Article

State estimation of a physical system with
unknown governing equations

https://doi.org/10.1038/s41586-023-06574-8

Received: 21 February 2023

Kevin Course' & Prasanth B. Nair'™

Accepted: 25 August 2023

Published online: 11 October 2023

Open access

M Check for updates

State estimation is concerned with reconciling noisy observations of a physical
system with the mathematical model believed to predict its behaviour for the
purpose of inferring unmeasurable states and denoising measurable ones*2.
Traditional state-estimation techniques rely on strong assumptions about the
form of uncertainty in mathematical models, typically that it manifests as an
additive stochastic perturbation or is parametric in nature®. Here we presenta
reparametrization trick for stochastic variational inference with Markov Gaussian
processes that enables an approximate Bayesian approach for state estimation in
which the equations governing how the system evolves over time are partially or
completely unknown. In contrast to classical state-estimation techniques, our
method learns the missing terms in the mathematical model and a state estimate
simultaneously from an approximate Bayesian perspective. This development
enables the application of state-estimation methods to problems that have so far

proved to be beyond reach. Finally, although we focus on state estimation, the
advancements to stochastic variational inference made here are applicabletoa
broader class of problems in machine learning.

State estimation, or data assimilation as it is often referred to in the
geosciences, forms the backbone of modern machinery for fusing
noisy sensor data with mathematical models of complex systems
in many important areas of science, engineering and finance. For
example, in robotics systems, state estimation underpins control
and route-planning algorithms, as well as being useful in high-level
decision-making*®. In finance, state estimation has been applied to
estimate stochastic volatility models®. In medical imaging, state esti-
mation has been advanced to improve cardiac-imaging technologies’.
Inmeteorology, state estimationis used to reconstruct weather in the
past and make predictions about weather in the future®®.

The field of state estimation can arguably trace its roots back to the
work of the early nineteenth-century astronomers. In 1801, the then
24-year-old Gauss devised what could be called thefirst state-estimation
algorithm. Using only Kepler’s laws along with ordinary least squares,
Gauss accurately computed the orbit of the asteroid Ceres from lim-
ited, noisy observations"'°. Our more modern conception of the field
originates in the foundational works of Kalman and Bucy in the early
1960s. Theresearchers at the Research Institute for Advanced Studies,
building on the work of Wiener and Kolmogorov in the 1940s, published
their now well-known filtering algorithms for linear systemsin 1960 and
1961, As a testament to the success of their work, it was the Kalman
filter—extended by Schmidt’s group at the NASA’s Ames Research
Center to nonlinear systems—that solved the Apollo guidance and
navigation problem®, Guided by arevolution in computing power and
inthetypes of sensor available, such as the Global Positioning System,
laser imaging and digital cameras', modern developments in state
estimation have focused on nonlinear systems', high-dimensional
systems™ and deriving more accurate approximations®.

An essential prerequisite for state estimation is a mathematical
model describing how the system evolves over time. It is well accepted
thatsome degree of uncertainty isinevitable in the mathematical char-
acterization of any real-world system. Standard state-estimation algo-
rithms assume that uncertainty in the governing equations manifests
asanadditive stochastic perturbation'or is parametricin nature>72°,
In reality, the true nature of uncertainty in mathematical models is
much more diverse.

A more complete picture of uncertainty in mathematical models
shows that it often also enters as a by-product of modelling errors®.
Modelling errors are pernicious because they often arise owing to
imperfect knowledge of the underlying systemin combination with the
need to simplify for computational considerations. For example, mete-
orology often uses empirical assumptions to approximate sub-gridscale
processes?. Such modelling errors can be expressed mathematically
as uncertainty in the structural form of the equations governing how
the state vector evolves over time. Existing methods for state estima-
tion cannot account for model-structure uncertainty. Worse still, not
accounting for suchuncertainty willintroduce bias in estimates for the
state. Although there has been some work in model-free state estima-
tion to address such realities***?*, these approaches lose the inherent
interpretability of handcrafted models.

We introduce a method for handling model-structure uncertainty
inamanner that recovers the interpretability of handcrafted models.
We do so by learning the motion modelin the form of a set of symbolic
differential equations simultaneously to a state estimate. This model-
ling choice enables state estimation in situations in which there are
substantial modelling errors or the underlying dynamics are partially
or completely unknown. This advancementis made possible by anew
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reparametrization trick for Markov Gaussian processes that we intro-
ducein this work.

Numerical studies are presented for arange of test cases toillustrate
the performance of the proposed approach. In practical situations in
which modelling errors are present (even small errors), our method
outperforms standard state-estimation techniques. Furthermore,
our approach for state estimation with unknown governing equa-
tions allows analysts to discover missing terms in (or the entirety of)
the governing equations using indirect observations. In Methods,
we show that our approach outperforms state-of-the-art algorithms
for governing-equation discovery, particularly in the low-data and
high-noise regimes, and can be used in situations in which the entire
stateisnot measurable. Finally, in casesinwhichinterpretable forward
models are not required, we show that our approach can be used to
infer neural stochastic differential equations (SDEs) without relying
onaforwardsolver in training.

Results

Problem statement

To mathematically define our problem statement, consider a noisy
observation process of the form

Y, =8, 0)+n, 4))

inwhich y € R is the observation vector at time instant ¢, x, € R” is
the latent state vector, g: R” x R > R?is the observation function and
n € RY denotes observation noise.

