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State estimation of a physical system with 
unknown governing equations

Kevin Course1 & Prasanth B. Nair1 ✉

State estimation is concerned with reconciling noisy observations of a physical 
system with the mathematical model believed to predict its behaviour for the  
purpose of inferring unmeasurable states and denoising measurable ones1,2. 
Traditional state-estimation techniques rely on strong assumptions about the  
form of uncertainty in mathematical models, typically that it manifests as an  
additive stochastic perturbation or is parametric in nature3. Here we present a 
reparametrization trick for stochastic variational inference with Markov Gaussian 
processes that enables an approximate Bayesian approach for state estimation in 
which the equations governing how the system evolves over time are partially or 
completely unknown. In contrast to classical state-estimation techniques, our 
method learns the missing terms in the mathematical model and a state estimate 
simultaneously from an approximate Bayesian perspective. This development 
enables the application of state-estimation methods to problems that have so far 
proved to be beyond reach. Finally, although we focus on state estimation, the 
advancements to stochastic variational inference made here are applicable to a 
broader class of problems in machine learning.

State estimation, or data assimilation as it is often referred to in the 
geosciences, forms the backbone of modern machinery for fusing 
noisy sensor data with mathematical models of complex systems 
in many important areas of science, engineering and finance. For 
example, in robotics systems, state estimation underpins control 
and route-planning algorithms, as well as being useful in high-level 
decision-making4,5. In finance, state estimation has been applied to 
estimate stochastic volatility models6. In medical imaging, state esti-
mation has been advanced to improve cardiac-imaging technologies7. 
In meteorology, state estimation is used to reconstruct weather in the 
past and make predictions about weather in the future8,9.

The field of state estimation can arguably trace its roots back to the 
work of the early nineteenth-century astronomers. In 1801, the then 
24-year-old Gauss devised what could be called the first state-estimation 
algorithm. Using only Kepler’s laws along with ordinary least squares, 
Gauss accurately computed the orbit of the asteroid Ceres from lim-
ited, noisy observations1,10. Our more modern conception of the field 
originates in the foundational works of Kalman and Bucy in the early 
1960s. The researchers at the Research Institute for Advanced Studies, 
building on the work of Wiener and Kolmogorov in the 1940s, published 
their now well-known filtering algorithms for linear systems in 1960 and 
196111,12. As a testament to the success of their work, it was the Kalman  
filter—extended by Schmidt’s group at the NASA’s Ames Research 
Center to nonlinear systems—that solved the Apollo guidance and 
navigation problem13. Guided by a revolution in computing power and 
in the types of sensor available, such as the Global Positioning System, 
laser imaging and digital cameras1, modern developments in state 
estimation have focused on nonlinear systems14, high-dimensional 
systems15,16 and deriving more accurate approximations5.

An essential prerequisite for state estimation is a mathematical 
model describing how the system evolves over time. It is well accepted 
that some degree of uncertainty is inevitable in the mathematical char-
acterization of any real-world system. Standard state-estimation algo-
rithms assume that uncertainty in the governing equations manifests 
as an additive stochastic perturbation1 or is parametric in nature3,17–20. 
In reality, the true nature of uncertainty in mathematical models is 
much more diverse.

A more complete picture of uncertainty in mathematical models 
shows that it often also enters as a by-product of modelling errors21. 
Modelling errors are pernicious because they often arise owing to 
imperfect knowledge of the underlying system in combination with the 
need to simplify for computational considerations. For example, mete-
orology often uses empirical assumptions to approximate sub-gridscale 
processes22. Such modelling errors can be expressed mathematically 
as uncertainty in the structural form of the equations governing how 
the state vector evolves over time. Existing methods for state estima-
tion cannot account for model-structure uncertainty. Worse still, not 
accounting for such uncertainty will introduce bias in estimates for the 
state. Although there has been some work in model-free state estima-
tion to address such realities4,23,24, these approaches lose the inherent 
interpretability of handcrafted models.

We introduce a method for handling model-structure uncertainty 
in a manner that recovers the interpretability of handcrafted models. 
We do so by learning the motion model in the form of a set of symbolic 
differential equations simultaneously to a state estimate. This model-
ling choice enables state estimation in situations in which there are 
substantial modelling errors or the underlying dynamics are partially 
or completely unknown. This advancement is made possible by a new 
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reparametrization trick for Markov Gaussian processes that we intro-
duce in this work.

Numerical studies are presented for a range of test cases to illustrate 
the performance of the proposed approach. In practical situations in 
which modelling errors are present (even small errors), our method 
outperforms standard state-estimation techniques. Furthermore, 
our approach for state estimation with unknown governing equa-
tions allows analysts to discover missing terms in (or the entirety of) 
the governing equations using indirect observations. In Methods, 
we show that our approach outperforms state-of-the-art algorithms 
for governing-equation discovery, particularly in the low-data and 
high-noise regimes, and can be used in situations in which the entire 
state is not measurable. Finally, in cases in which interpretable forward 
models are not required, we show that our approach can be used to 
infer neural stochastic differential equations (SDEs) without relying 
on a forward solver in training.

Results
Problem statement
To mathematically define our problem statement, consider a noisy 
observation process of the form

y g x t η= ( , ) + , (1)t t

in which Ry ∈t
d  is the observation vector at time instant t, x ∈t

DR  is 
the latent state vector, g : × →D dR R R  is the observation function and 
η ∈ dR  denotes observation noise.

Given the time-series dataset, t y= {( , )}i t i

N

=1i
D , in which ti ∈ [0, T ] is the 

timestamp associated with the observation y ∈t
d

i
R , our goal is to infer

1.	 A well-calibrated estimate of the state vector, xt, over the time window 
[0, T ], and

2.	The equations governing the temporal evolution of the state.

Related work
This work lies at the intersection between three areas of science: (1) state 
estimation; (2) discovery of governing equations from measurements; 
and (3) Bayesian inference over functions. We summarize some relevant 
work in these areas below.

The classical state-estimation problem in which the governing 
equations are known has been widely studied in the literature; see, 
for example, the texts by Barfoot1 and Särkkä and Svensson2. There 
is also a wide body of literature focusing on simultaneous state and 
parameter estimation; see, for example, refs. 3,17–20. These approaches 
are useful for problems in which the structure of the governing equa-
tions is known and the uncertainties are strictly parametric. Although 
model-free state-estimation techniques can be used in situations in 
which dynamics are unknown4,23–25, these techniques lose the inter-
pretability of handcrafted models. A comparison of the assumptions 
made here to those made by existing methods is provided in Extended 
Data Table 1.

In terms of inferring interpretable governing equations, the special case 
in which all the states are measurable (that is, the observation function  
in equation (1) is the identity) has been extensively studied; see, for 
example, refs. 26–28. In 2011, Wang et al.26 showed how governing  
equations could be identified from full state measurements with a 
compressive-sensing approach using a dictionary of polynomials. Brun-
ton et al.27 studied the problem of discovering governing equations from 
full state measurements using a compressive-sensing approach and 
demonstrated that this is a very powerful tool for solving a wide class 
of problems in computational science and engineering. In principle,  
this approach can be used with incomplete measurements using the 
notion of time-delay embedding26. However, it is challenging to get 
this approach to work well in practice owing to numerical issues; see 
appendix 4.5 of ref. 27.

The focus of this work is on the practical problem of estimating the 
state and the governing equations in which only indirect measure-
ments are available.

Stochastic variational inference
Here we tackle the problem of state estimation with unknown govern-
ing equations using the machinery of stochastic variational inference 
(SVI)29. SVI is a powerful approach for approximate Bayesian inference 
that converts the problem of generating samples from an unnormalized 
density function into an optimization problem involving maximization 
of a stochastic approximation of the evidence lower bound (ELBO). Vari-
ational inference has been applied to solve a wide variety of problems 
in machine learning30–32.

SVI typically requires four ingredients: (1) priors over variables of 
interest; (2) a parametrized approximate posterior; (3) a tractable 
expression for the ELBO that admits unbiased stochastic approxima-
tions; and (4) a method for approximating gradients of expectations 
in the ELBO.

