, seasonal differencing was 
performed on the datasets, as shown in Table 2. 
This step aimed to address the seasonality 
observed in the data and make it more amenable 
for modeling. 

 
Table 1. Auto correlation test for different stations of Kalaburgi district 

 

Station Chi-Square Lag order P-value 

Kalaburagi 187.17 1 <0.001 
Chincholi 185.64 1 <0.001 
Sedam 172.77 1 <0.001 
Chittapur 182.4 1 <0.001 
Aland 187.26 1 <0.001 
Jewargi 99.883 1 <0.001 
Afzalpur 189.64 1 <0.001 

 
Table 2. Stationarity test for different stations of Kalaburgi district 

 

Station Dickey fuller Lag order P-value 

Kalaburagi -18.022 7 0.01 
Chincholi -17.777 7 0.01 
Sedam -17.193 7 0.01 
Chittapur -17.491 7 0.01 
Aland -18.028 7 0.01 
Jewargi -4.8282 7 0.01 
Afzalpur -18.195 7 0.01 
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The primary step in constructing the Box-Jenkins 
ARIMA model involves identifying the appropriate 
model. Various combinations of autoregressive 
(AR) and moving average (MA) parameters, 
denoted as p and q, were considered. The model 
selection process aimed to find the combination 
of orders that yielded the maximum log-likelihood 
and the lowest values of the Akaike Information 
Criteria (AIC) and Bayesian Information Criteria 
(BIC). The results for model development at the 
Kalaburagi, Chincholi, Sedam, Chittapur, Aland, 
Jewargi, and Afzalpur stations are presented in 
Tables 3 and 4. 
 
To identify the model, the autocorrelation 
function (ACF) and partial autocorrelation 
function (PACF) were plotted, as shown in Figs. 
1 and 2. These plots were instrumental in 
recognizing the presence of seasonality in the 
data. Consequently, seasonal ARIMA models 
were selected, incorporating seasonal 
differencing, as detailed in Table 4. 
 
The best-selected models for different stations 
included SARIMA (1,0,1)(2,1,0)12, SARIMA 
(1,0,1) (2,1,0)12, SARIMA(1,0,0) (2,1,0)12, 
SARIMA(1,0,1)(2,1,0)12, SARIMA (1,0,1) (2,1,0) 
12, SARIMA(1,0,1) (2,1,0)12, and SARIMA 
(1,0,1)(2,1,0)12, with maximum likelihood values 
of -1532.32, -1542.42, -1732.01, -1552.32, -
1512.62, -1542.24, and -1544.46, respectively, 
for Kalaburagi, Chincholi, Sedam, Chittapur, 
Aland, Jewargi, and Afzalpur. The estimated 
parameters for these models at different stations 
are presented in Table 4. 

Furthermore, the residuals were obtained by 
differencing the original series with the fitted 
series. The results showed (Table 5) that the 
residuals exhibited characteristics of white noise, 
indicating the adequacy of the model in    
capturing the underlying patterns in the            
data. 
 
Following the development of models for all 
seven taluks (selected stations) in the Kalaburagi 
district, the forecasting phase was executed, and 
the results are summarized in Table 6. The 
results indicate that, initially, the forecasts were 
found to be highly accurate, with correlation 
coefficients of 0.96, 0.95, 0.90, 0.88, 0.89, 0.92, 
and 0.86 for Kalaburagi, Chincholi, Sedam, 
Chittapur, Aland, Jewargi, and Afzalpur, 
respectively. 
 
To further evaluate the forecasting results, basic 
statistical properties were compared between the 
observed and forecasted data. This comparison 
involved employing a t-test for means and an F-
test for standard deviation, following the 
methodology outlined by Haan in [21]. The 
outcomes are presented in Table 7. 
 
The results of these statistical tests indicate that 
the t-calculated values associated with              
means fell within the range of t-critical table 
values (±1.71) for a two-tailed test at a 5% 
significance level. This implies that there              
is no significant difference between the                
mean values of the observed and predicted     
data. 

 

 
 

Fig. 1. Autocorrelation function plot of PET time series for Kalaburagi Station 
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Table 3. Log likelihood AIC and BIC values of ARIMA model for different stations 
 

Stations Model Log-Likelihood AIC BIC 

Kalaburagi SARIMA (1,0,1)(2,1,0)12 -1532.32 3074.64 3093.9 

Chincholi SARIMA(1,0,1)(2,1,0)12 -1542.42 3024.82 3019.5 

Sedam SARIMA(1,0,0)(2,1,0)12 -1732.01 3474.02 3488.45 

Chittapur SARIMA(1,0,1)(2,1,0)12 -1552.32 3064.64 3083.9 

Aland SARIMA (1,0,1)(2,1,0)12 -1512.62 3094.64 3098.9 

Jewargi SARIMA (1,0,1)(2,1,0)12 -1542.24 3054.64 3053.9 

Afzalpur SARIMA (1,0,1)(2,1,0)12 -1544.46 3094.64 3148.6 

 
Table 4. Parameter estimation of SARIMA by maximum likelihood method for different stations 
 

Station Model Parameters Estimate S.E. Z value P-value 

Kalaburagi SARIMA 

(2,0,2)(1,1,2)12 

Ar1 0.73 0.080 9.207 <0.001 

Ma1 -0.401 0.110 -3.630 <0.001 

Sar1 -0.84 0.049 -16.919 <0.001 

Sar2 -0.40 0.050 -8.133 <0.001 

Chincholi 

 