Given the time-series dataset, D= {(t’"yti)}ﬁl' inwhich¢ € [0, T]isthe
timestamp associated with the observation y, € RY, our goalis toinfer
1. Awell-calibrated estimate of the state vector, x,, over the time window

[0,T],and
2. The equations governing the temporal evolution of the state.

Related work

Thiswork lies at the intersection between three areas of science: (1) state
estimation; (2) discovery of governing equations from measurements;
and (3) Bayesianinference over functions. We summarize some relevant
workin these areas below.

The classical state-estimation problem in which the governing
equations are known has been widely studied in the literature; see,
for example, the texts by Barfoot' and Sirkka and Svensson?. There
is also a wide body of literature focusing on simultaneous state and
parameter estimation; see, for example, refs. 3,17-20. These approaches
are useful for problems in which the structure of the governing equa-
tionsis known and the uncertainties are strictly parametric. Although
model-free state-estimation techniques can be used in situations in
which dynamics are unknown**%, these techniques lose the inter-
pretability of handcrafted models. A comparison of the assumptions
made here to those made by existing methods is provided in Extended
DataTablel.

Intermsofinferringinterpretablegoverningequations,thespecial case
inwhichall the states are measurable (thatis, the observation function
in equation (1) is the identity) has been extensively studied; see, for
example, refs. 26-28. In 2011, Wang et al.? showed how governing
equations could be identified from full state measurements with a
compressive-sensing approachusingadictionary of polynomials. Brun-
tonetal.” studied the problem of discovering governing equations from
full state measurements using a compressive-sensing approach and
demonstrated that this is a very powerful tool for solving awide class
of problems in computational science and engineering. In principle,
this approach can be used with incomplete measurements using the
notion of time-delay embedding®. However, it is challenging to get
this approach to work well in practice owing to numerical issues; see
appendix 4.5 of ref. 27.
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The focus of this work is on the practical problem of estimating the
state and the governing equations in which only indirect measure-
ments are available.

Stochastic variational inference

Here we tackle the problem of state estimation with unknown govern-
ingequations using the machinery of stochastic variational inference
(SVD)?.SVlisapowerful approach for approximate Bayesian inference
that converts the problem of generating samples from an unnormalized
density functioninto an optimization probleminvolving maximization
ofastochastic approximation of the evidence lower bound (ELBO). Vari-
ational inference has been applied to solve a wide variety of problems
in machine learning®°-3,

SVItypically requires four ingredients: (1) priors over variables of
interest; (2) a parametrized approximate posterior; (3) a tractable
expression for the ELBO that admits unbiased stochastic approxima-
tions; and (4) a method for approximating gradients of expectations
inthe ELBO.

Inthe context of the problem considered here, SVI cannot be applied
in a straightforward manner because we seek to estimate a function,
X,, given measurements of y,, rather than a finite-dimensional vector.
Here we propose a reparametrization trick for approximating expec-
tations under Markov Gaussian processes that enables us to tackle
this challenge. A high-level summary of our approach is provided in
Fig.1and we introduce the core ingredients of our methodology in
the sections that follow.

Priors

We place a hierarchical prior over the state in the form of an It6 SDE
with an uncertain drift and diffusion function

dx,.=f, (X, O)de+Zy(0)dB,, (2)

inwhich f, :R” x R > RPis the drift function, o(¢) : R > R”*Pis the dis-
persion matrix, 8, € R? indicates Brownian motion with diffusion
matrix Qand 8 € RM*Pisavector of parameters. The prior for the state
captures our assumption that the structural form of the governing
equations s partially or completely unknown.

Tolearninterpretable dynamics, it is often convenient to make the
assumption that the drift function can be approximated by a sparse,
linear combination of known basis functions

M
Sy O=£, 0, 0+ ;«p,.(xt, 06, 3)

in which I3 :RP? xR > R indicates the drift function of the known
dynamics and ¢, RP xR > RP is the ith function from a predefined
dictionary of basis functions. Often, this dictionary may include
polynomials, trigonometric functions etc. We parametrize the disper-
sionmatrixas X, =2+ diag(6s.1, Oy ..., Oapep), inwhich £, € RP*P
refers to the known termsin the dispersion matrix.

As an aside, it is worth noting that it is straightforward to use more
general parametrizations of the drift function, f,. For instance, if
we are interested in inferring Hamiltonians or more general energy
cycles, we could parametrize f, by a Hamiltonian® or generalized
Hamiltonian® neural network, respectively. Later, we provide examples
to demonstrate the case when f,is parametrized by a fully connected
neural network.

Inalignment with the assumption of a sparse linear combination of
basis functions and to indicate our preference that perturbations to the
dispersion matrix be small or sparse if possible, we will make use of a
sparsity-inducing horseshoe prior over the parameters, 8 ~ p(6) (ref. 35).