In the context of the problem considered here, SVI cannot be applied 
in a straightforward manner because we seek to estimate a function, 
xt, given measurements of yt, rather than a finite-dimensional vector. 
Here we propose a reparametrization trick for approximating expec-
tations under Markov Gaussian processes that enables us to tackle 
this challenge. A high-level summary of our approach is provided in 
Fig. 1 and we introduce the core ingredients of our methodology in 
the sections that follow.

Priors
We place a hierarchical prior over the state in the form of an Itô SDE 
with an uncertain drift and diffusion function

X f X t t t βd = ( , )d + Σ ( )d , (2)t θ t θ t

in which R R Rf : × →θ
D D is the drift function, R RtΣ ( ) : →θ

D D×  is the dis-
persion matrix, β ∈t

DR  indicates Brownian motion with diffusion 
matrix Q and Rθ ∈ M D+  is a vector of parameters. The prior for the state 
captures our assumption that the structural form of the governing 
equations is partially or completely unknown.

To learn interpretable dynamics, it is often convenient to make the 
assumption that the drift function can be approximated by a sparse, 
linear combination of known basis functions

∑f x t f x t ψ x t θ( , ) = ( , ) + ( , ) , (3)
θ t t

i

M

i t i∅
=1

in which R R Rf : × →D D
∅  indicates the drift function of the known 

dynamics and R R Rψ : × →i
D D  is the ith function from a predefined 

dictionary of basis functions. Often, this dictionary may include  
polynomials, trigonometric functions etc. We parametrize the disper-
sion matrix as θ θ θΣ = Σ + diag( , , …, )θ M M M D∅ +1

2
+2

2
+

2 , in which RΣ ∈ D D
∅

×  
refers to the known terms in the dispersion matrix.

As an aside, it is worth noting that it is straightforward to use more 
general parametrizations of the drift function, fθ. For instance, if 
we are interested in inferring Hamiltonians or more general energy 
cycles, we could parametrize fθ by a Hamiltonian33 or generalized  
Hamiltonian34 neural network, respectively. Later, we provide examples 
to demonstrate the case when fθ is parametrized by a fully connected 
neural network.

In alignment with the assumption of a sparse linear combination of 
basis functions and to indicate our preference that perturbations to the 
dispersion matrix be small or sparse if possible, we will make use of a 
sparsity-inducing horseshoe prior over the parameters, θ ∼ p(θ) (ref. 35).

We have now specified a hierarchical prior over the latent process we 
wish to infer, X|θ and p(θ). Here X|θ indicates the process defined by the 
SDE in equation (2) over sample paths in the interval [0, T] conditioned 



Nature  |  Vol 622  |  12 October 2023  |  263

on a particular setting of the parameters. State estimation amounts 
to inferring the posterior process over X and inferring missing terms 
in the governing equations amounts to inferring the posterior over θ. 
For the special case in which the governing equations are known, the 
assumptions made in this work coincide with those made in continuous 
time-state estimation1,2.

Variational distributions
To carry out SVI, we need to construct parametrized variational distri-
butions for the state and the parameters in equations (2) and (3). We 
approximate the posterior process over the state as the solution to a 
linear SDE of the form

X A t X b t t βd = (− ( ) + ( ))d + Σ d , (4)t φ t φ θ t

in which A : →φ
D D×R R  and R Rb : →φ

D  are symmetric-matrix and 
vector-valued functions of time, respectively, φ is a vector of variational 
parameters, Σθdβt is the same diffusion process defined in the prior 
and the initial condition is assumed to be Gaussian, X m S~ ( , )0 0 0N .

Because the solution of a linear SDE is a Markov Gaussian process, 
we can parametrize the marginal statistics of the solution of equa-
tion (4) as q x m t S t( ) = ( ( ), ( ))φ t φ φN , in which m : →φ

DR R  is the mean and 

S : →φ
D D×R R  is the (marginal) covariance36. The marginal statistics 

satisfy the following system of ordinary differential equations (ODEs):

m t A t m t b t( ) = − ( ) ( ) + ( ) (5)φ φ φ φ̇

S t A t S t S t A t Q( ) = − ( ) ( ) − ( ) ( ) + Σ Σ (6)φ φ φ φ φ
T

θ θ
Ṫ

in which mφ(0) = m0 and Sφ(0) = S0.
To proceed further, we also need to define an approximate posterior 

for the parameters, θ, defined in equation (3). We used the log-normal 
parametrization from ref. 37, which we compactly denote by qφ(θ), 

in which again φ denotes the vector of variational parameters; see 
Methods for more details.

ELBO
In SVI, the variational parameters are estimated by maximizing the 
ELBO, which is equivalent to minimizing the Kullback–Leibler (KL) 
divergence between the approximate posterior and the true, intrac-
table posterior29. Here we propose a new reparametrization strategy 
that enables the variational parameters to be efficiently estimated 
without using a forward solver.

Letting [ ⋅ ]P θ
∼E  indicate expectations under the prior SDE in equ

ation (2), we can derive the following ELBO38–40

























E ED ∏p p y xlog ( ) = log ( ) (7)p θ P θ
i

N

t t( )
=1

i i
∣∼







∣

∥ ∥

∥

E

E∫

∑ p y x

r x t θ φ t

D q θ p θ φ

≥ [log ( )]

−
1
2

( , , , ) d

− ( ( ) ( )) = ELBO( ),

(8)
i

N

q x t t

T

q x q θ t Q

φ

=1
( )

0 ( ) ( ) Σ Σ
2

KL

φ ti i i

φ t φ θ θ
T

in which r(xt, θ, φ) = −Aφ(t)xt + bφ(t) − fθ(xt, t) is the drift residual, 
∣∣ ∣∣v v Q v= (Σ Σ )Q

T
θ θ

T
Σ Σ
2 −1

θ θ
T  and DKL(qφ(θ)||p(θ)) indicates the KL diver

gence between qφ(θ) and p(θ).
Maximizing equation (8) with respect to the parameters of the vari-

ational distributions, φ, would provide an approximate state estimate, 
qφ(xt), and an estimate for the posterior distribution over the param-
eters, qφ(θ). Unfortunately, maximizing this ELBO is computationally 
challenging because the first two terms depend on expectations with 
respect to qφ(xt), the current state estimate. Archambeau et al.38,39 
explored maximizing equation (8) subject to the differential equality 

y0

g(xt, t) + 

dXt = f (Xt, t)dt +   (t)d t

Goal: estimate the posterior over the state  
and the governing equations

Given: measurement data  = {(ti, yti
)}i=1 

Learning problem Approach

Hierarchical prior: specify a 
hierarchical prior over the 
states as a nonlinear SDE  

Prior on governing equations:
• Known terms in dynamics
• Potential nonlinearities
• Conserved quantities
• …

Parametrized posterior: Gaussian process
over states, mean �eld over parameters  

p( | ) ≈ q ( )

Results

State estimate: Bayesian estimate 

Predictive posterior: uncertainty estimate in  
predictions and in learnt governing equations
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N
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dXt =  –A (t)Xt + b (t) dt +   (t)d t( )
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Fig. 1 | Main ideas. a, Given noisy time-series data and an observation model, 
our goal is to estimate the underlying state and any missing terms in the 
forward model. b, We specify a hierarchical prior over the state and the 
governing equations and then infer an approximate posterior over the state 

and forward model using SVI. c, We arrive with a state estimate, a method for 
generating forecasts with uncertainty estimates and a Bayesian estimate for 
missing terms in the governing equations.
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constraints in equations (5) and (6) in the context of dynamic data 
assimilation. This approach requires solving 2(D + D2) ODEs at each opti-
mization iteration. Solving ODEs as part of an optimization procedure 
is computationally challenging because: (1) gradient-based updates to 
the variational parameters can cause the ODEs to become extremely 
stiff mid-optimization, causing the computational cost of an ODE solve 
to explode, and (2) ODE solvers are inherently iterative sequential 
methods, making them poorly suited to modern parallel-computing 
hardware.