SARIMA 

(1,0,1)(2,1,0)12 

Ar1 0.74 0.082 8.263 <0.001 

Ma1 -0.412 0.116 -5.654 <0.001 

Sar1 -0.88 0.045 -18.324 <0.001 

Sar2 -0.49 0.052 -9.124 <0.001 

Sedam SARIMA 

(1,0,1)(1,1,2)12 

Ar1 0.314 0.050 6.245 <0.001 

Sar1 -0.752 0.052 -14.289 <0.001 

Sar2 -0.306 0.052 -5.789 <0.001 

Chittapur SARIMA 

(1,0,1)(2,1,0)12 

Ar1 0.728 0.088 9.408 <0.001 

Ma1 -0.409 0.114 -3.840 <0.001 

Sar1 -0.862 0.042 -16.918 <0.001 

Sar2 -0.400 0.062 -8.152 <0.001 

Aland SARIMA 

(2,0,2)(1,1,2)12 

Ar1 0.732 0.084 9.407 <0.001 

Ma1 -0.410 0.118 -3.830 <0.001 

Sar1 -0.842 0.042 -16.812 <0.001 

Sar2 -0.406 0.054 -8.203 <0.001 

Jewargi SARIMA 

(1,0,1)(2,1,0)12 

Ar1 0.74 0.081 9.203 <0.001 

Ma1 -0.420 0.122 -3.633 <0.001 

Sar1 -0.862 0.044 -16.84 <0.001 

Sar2 -0.410 0.051 -8.234 <0.001 

Afzalpur SARIMA 

(2,0,2)(1,1,2)12 

Ar1 0.82 0.086 9.308 <0.001 

Ma1 -0.54 0.212 -3.744 <0.001 

Sar1 -0.842 0.056 -16.984 <0.001 

Sar2 -0.48 0.058 -8.458 <0.001 

 
Table 5. Auto correlation check for residuals of Seasonal ARIMA model at different station 

 

Station Chi-Square Lag order P-value 

Kalaburagi 0.01 1 0.919 
Chincholi 0.04 1 0.82 
Sedam 0.330 1 0.565 
Chittapur 2.27 1 0.13 
Aland 0.0103 1 0.919 
Jewargi 0.06 1 0.921 
Afzalpur 0.08 1 0.924 
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Fig. 2. Partial autocorrelation function plot of PET time series for Kalaburagi Station 
 

Table 6. Performance measure of Seasonal ARIMA models at different stations 
 

Station Model Performance measures 

Kalaburagi                                SARIMA  
                                                 (2,0,2)(1,1,2)12 

RMSE 22.61 
MAPE 13.72 
R 0.96 

Chincholi 
 

SARIMA 
(1,0,1)(2,1,0)12 

RMSE 21.61 
MAPE 15.52 
R 0.95 

Sedam SARIMA 
(1,0,1)(1,1,2)12 

RMSE 23.45 
MAPE 11.25 
R 0.90 

Chittapur SARIMA 
(1,0,1)(2,1,0)12 

RMSE 28.54 
MAPE 19.45 
R 0.88 

Aland SARIMA 
(2,0,2)(1,1,2)12 

RMSE 29.52 
MAPE 9.85 
R 0.89 

Jewargi SARIMA 
(1,0,1)(2,1,0)12 

RMSE 20.15 
MAPE 14.96 
R 0.92 

Afzalpur SARIMA 
(2,0,2)(1,1,2)12 

RMSE 30.12 
MAPE 18.92 
R 0.86 

 

Table 7. Comparison of statistical properties of the observed and predicted data 
 

Stations Mean 
observed 

Mean 
forecasted 

Decision 
(t<1.79) 

Observed 
variance 

Forecast 
variance 

Decision 
(f < 0.74) 

Kalaburagi 151.59 142.86 0.19 4580.23 6143.2 0.31 
Chincholi 142.36 112.24 0.17 3245.26 3878.69 0.25 
Sedam 136.74 122.25 0.006 3008.58 3152.63 0.29 
Chittapur 136.54 152.36 -0.045 2254.69 2296.69 0.21 
Aland 161.23 112.02 0.17 2985.63 3001.98 0.31 
Jewargi 159.85 98.85 -0.017 4012.96 4112.65 0.30 
Afzalpur 165.66 107.25 0.15 2160.52 2560.32 0.24 
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Similarly, the F-calculated values for standard 
deviation were smaller than the F-critical values 
at a 5% significance level. This indicates that the 
forecasted data effectively preserves the basic 
statistical properties of the observed time series 
data [22]. 
 

4. CONCLUSION 
 
The results from the Seasonal ARIMA models 
indicate that these models are highly effective in 
forecasting potential evapotranspiration with a 
lead time of up to 12 months across all the 
stations. Among all the stations, the Seasonal 
ARIMA model performed exceptionally well at the 
Jewargi station, yielding an impressive set of 
results with an R value of 0.92, an RMSE value 
of 20.15, and a MAPE value of 14.96. 
 
The Seasonal ARIMA models for different 
stations consistently demonstrated the ability to 
forecast potential evapotranspiration accurately 
up to one year in advance with minimal error. 
Moreover, the statistical analysis revealed that 
the difference between the observed and 
forecasted means was found to be non-
significant, further affirming the promising 
performance of these models in forecasting 
potential evapotranspiration across the study 
area. 
 
The successful prediction of evapotranspiration 
is crucial for ensuring the reliability of project 
planning, design, and the operation of irrigation 
systems, making these models valuable tools in 
water resource management and agriculture. 
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