We have now specified a hierarchical prior over the latent process we
wishtoinfer, X|@and p(0). Here X|@indicates the process defined by the
SDEinequation (2) over sample pathsintheinterval [0, T] conditioned
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Fig.1|Mainideas.a, Given noisy time-series data and an observation model,
our goalistoestimate the underlying state and any missing termsin the
forward model. b, We specify a hierarchical prior over the stateand the
governing equations and theninfer an approximate posterior over the state

on a particular setting of the parameters. State estimation amounts
to inferring the posterior process over X and inferring missing terms
inthe governing equations amounts to inferring the posterior over 6.
For the special case in which the governing equations are known, the
assumptions made inthis work coincide with those made in continuous
time-state estimation'2,

Variational distributions

To carry out SVI, we need to construct parametrized variational distri-
butions for the state and the parameters in equations (2) and (3). We
approximate the posterior process over the state as the solutionto a
linear SDE of the form

dX, = (~A, (DX, + b, (0)dt+Z4dB,, 4)

in which A, :R~>R”*” and b,:R~>R" are symmetric-matrix and
vector-valued functions of time, respectively, @ is avector of variational
parameters, 2,df, is the same diffusion process defined in the prior
and theinitial condition is assumed to be Gaussian, X, ~ M(mg, Sy)-
Because the solution of a linear SDE is a Markov Gaussian process,
we can parametrize the marginal statistics of the solution of equa-
tion (4) as q¢(Xr) = N(m,,(t), S,(6)),in whichm,,: R > RPisthemeanand
Sp:R~>R”? is the (marginal) covariance®. The marginal statistics
satisfy the following system of ordinary differential equations (ODEs):

1M, () ==A, ()M, (2) + b,(0) &)

So(8)==A, (0)S,(£) = S, (DA, (1) +X,4QX) 6)

inwhich m,(0) =m,and S,(0) = S,.

Toproceed further, we also need to define an approximate posterior
forthe parameters, 8, defined in equation (3). We used the log-normal
parametrization from ref. 37, which we compactly denote by g,(6),
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and forward model using SVI. ¢, We arrive with a state estimate, a method for
generating forecasts with uncertainty estimates and a Bayesian estimate for
missing termsinthe governingequations.

in which again ¢ denotes the vector of variational parameters; see
Methods for more details.

ELBO
In SVI, the variational parameters are estimated by maximizing the
ELBO, which is equivalent to minimizing the Kullback-Leibler (KL)
divergence between the approximate posterior and the true, intrac-
table posterior”. Here we propose a new reparametrization strategy
that enables the variational parameters to be efficiently estimated
without using aforward solver.

Letting Epgl - ] indicate expectations under the prior SDE in equ-
ation (2), we can derive the following ELBO**°

N
logp(D) = '0ng<6{[559{ I P(ytl.lxr,»)ﬂ @)
i=1

N
>3 B, llogp(y,Ix,)]
i=1

1 (8)
_EJ‘O Eq{,,(x,)q,,(e)[”r(xrr t,6, ¢)||§6ng}dt

~Dy(q,(0)1Ip(6)) = ELBO(g),

in which r(x,, 6, @) = -A (O)x,+ b, (t) - fo(x,, ?) is the drift residual,
”””iozg =0T (2,Q2h) v and Dy, (q,(0)I|p(0)) indicates the KL diver-
gence between q,,(6) and p(6).

Maximizing equation (8) withrespect to the parameters of the vari-
ational distributions, ¢, would provide an approximate state estimate,
q,(x,), and an estimate for the posterior distribution over the param-
eters, g,(0). Unfortunately, maximizing this ELBO is computationally
challenging because the first two terms depend on expectations with
respect to g,(x,), the current state estimate. Archambeau et al.***
explored maximizing equation (8) subject to the differential equality
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constraints in equations (5) and (6) in the context of dynamic data
assimilation. Thisapproach requires solving 2(D + D?) ODEs at each opti-
mizationiteration. Solving ODEs as part of an optimization procedure
iscomputationally challenging because: (1) gradient-based updates to
the variational parameters can cause the ODEs to become extremely
stiff mid-optimization, causing the computational cost of an ODE solve
to explode, and (2) ODE solvers are inherently iterative sequential
methods, making them poorly suited to modern parallel-computing
hardware.

Hereweintroduceareparametrizationforexpectationsinequation(8)
withrespecttog,(x,) thatreplaces the need for an ODE forward solver
with astochastic approximationthat canbe evaluated in an embarrass-
ingly parallel fashion. This eliminates the practical challenges associ-
ated with maximizing equation (8). Our main theoretical result takes
the form

N
ELBO(®) = 3 Eiim,,tp 5., [108P () 1X,)]
i=1

1" (9)
_EIO EM'(m(ﬂ(t),Sw(t))qw(ﬁ)[llr (1,6, (P)Ilﬁngﬂdt
~Dy(q,(0)]1p(6)),
inwhich
r(x,t,0,9) = Vec‘l((Sq,(t) @® Sw(t))‘lvec(zeng - Sq,(t))) (10)

(M () =) + i1, (©) = f, (x,, 0),

denotes the drift residual reparametrized in terms of m,and S, (for a
derivation, see Methods), ® indicates the Kronecker sum, vec: RDXD»RD
mapsamatrixinto a vector by stacking columns and vec': R?” > RP*?
unstacks a vector such that vec '(vec(C)) =C V Ce R?*P,

Recall that, in the original ELBO (equation (8)), the first two terms
contained expectations with respect to the marginal statistics of the
solution of the SDE (equation (4)), g,(x,), and approximating these
expectations required the use of a forward solver. In this repara-
metrized ELBO (equation (9)), expectations are taken with respect to
the Gaussian, N(m,(2), S,(0)) - Itis worth noting that, as we directly
parametrizem,andS,instead of A,and b, itis feasible to estimateall
expectations without running a forward ODE solver. Notably, we no
longer need to solve any ODEs; we only need to construct stochastic
approximations of the termsin the ELBO. Such stochastic approxima-
tions are easy tocompute using modern parallel-computing hardware.
Itis this new development that enables us to perform approximate
Bayesian inference over both the state and the unknown governing
equations.