Here we introduce a reparametrization for expectations in equation (8)  
with respect to qφ(xt) that replaces the need for an ODE forward solver 
with a stochastic approximation that can be evaluated in an embarrass-
ingly parallel fashion. This eliminates the practical challenges associ-
ated with maximizing equation (8). Our main theoretical result takes 
the form

E

E

N

N




∫

∑

(9)

φ p y x

r x t θ φ t

D q θ p θ

ELBO( ) = [log ( )]

−
1
2

( , , , ) d

− ( ( ) ( )),

i

N

m t S t

m t S t q θ t

φ

=1
( ( ), ( ))

( ( ), ( )) ( )

KL

t t

T

Q0 Σ Σ
2

φ i φ i

φ φ φ

i i

θ θ
T

∣

∥ ∥

∥

in which

(10)
r x t θ φ S t S t Q S t

m t x m t f x t

( , , , ) = vec (( ( ) ⊕ ( )) vec(Σ Σ − ( )))

( ( ) − ) + ( ) − ( , ),
t φ φ θ θ

T
φ

φ t φ θ t

−1 −1 ̇

̇

denotes the drift residual reparametrized in terms of mφ and Sφ (for a 
derivation, see Methods), ⊕ indicates the Kronecker sum, vec : →D D D× 2

R R  
maps a matrix into a vector by stacking columns and R Rvec : →D D D−1 ×2

 
unstacks a vector such that vec−1(vec(C)) =  RC C∀ ∈ D D× .

Recall that, in the original ELBO (equation (8)), the first two terms 
contained expectations with respect to the marginal statistics of the 
solution of the SDE (equation (4)), qφ(xt), and approximating these 
expectations required the use of a forward solver. In this repara-
metrized ELBO (equation (9)), expectations are taken with respect to 
the Gaussian, m t S t( ( ), ( ))φ φN . It is worth noting that, as we directly 
parametrize mφ and Sφ instead of Aφ and bφ, it is feasible to estimate all 
expectations without running a forward ODE solver. Notably, we no 
longer need to solve any ODEs; we only need to construct stochastic 
approximations of the terms in the ELBO. Such stochastic approxima-
tions are easy to compute using modern parallel-computing hardware. 
It is this new development that enables us to perform approximate 
Bayesian inference over both the state and the unknown governing 
equations.

In Methods, we describe how to parametrize mφ and Sφ and how to 
optimize a stochastic approximation of the ELBO (equation (9)).  
Having maximized the ELBO, we are left with an approximation to the 
posterior over the state, q x m t S t( ) = ( ( ), ( ))φ t φ φN , and an approximate 
posterior over the parameters defining the governing equations,  
qφ(θ), that can be used to make probabilistic forecasts and perform 
further analysis. We henceforth refer to our method as SVI for state  
estimation (SVISE). Our method was implemented in PyTorch41.  
In the following sections, we provide some examples of SVISE  
applied to problems in state estimation and governing-equation  
discovery.

Example 1: state estimation with known motion model
In this section, we compare our method for state estimation with 
unknown governing equations to the particle filter (PF)42,43 when the 
form of the underlying motion model is known exactly. The PF was 
chosen as the baseline for comparison as it is a fully Bayesian method 
capable of handling highly nonlinear systems. Both methods were 
provided with complete knowledge of the underlying dynamics and 
observation model. We performed this comparison on six benchmark 

problems and a detailed description of the experiment design is  
provided in Methods.

The results are summarized in Fig. 2a. We found that our method 
provided results comparable with the PF in terms of providing an 
estimate for the mean of the state. We believe that minor differences 
in performance are because of our choice of basis functions. Clearly 
there is an opportunity to perform model selection in terms of the 
basis-function design if desired.

Example 2: state estimation with modelling errors
In this section, we examine the performance of our method on the same 
suite of benchmarks when a small modelling error is introduced. We 
introduce a small state-dependent corruption to the governing equa-
tions and compare the performance of SVISE with the PF. Unlike the 
previous set of examples, we do not provide our method with access 
to knowledge of the dynamics (that is, we set f = 0∅  and Σ = 0∅ ), so that 
we are required to learn the dynamics as well as a state estimate. The 
PF is given access to the uncorrupted dynamics, along with the exact 
form of the diffusion process.

The specific form of the corruption is chosen so that the form of 
the governing equations are, on average, the same as in the previous 
section and so that any particular realization of a corruption could 
plausibly be mistaken for further process noise rather than model 
misspecification; see Fig.  2c–e. Further details can be found in  
Methods.

Because the PF is given the exact form of the diffusion process, we 
believe that upcoming results represent an overestimate for the PF 
performance. Despite this advantage, we find that our method now, 
on average, outperforms the PF in the presence of this mild corruption 
to the dynamics; see Fig. 2b. As discussed previously, there are many 
real-world systems for which modelling errors are an unavoidable real-
ity. This work can be used in such circumstances to potentially improve 
on state-estimation performance.

As was previously discussed, a key differentiating feature of our 
method compared with model-free state-estimation techniques is 
that we are learning symbolic differential equations for the motion 
model. Looking to Fig. 2f,g,h, we see that our approach can be used 
to make probabilistic forecasts after state estimation has concluded.

Example 3: governing-equation discovery with neural SDEs
When the state is low dimensional, or the state is spatially extended, it 
is possible to make use of dictionaries of polynomial basis functions 
to infer symbolic SDEs simultaneously to a state estimate. In Methods, 
we provide three numerical studies demonstrating the application of 
our approach to symbolic-governing-equation discovery. We show 
that our approach offers superior performance to state-of-the-art 
algorithms for the sparse identification of nonlinear dynamics in 
the presence of substantial noise or a lack of data. Also, we demon-
strate scalability by showing that our approach can be used to infer 
symbolic governing equations for a spatially extended system with 
1,024 states. Finally, we show that our approach can be used to infer 
symbolic governing equations for second-order systems using only 
position measurements.

Unfortunately, dictionaries of polynomial basis functions become 
prohibitively large even for moderately high-dimensional systems. In 
such situations, a reasonable alternative to inferring symbolic differen-
tial equations is to parametrize the drift function by a neural network. In 
Methods, we present numerical studies on a binary-black-hole problem 
that involves inferring a neural SDE using a nonlinear observation func-
tion. In the example that follows, we consider a fluid-dynamics problem 
with a high-dimensional state space to illustrate how our approach can 
be combined with off-the-shelf dimensionality-reduction algorithms 
to infer probabilistic reduced-order models (ROMs) in the format of 
latent neural SDEs. The main idea of ROMs is to infer a mapping that 
enables the original high-dimensional system to be transformed into a 
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low-dimensional system that is computationally cheaper to solve44. The 
approach we take is aligned with previous works in the ROMs literature 
that infer lower-dimensional differential equations on a predefined 
manifold45,46.

As a case study, we considered the challenging problem of inferring 
latent differential equations for fluid flow past a circular cylinder with 
a Reynolds number of 2,000. We model this problem using a spatial 
discretization of the two-dimensional incompressible Navier–Stokes 
equation with 596,602 states. We train a neural SDE on 38 latent states. 
These latent states were constructed by projecting the data onto the 
top 38 proper orthogonal decomposition (POD) modes to capture 
90% of the total variance. More details on the numerical study design 

are provided in Methods. It can be seen from Fig. 3 that our approach 
provides accurate probabilistic predictions of the flow field.

Discussion
We have presented a method for state estimation that enables the 
treatment of real-world problems in which there are notable model-
ling errors or the underlying governing equations are completely or 
partially unknown. This is an important class of problems that has thus 
far defied a computationally tractable, statistically rigorous solution. 
We have also provided results for governing-equation discovery for a 
variety of challenging problems. The results indicate that our approach 

a
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Fig. 2 | Benchmarking summary with 20 independent trials per system.  
a, State-estimation results with perfect knowledge of the dynamics. b, State- 
estimation results with minor corruption of the dynamics. c–e, Before and after 
adding a small probabilistic corruption for the coupled linear oscillator (c), the 
cubic oscillator (d) and the Hopf bifurcation (e) (10–90th quantiles shown).  
f–h, Probabilistic forecast with 64 (f), 512 (g) and 1,024 (h) data points. We see 

that our method (SVISE) performs similarly to the PF when the governing 
equations are known exactly. In the presence of only mild modelling error, our 
method outperforms the PF on average. Moreover, after training, our method 
enables us to make probabilistic forecasts. Expectedly, the predictive posterior 
shrinks as the amount of data is increased.
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can outperform state-of-the-art algorithms for governing-equation 
discovery often by more than an order of magnitude; see Methods 
for details. It is worth reiterating that many governing-equation 
learning algorithms only provide point parameter estimates27. As 
demonstrated in Fig. 2f–h, our method enables Bayesian governing- 
equation identification, thereby allowing for probabilistic forecasts 
to be made.

Moreover, in cases in which specifying a dictionary of basis func-
tions is not feasible (such as when the state space is high dimensional 
or it is not clear what basis functions are appropriate), we have shown 
that it is possible to infer the missing dynamics in the form of a neural 
network. It is worth noting here that our approach enables neural SDEs 
to be trained without using a computationally expensive forward solver 
and adjoint sensitivity calculations.

These results are made possible by a reparametrization trick for 
Markov Gaussian processes that we introduce here. We believe that 
there is substantial room for future work in applying this technique 
for performing variational inference over stochastic processes outside 
the state-estimation domain. Potential application areas include mul-
tiphysics ROM problems, state estimation with unknown observation 
models, stochastic closure modelling47 and inferring latent forcing 
models48. Also, there is room for using more expressive approximations 
to the posterior over the parameters to better approximate uncertainty. 
Finally, there has been a recent resurgence of interest in using SDEs for 
building complex generative models40 and we expect that our approach 
could be used to gain deeper insights into the statistical underpinnings 
of such models.
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Article
Methods

Reparametrized drift residual
Recall that, given a linear SDE, dXt = (−Aφ(t)Xt + bφ(t))dt + Σθdβt, with 
initial condition X m S~ ( , )0 0 0N , we can solve for the marginal statistics 
of this SDE, q x m t S t( ) = ( ( ), ( ))φ t φ φN , by solving the ODEs in equations (5) 
and (6). Given Sφ and ̇Sφ, we notice that equation (6) is a set of Lyapunov 
equations in terms of the symmetric matrix Aφ. We can rearrange this 
set of equations to express Aφ and bφ explicitly in terms of mφ and Sφ

A t S t S t Q S tvec( ( )) = ( ( ) ⊕ ( )) vec(Σ Σ − ( )) , (11)φ φ φ θ θ
T

φ
−1 ̇

̇b t m t A t m t( ) = ( ) + ( ) ( ). (12)φ φ φ

Sφ(t) ⊕ Sφ(t)(Sφ(t) ⊕ Sφ(t) = Sφ(t) ⊗ I + I ⊗ Sφ(t) is the Kronecker sum, in 
which ⊗ indicates the standard Kronecker product.) is guaranteed to be 
invertible because Sφ is a valid covariance matrix. Using equations (11) 
and (12), the drift residual can be rewritten as follows:

r x t θ φ A t x b t f x t( , , , ) = − ( ) + ( ) − ( , ), (13)t φ t φ θ t

̇A t m t x m t f x t= ( )( ( ) − ) + ( ) − ( , ), (14)φ φ t θ t

̇

̇
(15)

S t S t Q S t m t x

m t f x t

= vec (( ( ) ⊕ ( )) vec(Σ Σ − ( ))) ( ( ) − )

+ ( ) − ( , ),
φ φ θ φ φ t

φ θ t

−1 −1
θ
T

Substituting this into the expression for the ELBO (equation (8)) 
yields the final form of the reparametrized ELBO (equation (9)).

Parametrization of mφ and Sφ

We parametrize mφ using radial-basis-function models of the form 
mφ(t) = (k(1)(t, τ) ⊗ I)φ(1), in which Rφ ∈ pD(1)  is the vector of weights 
associated with the approximation for the mean, k t τ( , ) =(1)

Rk t t k t t[1 ( , ) … ( , )] ∈p
p(1)

1
(1)

−1
1×  is the vector of basis functions evalu-

ated at t and τ = {t1,…, tp−1} is the set of basis function centres. We chose 
each k( j) to be the Matérn 5/2 kernel49 centred at ti ∈ [0, T ],

ℓ ℓ ℓk t t σ r t t r t t r t t( , ) = (1 + 5 ( , )/ + 5 ( , ) /(3 ))exp(− 5 ( , )/ ) ,j
i j i j i j i j

( ) 2 2 2

in which σj > 0 and ℓj > 0 are the tunable scale and length scales associ-
ated with the basis functions, respectively, and r(t, ti) = |κ(t) − κ(ti)| with 
κ t T T t T( ) = − (1 − ( / ) )α β denoting the Kumaraswamy warping function 
with two positive tunable parameters α and β (ref. 50). In all experi-
ments, unless otherwise noted, we used 200 evenly spaced basis func-
tions within the time interval [0, T ].

When dealing with systems whose dynamics can be characterized 
in a low-dimensional state space, we use a full-rank, dense, spectral 
parametrization of the state covariance matrix Sφ(t) = Rφ(t)Λφ(t)Rφ(t)T, 
in which Rφ(t) is an orthonormal matrix and Λφ(t) is a diagonal  
matrix with all positive elements that we parametrize as R t( ) =φ

k t τ I φexp((( ( , ) ⊗ ) ) )(2) (2) ∧  and Λ t k t τ I φ( ) = softplus (diag(( ( , ) ⊗ ) ))φ
(3) (3) , 

in which Rφ ∈ pD D(2) ( −1)/2  is the vector of weights associated with Rφ, 
Rφ ∈ pD(3)  is the vector of weights associated with Λφ, k t τ( , ) =j( )

Rk t t k t t[1 ( , ) … ( , )] ∈j j
p

p( )
1

( )
−1

1×  is the vector of basis functions evalu-
ated at t, R R( ⋅ ) : →D D D D∧ ( −1)/2 ×  is an operator that turns a vector of length  
D(D − 1)/2 into a skew-symmetric matrix (notation from ref. 1), 

R Rexp : →D D D D× ×  indicates the matrix exponential, diag : →D D D×R R  
turns a vector of length D into a diagonal matrix and R Rsoftplus : →  is 
the Softplus function that acts element wise. This parametrization 
requires D( )3O  time to compute.

Under this parametrization, we can solve equation (6) for Aφ by first 
solving the system of linear equations

Λ t Λ t B t R t Q S t R t( ( ) ⊕ ( ))vec( ( )) = vec( ( ) (Σ Σ − ˙ ( )) ( )) (16)φ φ φ φ
T

θ θ
T

φ φ

and then computing Aφ(t) = Rφ(t)Bφ(t)Rφ(t)T. This result follows from 
the application of the Bartels–Stewart algorithm51.

To summarize, this parametrization allows for complete flexibility 
in terms of its ability to approximate symmetric positive-definite matri-
ces; however, this flexibility comes at the cost of scaling as O D( )3  owing 
to the matrix–matrix products. This computational cost makes it only 
applicable for use with relatively low-dimensional systems.

When dealing with high-dimensional dynamical systems, as is often 
the case in the geosciences for example, we propose parametrizing Sφ 
by a purely diagonal covariance matrix, that is, Sφ(t) = Λφ(t), in which 
Λφ(t) is parametrized as described previously for the spectral para-
metrization. If we also restrict QΣ Σθ θ

T  to be diagonal, we have 
A t S t Q S t( ) = ( ) (Σ Σ − ( ))φ φ θ θ

T
φ

1
2

−1 ̇ . The dimensionality of this parametri-
zation scales linearly in the dimension of the state, O D( ), making state 
estimation with unknown governing equations possible in extremely 
high dimensions.

We use the diagonal parametrization for the reduced-order model-
ling problem in the main text as well as the upcoming studies of our 
approach applied to symbolic-governing-equation discovery for 
high-dimensional spatially extended systems, as well as the example 
of our approach applied to the binary black hole. For all other numerical 
studies, we use the full spectral parametrization.