In Methods, we describe how to parametrize m,and S, and how to
optimize a stochastic approximation of the ELBO (equation (9)).
Having maximized the ELBO, we are left with an approximation to the
posterior over the state, q, () = N(m,,(8), Sp(0)), and an approximate
posterior over the parameters deﬁnmg the governing equations,
q,(0), that can be used to make probabilistic forecasts and perform
further analysis. We henceforth refer to our method as SVIfor state
estimation (SVISE). Our method was implemented in PyTorch*.
In the following sections, we provide some examples of SVISE
applied to problems in state estimation and governing-equation
discovery.

Example 1: state estimation with known motion model

In this section, we compare our method for state estimation with
unknown governing equations to the particle filter (PF)*>** when the
form of the underlying motion model is known exactly. The PF was
chosen as the baseline for comparison asitis a fully Bayesian method
capable of handling highly nonlinear systems. Both methods were
provided with complete knowledge of the underlying dynamics and
observation model. We performed this comparison on six benchmark
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problems and a detailed description of the experiment design is
provided in Methods.

The results are summarized in Fig. 2a. We found that our method
provided results comparable with the PF in terms of providing an
estimate for the mean of the state. We believe that minor differences
in performance are because of our choice of basis functions. Clearly
there is an opportunity to perform model selection in terms of the
basis-function design if desired.

Example 2: state estimation with modelling errors

Inthis section, we examine the performance of our method onthe same
suite of benchmarks when a small modelling error is introduced. We
introduce asmall state-dependent corruption to the governing equa-
tions and compare the performance of SVISE with the PF. Unlike the
previous set of examples, we do not provide our method with access
toknowledge of the dynamics (thatis, weset f, =0 andX,=0),sothat
we are required to learn the dynamics as well as a state estimate. The
PF is given access to the uncorrupted dynamics, along with the exact
form of the diffusion process.

The specific form of the corruption is chosen so that the form of
the governing equations are, on average, the same as in the previous
section and so that any particular realization of a corruption could
plausibly be mistaken for further process noise rather than model
misspecification; see Fig. 2c-e. Further details can be found in
Methods.

Because the PF is given the exact form of the diffusion process, we
believe that upcoming results represent an overestimate for the PF
performance. Despite this advantage, we find that our method now,
onaverage, outperforms the PFinthe presence of this mild corruption
to the dynamics; see Fig. 2b. As discussed previously, there are many
real-world systems for whichmodelling errors are an unavoidable real-
ity. Thiswork can be used in such circumstances to potentially improve
on state-estimation performance.

As was previously discussed, a key differentiating feature of our
method compared with model-free state-estimation techniques is
that we are learning symbolic differential equations for the motion
model. Looking to Fig. 2f,g,h, we see that our approach can be used
to make probabilistic forecasts after state estimation has concluded.

Example 3: governing-equation discovery with neural SDEs
When the state is low dimensional, or the state is spatially extended, it
is possible to make use of dictionaries of polynomial basis functions
toinfer symbolic SDEs simultaneously to astate estimate. In Methods,
we provide three numerical studies demonstrating the application of
our approach to symbolic-governing-equation discovery. We show
that our approach offers superior performance to state-of-the-art
algorithms for the sparse identification of nonlinear dynamics in
the presence of substantial noise or a lack of data. Also, we demon-
strate scalability by showing that our approach can be used to infer
symbolic governing equations for a spatially extended system with
1,024 states. Finally, we show that our approach can be used to infer
symbolic governing equations for second-order systems using only
position measurements.

Unfortunately, dictionaries of polynomial basis functions become
prohibitively large even for moderately high-dimensional systems. In
suchsituations, areasonable alternative to inferring symbolic differen-
tialequationsis to parametrize the drift function by aneural network. In
Methods, we present numerical studies on a binary-black-hole problem
thatinvolvesinferringaneural SDE using a nonlinear observation func-
tion. Inthe example that follows, we consider afluid-dynamics problem
with a high-dimensional state space toillustrate how our approach can
be combined with off-the-shelf dimensionality-reduction algorithms
to infer probabilistic reduced-order models (ROMs) in the format of
latent neural SDEs. The main idea of ROMs is to infer a mapping that
enablesthe original high-dimensional system to be transformedintoa
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Fig.2|Benchmarking summary with 20 independent trials per system.

a, State-estimation results with perfect knowledge of the dynamics. b, State-
estimation results withminor corruption of the dynamics. c-e, Before and after
addingasmall probabilistic corruption for the coupled linear oscillator (c), the
cubicoscillator (d) and the Hopf bifurcation (e) (10-90th quantiles shown).
f-h, Probabilistic forecast with 64 (f), 512 (g) and 1,024 (h) data points. We see

low-dimensional system that is computationally cheaper to solve*. The
approachwetakeis aligned with previous works inthe ROMs literature
that infer lower-dimensional differential equations on a predefined
manifold*>*¢,

As a case study, we considered the challenging problem of inferring
latent differential equations for fluid flow past a circular cylinder with
aReynolds number of 2,000. We model this problem using a spatial
discretization of the two-dimensionalincompressible Navier-Stokes
equationwith 596,602 states. We train aneural SDE on 38 latent states.
These latent states were constructed by projecting the data onto the
top 38 proper orthogonal decomposition (POD) modes to capture
90% of the total variance. More details on the numerical study design

that our method (SVISE) performs similarly to the PF when the governing
equations are known exactly. Inthe presence of only mild modelling error, our
method outperforms the PF on average. Moreover, after training, our method
enables us to make probabilistic forecasts. Expectedly, the predictive posterior
shrinks asthe amountofdataisincreased.

are provided in Methods. It can be seen from Fig. 3 that our approach
provides accurate probabilistic predictions of the flow field.