Maximization of the ELBO
We approximate all gradients of expectations using the standard 
reparametrization trick30. If the observation function is linear, we can 
exactly compute the expected log-likelihood, as is described in an 
upcoming section. We used the so-called hybrid simulator based on 
Gaussian quadrature52 to estimate the integral over time with respect 
to the drift residual. This integration scheme ensures that approxima-
tions to the ELBO gradient remain unbiased while providing lower 
variance than standard Monte Carlo. In the case that the number of 
data points is large, stochastic gradient ascent can be used to maximize 
the objective. We used Adam53 to optimize the ELBO with respect to 
the variational parameters.

Putting these computational ingredients together, and letting  
each Nx θ m t S t q θ, ~ ( ( ), ( )) ( )t

j j
φ φ φ

( ) ( )  be samples from the variational 
distributions drawn using the reparametrization trick, we can write 
stochastic approximations to the first term in the ELBO as

E∑ ∑ ∑p y x
N
BJ

p y x[log ( )] ≈ log ( ), (17)
i

N

m t S t t t
i

B

j

J

t t
j

=1
( ( ), ( ))

=1 =1

( )
φ i φ i i i i i

∣ ∣N

in which each i has been uniformly sampled from the set {1, 2,…, N}. 
Following ref. 52 and letting I t r x t θ φ( ) = − ∑ ( , , , )J j

J
t

j j
Q

1
2 =1

( ) ( )
Σ Σ
2

θ j
θ j
T

( ) ( )
∣∣ ∣∣ ,  

we can write a stochastic approximation to the second term in the 
ELBO as

N ∣∣ ∣∣E∫

∑ ∑

r x t θ φ t

K
TI t TP t ω I t

−
1
2

[ ( , , , ) ]d

≈
1

( ) − ( ) + ( )
(18)

T

m t S t q θ t Q

k

K

k M k
i

M

i i

0 ( ( ), ( )) ( ) Σ Σ
2

=1
−1

=1

φ φ φ θ θ
T











in which Rω ∈i  is the ith quadrature weight associated with the Gauss–
Legendre quadrature rule54 and PM−1 is the (M − 1)-degree polynomial 
interpolant of I(t) constructed by matching the value of I(t) at the quad-
rature nodes. Recall that we have selected qφ(θ) and p(θ) such that we 
can write the KL divergence between the two distributions in 
closed form.

To demonstrate the robustness of our approach, we kept hyperpa-
rameters constant across all experiments unless otherwise specified. 
We chose B = min(128, number of data points), J = 32, K = 26 and M = 102. 
We chose a learning rate of 10−3 for all parameters related to qφ(xt) and 
10−2 for all other parameters; for the Lorenz ’96 problem, we chose 



learning rates 10−2 and 10−1, respectively. We trained every model for 
20,000 iterations; for the Lorenz ’96 problem, we trained for 5,000 
iterations. We used 5,000 warm-up iterations (1,250 for the Lorenz ’96 
problem) wherein the KL divergence term is scaled by a constant factor 
from 0 to 1, increasing every iteration at a linear rate55. We decayed the 
learning rate by multiplying the starting learning rate by 0.9 every 2,500 
iterations (625 for the Lorenz ’96 problem). Although these were the 
hyperparameter settings we chose for all experiments here, we would 
like to emphasize that this is just one setting for the hyperparameters 
that worked well consistently. Careful tuning for individual experiments 
can probably improve performance and or decrease training time.

Initialization
We found that good initialization of the radial-basis-function models 
used to parametrize mφ and Sφ could greatly improve convergence. 
This is to be expected, given that we are trying to maximize a highly 
nonconvex objective. For the constant basis function, we initialized the 
weight to 0 in the mean-function and orthogonal-matrix parametriza-
tions. For the eigenvalue parametrization (Λφ), we initialized this weight 
to approximately −2.5. We also added 10−6 to the eigenvalue matrix to 
help ensure that the optimizer stayed away from extremely degener-
ate regions of the optimization space in the early stages. Initializing 
the eigenvalues to be small at the start of the optimization procedure 
helped to avoid convergence to a poor local minima wherein the model 
finds that the data were generated by a pure random-walk process. 
For the scale parameter, σj, we always initialized to 1. For the mean 
function, we initialized the remaining weights in φ(1) by minimizing 
the least-squares error with ℓ2 regularization on the training data. We 
weighted the ℓ2 regularization term by 10−1. We initialized the length 
scale with a grid search over the length scales from the set {10−1, 1/2, 1, 10} 
using fivefold cross-validation. For the orthogonal matrix, we initialized 
the weights to a small positive constant, 10−6. For the sparse approxi-
mation to the drift function, we initialized the weights by minimizing 
the ℓ2 regularized least-squares error between the derivatives from the 
initialized mean function and the drift-function model at the training 
timestamps. Again, we weighted the ℓ2 regularization term by 10−1.

Normalization of drift-function features
When training sparse linear models, we found that normalizing the 
drift-function features dynamically in training could make convergence 
to a good minima more consistent. In this work, we assumed that we 
were only interested in time-independent features and that we were 
using the same features in each dimension. In this case, we can write, 
fθ(xt, t) = (ψ(xt) ⊗ I)θ, in which R Rψ : →D M1×  returns a row vector of fea-
tures and θ ∈ DMR  is a vector of parameters. Let ψ(x) be the basis func-
tions evaluated at a batch of inputs. During training, each time we 
compute ψ(x), we normalize on the basis of the running variance, that is,

ψ x
ψ x

ψ x �
( ) ←

( )
Var[ ( )] +

, (19)

in which Var[ψ(x)] is the running variance of the output features 
and ϵ > 0 is a constant we choose to be 10−5. The running variance is 
updated according to the rule Var[ψ(x)]new = (1 − μ) × Var[ψ(x)]old + μ ×  
Var[ψ(x)]est, in which Var[ψ(x)]est is the estimated variance for the  
current batch of inputs and the momentum, μ, was set to 0.1. The con-
stant basis function ψ(x) = 1 was not normalized. This is very similar to 
the batch-normalization56 implementation provided in PyTorch41. The 
running variance was initialized using the variance of the inputs at the 
data timestamps using the initialized mean approximation.

KL divergence for the half-Cauchy prior
This section summarizes the parametrization defined by ref. 37 that is 
used to estimate the posterior over the parameters in equation (3) when 
performing symbolic-governing-equation discovery. This is a useful 

parametrization as it allows us to easily sample from the approximate 
posterior and express the KL divergence between the approximate 
posterior and the prior in closed form.

Recall that the prior for the parameters is written as p(θ), in which 
θ ∈ M D+R , M is the number of basis functions in the dictionary and D is 
the dimension of the state. We express the full hierarchical prior as ∼
θ θ s s α β=i i a b i i

, in which

∼
θ s τ s~ (0, 1), ~ (0.5, ), ~ (0.5, 1), (20)i a b0

2N G IG

α β~ (0.5, 1) and ~ (0.5, 1). (21)i iG IG

Here G and IG denote the Gamma and inverse Gamma distributions, 
respectively, and τ0 is a small positive constant chosen by the user, 
typically O O(10 ) − (10 )−5 −7 . The product z s s= a b  corresponds to a 
half-Cauchy distribution on z. The idea behind the prior is ‘global–local’ 
shrinkage. Here sa and sb are ‘global’ scales that encourage all param-
eters to be small and αi and βi are local scales that allow the correspond-
ing parameter to remain unconstrained.

Having specified the prior, we must now specify an approximate 
posterior. Following ref. 37, we make use of a mean-field assumption, 
approximating the posterior over the shrinkage parameters using 
log-normal distributions. The approximate posterior over all param-
eters can be expressed as the product

∼∏q θ q s s q α β q θ( ) = ( , ) ( , ) ( ), (22)φ φ a b
i

M D

φ i i φ i
=1

+

in which φ is the vector of variational parameters corresponding to 
the distributions

∣ ∣LN LNq s s s µ σ s µ σ( , ) = ( , ) ( , ); (23)φ a b a s s b s s
2 2

a a b b

q α β α µ σ β µ σ( , ) = ( , ) ( , ); (24)φ i i i α α i β β
2 2

i i i i
∣ ∣LN LN

q θ θ µ σ( ) = ( , ). (25)φ i i θ θ
2

i i
N ∣

∼ ∼
∼ ∼

Given this choice of prior and posterior, the KL divergence between 
the approximate posterior and the prior factorizes as follows:

∣∣ ∣∣ ∣∣D q θ p θ D q s p s D q α p α( ( ) ( )) = ( ( ) ( )) + ( ( ) ( ))+ (26)φ φ b b φKL KL KL

D q β p β D q θ p θ( ( ) ( )) + ( ( ) ( )). (27)φ φKL KL∣∣ ∣∣
∼ ∼

We can write each term in the KL divergence between the approxi-
mate posterior and the prior as

∣∣D q s p s σ µ

µ σ

( ( ) ( )) = exp
1
2

−

−
1
2

(− + 2 log + 1 + log 2) ,
(28)

φ b b s s

s s

KL
2

b b

b a
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∑D q α p α µ σ

µ σ

( ( ) ( )) = exp +
1
2

−
1
2

( + 2 log + 1 + log 2) ,

(29)
φ

i

M D

α α

α α

KL
=1

+
2

i i

i i

∣∣

∣∣ ∑D q β p β σ µ

µ σ

( ( ) ( )) = exp
1
2

−

−
1
2

(− + 2 log + 1 + log 2) ,

(30)
φ

i

M D

β β

β β

KL
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+
2
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∑D q θ p θ σ µ σ( ( ) ( )) = −
1
2

(1 + 2 log − − ) . (31)φ
i

M D

θ θ θKL
=1

+
2 2

i i
∣∣

∼ ∼
∼ ∼ ∼

Linear measurement function
In the case of a linear observation function with Gaussian noise,  
the expected log likelihood of the measurements can be written in  
closed form. Specifically, when y Gx t η= ( ) +t i

i
, in which RG ∈ d D×  and  

N� R~ (0, ), we can write

(32)
p y x y Gm t R y Gm t

G R GS t R
d

[log ( | )] = −
1
2

( − ( )) ( − ( ))

−
1
2

tr( ( )) −
1
2

log| | −
2

log2π.

m t S t i i
T

i i

T
i

( ( ), ( ))
−1

−1

t ti i i iNE

This is a useful, well-known result that reduces the variance of  
gradients of the approximation to the ELBO in equations  (17)  
and (18).

List of governing equations used in numerical studies
Most of the problems used for benchmarking studies have been  
used previously to benchmark the performance of methods for 
governing-equation discovery27,34. We list the governing equations, 
initial conditions, time intervals and the distribution over the proba-
bilistic corruption coefficients. As a reminder, we add the following 
probabilistic corruption to the dynamics of the first state in the second 
set of numerical studies: x x αx β← − +1 1 2̇ ̇ .

Damped linear oscillator:













x x x t

α β

= −0.1 2
−2 −0.1

, (0) = 2.5
−5

, ∈ [0, 20]

, ~ (−0.25, 0.25)
(33)

U

̇

Damped cubic oscillator:

̇x x x t

α β

= −0.1 2
−2 −0.1

, (0) = 0
−1

, ∈ [0, 25]

, ~ (−0.15, 0.15)
(34)

3

U


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Coupled linear system:

̇
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U

x x x

x x x
x

x t

α β

¨ = −(4 + 2) + 2

¨ = 2 − (2 + 4)
, (0) = 0

1
,

(0) = 0
0

, ∈ [0, 20]

, ~ (−0.25, 0.25)

(35)
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2 1 2

Duffing oscillator:

̇

̇

x x

x x x x
x t

α β

=

= −( − ) − 0.35
(0) = 3

2
, ∈ [0, 20]

, ~ (−0.25, 0.25)

(36)
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Selkov glycolysis57:

U
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x x x x x

x x x x
x t

α β

= − + 0.08 +

= 0.6 − 0.08 −
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1.25
, ∈ [0, 30]
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Lorenz ’63:

x x x

x x x x

x x x x

x t

α β

= 10( − )

= (28 − ) −

= − 8/3

(0) =
−8
7

27
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Hopf bifurcation:

̇

̇
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x x x x x x
x t

α β
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Detailed setup for example 1
This section provides a detailed breakdown of the comparison activi-
ties related to state estimation with a known motion model introduced 
in the first set of numerical studies. To reiterate, in this set of bench-
marks, we compared our method (SVISE) to the PF42 using an imple-
mentation provided by DAPPER43 when the form of the motion model 
is known exactly. This serves as the best-case scenario for standard 
state-estimation methods.

We use the dynamical system definitions described previously as 
well as the identity observation function. For each dynamical system, 
we generate 20 independent datasets and task the algorithms with 
estimating the mean and variance of the state at each timestamp. Each 
dataset consists of 128 evenly spaced data points generated by simulat-
ing the system forward from the initial condition listed previously using 
Euler–Maruyama integration assuming a diffusion matrix whose 
diagonal values are given by 1% of the range of the system and additive 
zero-centred Gaussian observation noise with a standard deviation 
that is 10% of the range of the system. We define the range of the system 
as x t x t1/2(max({ ( )} ) − min({ ( )} ))i i

N
i i

N
=1 =1

, in which x(ti) is the true system 
state at time ti assuming zero diffusion.

To assess the performance of the methods, we used the normalized 
root mean squared error (NRMSE) between the mean estimate for the  
state and the true state position, ∣∣ ∣∣ ∣∣ ∣∣( )x t x x tNRMSE = ∑ ( ) − /∑ ( )i

N
i i i

N
i=1 2

2
=1 2

2
1/2

,  
in which xi is the predicted mean of the state at time i and x(ti) is the  
true system state.

The state estimators in the DAPPER implementation all require an 
initial condition. To not unfairly advantage our method, we provided 
the algorithms we compared ourselves to with the true initial condi-
tion for all systems except the Hopf bifurcation (for which we provided 
the true system state at the time of the first measurement to avoid 
particles diverging to infinity). Also, we set the initial variance to be 
0, as we were providing the PF with the exact initial condition. For the 
Hopf bifurcation, so as to not unfairly advantage our method, we only 
measured performance for estimates of the state provided after 10 s 
(thereby giving the PF sufficient burn-in time).

For all comparisons in this section, we used the default settings pro-
vided by DAPPER v1.3.0 (ref. 43), with the exception of choosing 1,000 
particles. The results were summarized in the main text and in Fig. 2a.

Detailed setup for example 2
This section provides a detailed description of the comparison activi-
ties related to state estimation with modelling errors that was intro-
duced in the second set of numerical studies. To reiterate, in contrast 
to the comparisons described in the previous section, in this set of 
comparisons, we introduce a corruption to the differential equations 
that the PF was not made aware of. If the uncorrupted dynamics are 
given by x ∈ Ḋ R , in which ̇xi is the differential equation governing the 
dynamics of the ith component of x, we corrupt the dynamics of  
the first state by setting ̇ ̇x x αx β← − +1 1 2  while all other states are left  



uncorrupted. The corruption terms α and β are sampled from 
zero-centred uniform distributions using the bounds listed previously. 
In the case of the cubic oscillator, for example, this introduces a small 
amount of extra linear damping to the system. We use the same settings 
as in the previous benchmarks except for the fact that we generate data 
by simulating with the corrupted dynamics. For the PF, we set reg = 2.4 
and NER = 0.3. These settings were found by starting with the DAPPER 
defaults and manually tuning.

Looking to Fig. 2b, we see that our method outperforms the PF on 
average at this level of corruption. To reiterate what was discussed in 
the main text, we believe that these results make clear the usefulness 
of this work. Even in the presence of mild modelling error, our method 
outperforms standard state-estimation tools. As modelling error is an 
unavoidable reality in many systems of interest, our method for state 
estimation has the potential to be useful.

Detailed setup for example 3
To generate data, we used an immersed boundary projection method 
codebase for solving the two-dimensional incompressible Navier–
Stokes equations58. We generated 1,953 evenly spaced snapshots each 
with dimension of 596,602 over the time interval [61, 256.2]. We assume 
a Gaussian likelihood with a constant variance of 10−3. In this problem, 
38 POD modes were required to capture 90% of the variance. The fully 
connected neural network model for the drift was chosen to have one 
hidden layer with 128 hidden units and tanh nonlinearities. We used a 
batch size of 64, set K = 100, M = 100 and used 500 basis functions to 
approximate the posterior of the state. To reiterate what was mentioned 
previously, looking to Fig. 3, we see that we are successfully able to infer 
a probabilistic ROM for the flow.