Discussion

We have presented a method for state estimation that enables the
treatment of real-world problems in which there are notable model-
ling errors or the underlying governing equations are completely or
partially unknown. This isanimportant class of problems that has thus
far defied acomputationally tractable, statistically rigorous solution.
We have also provided results for governing-equation discovery for a
variety of challenging problems. Theresultsindicate that our approach
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Fig.3|Flowbehind acylinder ROMproblem. a, Predictions for the first ten
latent states over the testing time interval t=[256.2,260.2]. The black lines
showthetest states and the coloured linesindicate samples from the predictive
posterior.b, Velocity magnitude and flow lines at t =260.2. Test (left), mean
prediction (centre) and standard deviation (right). In this example, we train a
neural SDE on trajectories projected onto the POD basis to construct aROM.

can outperform state-of-the-art algorithms for governing-equation
discovery often by more than an order of magnitude; see Methods
for details. It is worth reiterating that many governing-equation
learning algorithms only provide point parameter estimates?. As
demonstrated in Fig. 2f-h, our method enables Bayesian governing-
equation identification, thereby allowing for probabilistic forecasts
to be made.

Moreover, in cases in which specifying a dictionary of basis func-
tions is not feasible (such as when the state space is high dimensional
oritisnotclear what basis functions are appropriate), we have shown
thatitis possible to infer the missing dynamics in the form of a neural
network. Itis worth noting here that our approach enables neural SDEs
tobe trained without using acomputationally expensive forward solver
and adjoint sensitivity calculations.

These results are made possible by a reparametrization trick for
Markov Gaussian processes that we introduce here. We believe that
there is substantial room for future work in applying this technique
for performing variational inference over stochastic processes outside
the state-estimation domain. Potential applicationareas include mul-
tiphysics ROM problems, state estimation with unknown observation
models, stochastic closure modelling*” and inferring latent forcing
models*®. Also, there is room for using more expressive approximations
tothe posterior over the parameters to better approximate uncertainty.
Finally, there hasbeenarecentresurgence ofinterestin using SDEs for
building complex generative models*® and we expect that our approach
couldbeused to gaindeeperinsightsinto the statistical underpinnings
of such models.

266 | Nature | Vol 622 | 12 October 2023

Althoughaneural SDEislessinterpretable thanasymbolic model, itisusefulin
casesinwhichthestateiseither (1) high dimensional or (2) itis not clear which
basis functions might be appropriate for the problem at hand. We see that the
error barsare higherinregionsinwhich the mean prediction seems to differ
fromthetest velocity.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06574-8.

1. Barfoot, T. D. State Estimation for Robotics (Cambridge Univ. Press, 2017).

2. Sarkka, S. & Svensson, L. Bayesian Filtering and Smoothing 2nd edn (Cambridge Univ.
Press, 2023).

3. Pulido, M., Tandeo, P., Bocquet, M., Carrassi, A. & Lucini, M. Stochastic parameterization
identification using ensemble Kalman filtering combined with maximum likelihood
methods. Tellus A 70, 1-17 (2018).

4. Guo, Z.C., Korotkine, V., Forbes, J. R. & Barfoot, T. D. Koopman linearization for data-driven
batch state estimation of control-affine systems. IEEE Robot. Autom. Lett. 7, 866-873 (2021).

5. Barfoot, T. D., Forbes, J. R. & Yoon, D. J. Exactly sparse Gaussian variational inference with
application to derivative-free batch nonlinear state estimation. Int. J. Robot. Res. 39,
1473-1502 (2020).

6. Harvey, A., Ruiz, E. & Shephard, N. Multivariate stochastic variance models. Rev. Econ.
Stud. 61, 247-264 (1994).

7. Keil, A. Dynamic Variational Level Sets for Cardiac 4D Reconstruction. PhD thesis,
Technische Univ. Minchen (2010).

8. Houtekamer, P. L. & Zhang, F. Review of the ensemble Kalman filter for atmospheric data
assimilation. Mon. Weather Rev. 144, 4489-4532 (2016).

9. Carrassi, A., Bocquet, M., Bertino, L. & Evensen, G. Data assimilation in the geosciences:
an overview of methods, issues, and perspectives. Wiley Interdiscip. Rev. Clim. Change 9,
€535 (2018).

10. Teets, D. & Whitehead, K. The discovery of Ceres: how Gauss became famous. Math. Mag.
72, 83-93 (1999).

1. Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82,
35-45 (1960).


https://doi.org/10.1038/s41586-023-06574-8

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Kalman, R. E. & Bucy, R. S. New results in linear filtering and prediction theory. J. Basic Eng.
83, 95-108 (1961).

Grewal, M. S. & Andrews, A. P. Applications of Kalman filtering in aerospace 1960 to the
present [historical perspectives]. IEEE Control Syst. Mag. 30, 69-78 (2010).

Julier, S. J. & Uhlmann, J. K. New extension of the Kalman filter to nonlinear systems.

Proc. SPIE 3068, 182-193 (1997).

Evensen, G. Data Assimilation: The Ensemble Kalman Filter 2nd edn (Springer, 2009).
Katzfuss, M., Stroud, J. R. & Wikle, C. K. Understanding the ensemble Kalman filter. Am. Stat.
70, 350-357 (2016).

Calderhead, B., Girolami, M. & Lawrence, N. D. Accelerating Bayesian inference over
nonlinear differential equations with Gaussian processes. In Proc. Advances in Neural
Information Processing Systems Vol. 21 (eds Koller, D. et al.) 217-224 (Curran Associates,
2009).

Dondelinger, F., Husmeier, D., Rogers, S. & Filippone, M. ODE parameter inference using
adaptive gradient matching with Gaussian processes. In Proc. Sixteenth International
Conference on Artificial Intelligence and Statistics Vol. 31 (eds Carvalho, C. M. &
Ravikumar, P.) 216-228 (PMLR, 2013).

Gorbach, N. S., Bauer, S. & Buhmann, J. M. Scalable variational inference for dynamical
systems. In Proc. Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I.
etal.) 4806-4815 (Curran Associates, 2017).

Wenk, P. et al. Fast Gaussian process based gradient matching for parameter identification
in systems of nonlinear ODEs. In Proc. Twenty-Second International Conference on
Artificial Intelligence and Statistics Vol. 89 (eds Chaudhuri, K. & Sugiyama, M.) 1351-1360
(PMLR, 2019).

Glimm, J. & Sharp, D. in Stochastic Partial Differential Equations: Six Perspectives
Mathematical Surveys and Monographs 64 (eds Carmona, R. A. & Rozovskii, B.) 3-44
(American Mathematical Society, 1997).

Slingo, J. & Palmer, T. Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A
369, 4751-4767 (20M).

Fukumizu, K., Song, L. & Gretton, A. Kernel Bayes' rule: Bayesian inference with positive
definite kernels. J. Mach. Learn. Res. 14, 3753-3783 (2013).

Nishiyama, Y., Afsharinejad, A., Naruse, S., Boots, B. & Song, L. The nonparametric kernel
Bayes smoother. In Proc. 19th International Conference on Artificial Intelligence and
Statistics Vol. 51 (eds Gretton, A. & Robert, C. C.) 547-555 (PMLR, 2016).

Ghahramani, Z. & Hinton, G. E. Parameter Estimation for Linear Dynamical Systems
Technical Report CRG-TR-92-2 (Univ. Toronto, 1996).

Wang, W.-X., Yang, R., Lai, Y.-C., Kovanis, V. & Grebogi, C. Predicting catastrophes in
nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011).
Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113,
3932-3937(2016).

Mangan, N. M., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Inferring biological networks by
sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2,
52-63 (2016).

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. Stochastic variational inference. J. Mach.
Learn. Res. 14,1303-1347 (2013).

Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In Proc. 2nd International
Conference on Learning Representations (2014).

Rezende, D. & Mohamed, S. Variational inference with normalizing flows. In Proc. 32nd
International Conference on Machine Learning (eds Bach, F. & Blei, D.) 1530-1538 (PMLR,
2015).

Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Proc. Advances in
Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 6840-6851
(Curran Associates, 2020).

Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks. In Proc. Advances
in Neural Information Processing Systems Vol. 32 (eds Wallach, H. et al.) 15353-15363
(Curran Associates, 2019).

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Course, K., Evans, T. & Nair, P. B. Weak form generalized Hamiltonian learning. In Proc.
Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.)
18716-18726 (Curran Associates, 2020).

Carvalho, C. M., Polson, N. G. & Scott, J. G. Handling sparsity via the horseshoe. In Proc.
Twelth International Conference on Artificial Intelligence and Statistics (eds van Dyk, D. &
Welling, M.) 73-80 (PMLR, 2009).

Sarkka, S. & Solin, A. Applied Stochastic Differential Equations Vol. 10 (Cambridge Univ.
Press, 2019).

Louizos, C., Ullrich, K. & Welling, M. Bayesian compression for deep learning. In Proc.
Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) (Curran
Associates, 2017).

Archambeau, C., Cornford, D., Opper, M. & Shawe-Taylor, J. Gaussian process
approximations of stochastic differential equations. In Proc. Gaussian Processes in
Practice 1-16 (PMLR, 2007).

Archambeau, C., Opper, M., Shen, Y., Cornford, D. & Shawe-Taylor, J. Variational inference
for diffusion processes. In Proc. Advances in Neural Information Processing Systems

Vol. 20 (Curran Associates, 2007).

Li, X., Wong, T.-K. L., Chen, R. T. Q. & Duvenaud, D. Scalable gradients for stochastic
differential equations. In Proc. Twenty Third International Conference on Atrtificial
Intelligence and Statistics Vol. 108 (eds Chiappa, S. & Calandra, R.) 3870-3882 (PMLR, 2020).
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library.
In Proc. Advances in Neural Information Processing Systems Vol. 32 (eds Wallach, H. et al.)
8024-8035 (Curran Associates, 2019).

Bocquet, M., Pires, C. A. & Wu, L. Beyond Gaussian statistical modeling in geophysical
data assimilation. Mon. Weather Rev. 138, 2997-3023 (2010).