Example 4: symbolic-governing-equation discovery benchmarking
In this section, we compare our method to standard governing-equation 
learning algorithms from the literature on the suite of benchmark  
systems listed previously in Methods. For all experiments in this section, 
we require g to be the identity measurement function so that methods 
from the literature can be applied. Also, we provide our method with 
no knowledge of the underlying dynamics (that is, we set f = 0∅  and 
Σ = 0∅ ). We compared our method to the algorithm for sparse identi-
fication of nonlinear dynamics (SINDy), SINDy with sequentially thres-
holded least squares regression (SINDy-STLSQ)27, SINDy with sparse 
relaxed regularized regression (SINDy-SR3)59 and Ensemble-SINDy 
(ENS-SINDy)60 using implementations provided by PySINDy61,62. Each 
method is given a dictionary of functions containing all polynomials 
up to order 5.

For each system, we generate 40 independent datasets and task the 
algorithms with recovering the underlying governing equations. These 
40 independent datasets are split up equally into two cases: (1) the 
low-noise, low-data regime and (2) the high-noise, large-data regime. 
In the low-noise, low-data regime, we generate 16 data points for the 
damped linear and damped cubic oscillators, 32 data points for the 
Hopf bifurcation, Selkov glycolysis model and Duffing oscillator, and 
64 data points for the Lorenz ’63 and coupled linear oscillator. Each 
data point is sampled by assuming zero-centred Gaussian noise with 
a standard deviation that is 1% of the range of the system. In the 
high-noise, large-data regime, we generate 2,048 evenly spaced data 
points for each dataset assuming zero-centred Gaussian noise with a 
standard deviation that is 25% of the range of the system. We again 
define the range of the system as x t x t1/2(max({ ( )} ) − min({ ( )} ))i i

N
i i

N
=1 =1

, 
in which x(ti) is the true system state at time ti.

The reconstruction error and the number of incorrect terms are 
metrics commonly used in compressive sensing to validate the efficacy 
of sparse learning algorithms; see, for example, refs. 63,64. The recon-
struction error is defined as θ θ θRER = − /2 2

̂ , in which θ is the true 
vector of sparse weights that we are trying to estimate and ̂θ is our 
estimate for the set of sparse weights. For all estimates of the 

reconstruction error, we use the mean of the estimated posterior for 
the weights. The reason for looking at both metrics is that some algo-
rithms may achieve a low reconstruction error without correctly prun-
ing weights.

Summary plots for benchmarking in the high-data regime are pro-
vided in Extended Data Fig. 1. Detailed benchmarking tables broken 
down by each system can be found in Extended Data Tables 2–5. In 
these tables, the error bars for all terms are given by one standard 
deviation from the mean. A dash indicates that the equation-recovery 
algorithm predicted that the governing equations were given by x = 0̇ .

It can be seen from the results that, as well as improving on recon-
struction error, often by more than an order of magnitude, our method 
was able to identify the correct functional form of the governing equa-
tions far more frequently than the methods with which we compared 
in both the low-data and high-noise regimes. These results are notable 
because, in many problems for which governing equations are not 
available, we only have access to noisy/limited data.

Looking more closely at Extended Data Table 2, we see that the 
proposed method (SVISE) outperformed all other methods in terms 
of reconstruction error in the low-data regime except on the Duff-
ing oscillator problem, for which our approach was outperformed 
by ENS-SINDy. For this benchmark, our approach still outperformed 
ENS-SINDy in terms of the number of mismatched terms. Looking 
now to Extended Data Table 3, we see that the proposed method out-
performed all other methods in terms of the number of mismatched 
terms for all but the Lorenz ’63 benchmark; however, the SINDy-STLSQ 
method achieved this lower number of incorrect terms score by often 
ignoring the dynamics in the third state.

In the high-noise regime, we see that SVISE outperformed the meth-
ods we compared with in terms of RER on all but the Duffing oscilla-
tor benchmark, for which our approach was again outperformed 
by ENS-SINDy (see Extended Data Table 4). For this benchmark, our 
method was again the clear winner in terms of the number of mis-
matched terms (see Extended Data Table 5).

Taken together, these results demonstrate that the method intro-
duced in this work is a good choice for governing-equation discovery 
in the low-data and high-noise regimes. Also, although the methods 
we compared ourselves to in this section require that the measure-
ment function is identity (that is, the full state vector is measured), our 
method is applicable to cases with arbitrary observation functions.

Example 5: high-dimensional, spatially extended differential- 
equation discovery with low-rank observation matrices
We now consider the problem of recovering the underlying governing 
equations for the Lorenz ’96 system with 1,024 states using a low-rank 
observation matrix. The Lorenz ’96 model is a set of coupled, chaotic, 
ODEs designed to be a simplified model of the climate along a line of 
constant latitude65. The governing equations for this system are given 
by ̇x x x x x= ( − ) − + 10k k k k k−1 +1 −2 , for which the boundary conditions  
are assumed to be periodic (k = 1, 2,…, 1,024).

We generated observation matrices of rank r using the expression 
g x r u u x( ) = ( ∑ )i

r
i i

T−1
=1 , in which each Ru ∈i

D is a random vector sampled 
from a standard normal distribution. We studied the performance of 
our approach in which the rank of the observation matrix is 256, 512 
and 1,024. For each experiment, we used 512 snapshots over the time 
interval of 0 to 10 corrupted by noise that is 2% of the range of the  
system. We make the assumption that the dynamics are given by 
x x x x x x θ= ( , , , , )i i i i i i2 −2 −1 +1 +2Ṗ , in which R RP : → M

2
5 1×  returns all quad-

ratic polynomial functions that are a function of xi and its two closest 
neighbours to the left and right of the node. Although we found that 
we were able to exactly recover the underlying functional form of the 
governing equations with an observation matrix whose rank was half 
the dimensionality of the state, further work is required to theoretically 
establish conditions under which the governing equations can be exactly 
recovered. These results are summarized in Extended Data Fig. 2.
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Because many real-world systems for which governing equations are 

challenging to derive from first principles are both (1) high-dimensional 
and (2) challenging to measure, we believe this to be a useful result. 
Our method has a computational cost that scales linearly in the state 
dimension and can be applied given an arbitrary observation function. 
This result opens the door for equation discovery in systems that were 
previously believed to be too large and/or difficult to measure.

Example 6: governing-equation discovery for second-order 
systems with unobserved states
We now examine the problem of learning governing equations of 
second-order systems using only displacement/position measure-
ments. For many physical systems, we often only have access to position 
measurements (that is, through GPS/Vicon camera measurements) for 
certain states and/or accelerometer measurements for other states. 
To apply existing methods from the literature to this class of problem, 
it becomes necessary to estimate velocities and accelerations using 
finite-difference approximations66 in the preprocessing stage or use 
the weak form of the governing equations67. The proposed method 
can be directly applied to such problems without resorting to finite 
differences or the weak form.

We consider the task of learning the governing equations of the 
coupled linear oscillator defined in governing-equations definitions 
discussed previously. We generate 32 measurements of the system 
position corrupted by 10% measurement noise. Assuming that the 
system is autonomous and second order, we know that the dynamics 
must be governed by second-order differential equations, which are 
functions of both the position and the velocity.

Using a dictionary containing polynomials up to order five in the 
state and velocity, we were able to infer both the structural form of the 
underlying governing equations as well as estimates for the uncertainty 
in the parameters. The governing equations inferred by our method 
are provided below (only the mean coefficients are shown):

x x x
x x x
¨ = −5.23 + 1.74 ,
¨ = 1.61 − 5.45 ,

(40)1 1 2

2 1 2

which is relatively close to the true functional form of the underlying 
governing equations. Extended Data Fig. 3 shows the measurements 
and underlying state inferred by our method. It can be seen that the 
probabilistic state estimate agrees well with the true trajectory.