Raanes, P. N., Chen, Y., Grudzien, C., Tondeur, M. & Dubois, R. DAPPER: data assimilation
with Python: a package for experimental research. GitHub https://github.com/
nansencenter/DAPPER (2022).

Berkooz, G., Holmes, P. & Lumley, J. L. The proper orthogonal decomposition in the
analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539-575 (1993).

Peherstorfer, B. & Willcox, K. Data-driven operator inference for nonintrusive projection-
based model reduction. Comput. Methods Appl. Mech. Eng. 306, 196-215 (2016).

Lee, K. & Parish, E. J. Parameterized neural ordinary differential equations: applications to
computational physics problems. Proc. R. Soc. A 477, 20210162 (2021).

San, O., Pawar, S. & Rasheed, A. Variational multiscale reinforcement learning for
discovering reduced order closure models of nonlinear spatiotemporal transport
systems. Sci. Rep. 12, 17947 (2022).

Schmidt, J., Krdmer, N. & Hennig, P. A probabilistic state space model for joint inference
from differential equations and data. In Proc. Advances in Neural Information Processing
Systems Vol. 34 (eds Ranzato, M. et al.) 12374-12385 (Curran Associates, 2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
oy 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Nature | Vol 622 | 12 October 2023 | 267


https://github.com/nansencenter/DAPPER
https://github.com/nansencenter/DAPPER
http://creativecommons.org/licenses/by/4.0/

Article

Methods

Reparametrized drift residual

Recall that, given alinear SDE, dX, = (-A,(0)X, + b, (¢))dt + Z,df,, with
initial condition X, ~ M(my, Sy), we cansolve for the marginal statistics
ofthisSDE, q, ()= /\/(m (1), S,(t)), by solvingthe ODEsinequations (5)
and (6). leenS and S, wenotice thatequation (6) isaset of Lyapunov
equationsin terms ofthe symmetric matrix A,. We can rearrange this
set of equations to express A, and b, explicitly in terms of m,and S,

vec(A,, (1)) = (5,(6) ® S, (1)) 'vec (Z4QT5 - $,(1)), an

by (6) =m(t) + A, ()m,(0). (12)

SO B S, (6)(S,(t) @ S,(t) =S,(t) ®I+1® S,(t) is the Kronecker sum, in
which ® indicates the standard Kronecker product.) is guaranteed tobe
invertiblebecause S, is avalid covariance matrix. Using equations (11)
and (12), the drift residual can be rewritten as follows:

rix, t,0,9)==A,(Ox,+b,(t) —f,(x., 0), 13)
=4, (O(m, (&) X))+ m(®) - f; (., ©), 14)
=vec ((S,(t) ®S,(t)) vec(ZyQE] - S,(t))) (m, () ~ x,) )

()~ f, (0, 0),

Substituting this into the expression for the ELBO (equation (8))
yields the final form of the reparametrized ELBO (equation (9)).

Parametrizationofm,ands,

We parametrize m,, using radial-basis-function models of the form
m, () = (kKV(¢,7) ® I)(p‘” in which ¢V € R”? is the vector of welghts
assocnated with the approximation for the mean, k¢, =
[1k 1)(t, t) ... 1)(t, t,)1€ RY is the vector of basis functions evalu-
atedatrand7={t,,..., £} istheset of basis function centres. We chose
each kK to be the Matérn 5/2 kernel® centred at ¢, [0, T1,

KAt 6) =021+ S5 (e, 6)/¢;+ 5r(t, )2/ B D) exp(--/5r(t, £)/£),

inwhicho;>0and¢;> 0 are the tunable scale and length scales associ-
ated w1ththebasxsfunct|ons respectively,and r(¢, t,) = [k(t) — k(t)| with
kK()=T-T(1- (t/T)”‘) denoting the Kumaraswamy warping function
with two positive tunable parameters a and f (ref. 50). In all experi-
ments, unless otherwise noted, we used 200 evenly spaced basis func-
tions within the time interval [0, T].

When dealing with systems whose dynamics can be characterized
in alow-dimensional state space, we use a full-rank, dense, spectral
parametrization of the state covariance matrix S,,(¢) = R,(6)A,(OR ,(£)",
in which R,(¢) is an orthonormal matrix and A,(¢) is a diagonal
matrix w1th all positive elements that we parametrize as R A=
exp((k(e, 1) ® N®)) and A, (¢) = softplus (diag((k(¢, 7) ®Ne)),
in which p® e RPPPD/2 g the vector of weights associated w1th R,,
@® e R is the vector of weights associated with A, k¢, T)—
ket .. k(’)(t t,-p]1 € R*Pis the vector of basis functions evalu-
atedatt,(-) :RPC" 1’/2—>RDXDIS anoperator thatturnsavector of length
D(D -1)/2 into a skew-symmetric matrix (notation from ref. 1),
exp : R?*? > RP*? indicates the matrix exponential, diag : R” > R*P
turns avector of length Dinto adiagonal matrix and softplus: R > Ris
the Softplus function that acts element wise. This parametrization
requires O(D>) time to compute.

Under this parametrization, we can solve equation (6) for A, by first
solving the system of linear equations

(A,(6) ® A, (B)vec(B,(£)) = vec(R,(8) (29QZ5 ~ S, (OIR,(8))  (16)

and then computing A,(¢) = R,(t)B,(£)R ,(¢)". This result follows from
the application of the Bartels-Stewart algorithm®".