This experiment demonstrates the use of our method in practical 
situations in which we only have access to partial measurements of 
the state for second-order systems. So far, we have only considered 
problems in which the observation function is linear. In the next sec-
tion, we consider a problem with a nonlinear observation function in 
which there are fewer observations than states.

Example 7: binary black hole system from gravitational-wave 
measurements
The binary-black-hole modelling problem is concerned with estimat-
ing black-hole orbital trajectories using observations of gravitational 
waves68. In comparison with the examples considered so far, this prob-
lem involves a nonlinear observation likelihood and the number of 
observations is less than the number of states. Moreover, in this prob-
lem, it is not clear what choice of basis functions might be appropriate 
for approximating the underlying dynamics. We shall demonstrate that 
it is indeed possible to use a neural network in place of a linear combina-
tion of basis functions, as was mentioned when outlining our approach.

Traditional approaches to solving this problem typically involve 
reconciling gravitational-wave measurements with the complex partial 
differential equations that govern their dynamics. This is typically a 
computationally expensive undertaking. In this section, we attempt 
to infer the governing equations that were likely to have generated 
the waveform observations simultaneously to the underlying orbital 

trajectories. We consider a special case of the binary-black-hole mod-
elling problem for an extreme-mass-ratio system (that is, in which the 
mass of one object is far greater than the other); see Keith et al.69 and 
references therein for more details on this problem.

Centring the origin of the coordinate system at the more massive 
object, the dynamics can be written as a set of coupled differential 
equations in terms of the angle of the smaller object with respect to 
the x axis, δ(t), and the anomaly, χ(t),

̇δ
p e χ e χ

p p e
=

( − 2 − 2 cos )(1 + cos )
(( − 2) − 4 )

, (41)
2

3/2 2 2 1/2

̇χ
p e χ e χ p e χ

p p e
=

( − 2 − 2 cos )(1 + cos ) ( − 6 − 2 cos )
(( − 2) − 4 )

, (42)
2 1/2

2 2 2 1/2

in which e = 0.5 is the eccentricity and p = 100 is the semilatus rectum. 
The angle and anomaly relate to the orbital trajectory according to

x t
y t

p
e χ t

δ t
δ t

( )
( )

=
(1 + cos ( ))

cos ( )
sin ( )

. (43)
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As mentioned previously, in practice, we cannot observe the 
state variables directly. Instead, we only have access to noisy 
gravitational-waveform measurements, w(t),

w t
π

t
x t

t
y t( ) =

4
5

d
d

( ) −
d

d
( ) . (44)
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Note that we consider only the dominant (2,2)-mode gravitational 
waveforms.

Given gravitational-waveform observations, w(t), our goal is to 
reconstruct the underlying orbital trajectories, x(t) and y(t), and to 
infer with an approximate forward model that can be used to forecast 
future orbital trajectories. Rather than working directly in the trajectory 
coordinates, we will infer a SDE in terms of the orbital parameters, δ(t) 
and χ(t), in which χ(t) is the anomaly and δ(t) is the angle with respect 
to the x axis of the smaller object. Following the parametrization  
suggested by Keith et al.69, we model the drift as

f t δ χ
e χ

Mp
χ( , , ) =

(1 + cos )
(1 + (cos )), (45)θ θ

2

3/2 F

in which θF  is a fully connected neural network with two outputs, M is 
the mass of the more massive object, e = 0.5 is the eccentricity and 
p = 100 is the semilatus rectum. We use two hidden layers, each with 
128 hidden units and tanh nonlinearities. We collect 1,000 evenly 
spaced gravitational-waveform observations, w(t), over the interval 
[0, 0.6 × 105] corrupted by Gaussian noise with a standard deviation of 
10−3. We also provide our algorithm with the initial condition of the 
underlying state at the first observation time. We place a sparsity- 
inducing prior on the diagonal of the diffusion term.

We choose a batch size of 256, a learning rate of 10−2, 20 samples 
from the variational posterior, 1,000 warm-up iterations, 100 basis 
functions to approximate the posterior over the state and decayed 
the learning rate by 0.9 every 500 iterations; see Methods for more 
details. The results are summarized in Extended Data Fig. 4. We find 
that we are able to infer a reasonable model for the orbital trajectory 
while estimating the state. We reiterate that, in contrast to previous 
approaches to solving this problem, we were not required to solve 
any differential equations in training. Also, our approach provides 
probabilistic predictions for the orbital trajectories.

Like for the Lorenz ’96 example, further work is required to deter-
mine when uncovering the governing equations is possible for general 
nonlinear observation functions, particularly when there are fewer 



observations than states. For example, in this problem, we found that 
the success of our approach relied heavily on the carefully designed 
parametrization for the drift term suggested by Keith et al.69. It is also 
worth mentioning that, because we are estimating the parameters of 
the neural network using maximum-likelihood estimation, we expect 
to systematically underestimate uncertainty. Future work could con-
sider placing priors on the neural-network parameters and perform-
ing approximate variational inference over said parameters to more 
accurately capture uncertainty.

Data availability
The data in the paper and the Supplementary Information are available 
at https://github.com/coursekevin/svise.

Code availability
The software library that was developed to generate the results along 
with documentation is available at https://github.com/coursekevin/
svise.
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Article

Extended Data Fig. 1 | Identifying missing terms. a, Reconstruction error. b, Number of mismatched terms. Our method (SVISE) outperforms state-of-the-art 
algorithms for governing-equation discovery in the high-noise and low-data regimes.



Extended Data Fig. 2 | Experiment on discovering governing equations  
for a high-dimensional system with a low-rank observation matrix.  
a, Visualization of Lorenz ’96 full underlying state data with 1,024 states.  
b, Reconstruction error for varying observation matrix ranks. c, Number of 
mismatched terms for varying observation matrix ranks. In this experiment, 
we assumed that the governing equations were a sparse linear combination of 

basis functions from the dictionary of quadratic polynomial functions of the 
node state and its four closest neighbours to the left and right of the node. We 
were able to successfully recover the exact functional form of the Lorenz ’96 
governing equations using an observation matrix whose rank was half that of 
the full underlying state.



Article

Extended Data Fig. 3 | Governing-equation discovery for second-order 
system using only position measurements. The dashed lines indicate the 
true oscillator state and the shaded blue regions indicate two standard 
deviations from the mean of the underlying state estimate. The state positions 

are marked by x1 and x2 and the state velocities are marked by v1 and v2. Here 
only 32 measurements of the oscillator position corrupted by noise that was 
10% of the range of the system state were available.



Extended Data Fig. 4 | Binary-black-hole modelling problem. a, Orbital 
trajectory estimates. b, Trajectory estimates versus time. In this experiment,  
we approximate the dynamics using a neural network. This is a useful model 
in situations in which it is not clear what dictionary of basis functions is 
appropriate. The left figure shows the predicted orbital trajectories in the plane 
of the orbit and the right figure shows the predicted orbital trajectories as a 

function of time. The black lines indicate the data windows, the orange lines 
indicate the testing data and the blue intervals indicate probabilistic predictions 
from our model. Note that we only have access to the waveform observations, 
w(t), up to time 0.6 × 105 in training. We are able to accurately estimate the states 
and provide probabilistic estimates for the orbital trajectories well into the 
future, despite not having access to the underlying governing equations.
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Extended Data Table 1 | Assumption comparison table

Capability comparison between the extended Rauch–Tung–Striebel smoother (ERTS), the exactly sparse Gaussian variational inference method for state estimation (ESGVI), the PF and our 
approach, SVISE. We note that ours is the only method that allows for symbolic-governing-equation discovery as well as a Bayes (non-MAP) state estimate.



Extended Data Table 2 | RER in the low-data regime

Reconstruction error averaged over 20 independent trials. Error bars given by 1 standard deviation.
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Extended Data Table 3 | Number of mismatched terms in the low-data regime

Number of mismatched terms averaged over 20 independent trials. Error bars given by 1 standard deviation.



Extended Data Table 4 | RER in the high-noise regime

Reconstruction error averaged over 20 independent trials. Error bars given by 1 standard deviation.
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Extended Data Table 5 | Number of mismatched terms in the high-noise regime

Number of mismatched terms averaged over 20 independent trials. Error bars given by 1 standard deviation.
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