To summarize, this parametrization allows for complete flexibility
interms of its ability to approximate symmetric positive-definite matri-
ces; however, this flexibility comes at the cost of scaling as O(D?) owing
to the matrix—-matrix products. This computational cost makes it only
applicable for use with relatively low-dimensional systems.

When dealing with high-dimensional dynamical systems, asis often
the caseinthe geosciences for example, we propose parametrizing S,
by a purely diagonal covariance matrix, that s, S,(¢) = A,(t), in which
A,(f) is parametrized as described previously for the spectral para-
metrlzatlon If we also restrict Z,QZ} to be diagonal, we have
Ay () = 75 (t)y (ZGQZT 5 (¢)). The dimensionality of this parametri-
zatlon scales linearlyin the dimension of the state, O(D), making state
estimation with unknown governing equations possible in extremely
high dimensions.

We use the diagonal parametrization for the reduced-order model-
ling problem in the main text as well as the upcoming studies of our
approach applied to symbolic-governing-equation discovery for
high-dimensional spatially extended systems, as well as the example
of our approachapplied to the binary black hole. For all other numerical
studies, we use the full spectral parametrization.

Maximization of the ELBO

We approximate all gradients of expectations using the standard
reparametrization trick®. If the observation function is linear, we can
exactly compute the expected log-likelihood, as is described in an
upcoming section. We used the so-called hybrid simulator based on
Gaussian quadrature® to estimate the integral over time with respect
tothedriftresidual. Thisintegration scheme ensures that approxima-
tions to the ELBO gradient remain unbiased while providing lower
variance than standard Monte Carlo. In the case that the number of
datapointsislarge, stochastic gradient ascent can be used to maximize
the objective. We used Adam® to optimize the ELBO with respect to
the variational parameters.

Putting these computational ingredients together, and letting
each x\, 0(1)~J\/(m (1), S,(6))q,(6) be samples from the variational
dlstrlbutlons drawn using the reparametrlzatlon trick, we can write
stochastic approximations to the first termin the ELBO as

N

Bty ¢,5,e [108P(Y, 1% )] = B Z Z logp(y, IXU ), (17)

i=1 i=1 j=1

in which each i has been uniformly sampled from the set {1, 2,..., N}.
i i __1y5J () ) 2
Following ref. 52 and letting /(¢) =~ 5, X/, |Ir (x{”, ¢,6", §0)|IZGU)Q;;U)'

we can write a stochastic approximation to the second term in the
ELBO as

1 2
——I Eton (0),5,0a,@UITXe, £, 6, @[5 oyr1dE

18)
= Z (Tl(tk) TPyt + Y wl(t)J

i=1

inwhich w; € Risthe ith quadrature weight associated with the Gauss—
Legendre quadrature rule’* and P,,, is the (M —1)-degree polynomial
interpolant of /(¢) constructed by matching the value of /(¢) at the quad-
rature nodes. Recall that we have selected g,,(6) and p(6) such that we
can write the KL divergence between the two distributions in
closed form.

To demonstrate the robustness of our approach, we kept hyperpa-
rameters constant across all experiments unless otherwise specified.
We chose B=min(128, number of data points), /=32,K=26 and M=102.
We chose alearning rate of 10~ for all parameters related to g,,(x,) and
1072 for all other parameters; for the Lorenz "96 problem, we chose



learning rates 102 and 107, respectively. We trained every model for
20,000 iterations; for the Lorenz "96 problem, we trained for 5,000
iterations. We used 5,000 warm-up iterations (1,250 for the Lorenz’96
problem)whereintheKL divergence termisscaled by aconstant factor
fromOto1,increasingeveryiteration atalinear rate®. We decayed the
learning rate by multiplying the starting learning rate by 0.9 every 2,500
iterations (625 for the Lorenz 96 problem). Although these were the
hyperparameter settings we chose for all experiments here, we would
like to emphasize that thisis just one setting for the hyperparameters
that worked well consistently. Careful tuning for individual experiments
can probably improve performance and or decrease training time.

Initialization

We found that good initialization of the radial-basis-function models
used to parametrize m,and S, could greatly improve convergence.
This is to be expected, given that we are trying to maximize a highly
nonconvex objective. For the constant basis function, weinitialized the
weight to 0 inthe mean-function and orthogonal-matrix parametriza-
tions. For the eigenvalue parametrization (4,), we initialized this weight
to approximately —2.5. We also added 107 to the eigenvalue matrix to
help ensure that the optimizer stayed away from extremely degener-
ate regions of the optimization space in the early stages. Initializing
the eigenvalues to be small at the start of the optimization procedure
helpedto avoid convergence to a poor local minimawherein the model
finds that the data were generated by a pure random-walk process.
For the scale parameter, o, we always initialized to 1. For the mean
function, we initialized the remaining weights in ¢ by minimizing
the least-squares error with ¢, regularization on the training data. We
weighted the £, regularization term by 107", We initialized the length
scalewithagrid search over thelengthscales fromtheset {107,1/2,1,10}
using fivefold cross-validation. For the orthogonal matrix, weinitialized
the weights to a small positive constant, 107, For the sparse approxi-
mation to the drift function, we initialized the weights by minimizing
the ¢,regularized least-squares error between the derivatives fromthe
initialized mean function and the drift-function model at the training
timestamps. Again, we weighted the ¢, regularization termby 107,

Normalization of drift-function features

When training sparse linear models, we found that normalizing the
drift-function features dynamically in training could make convergence
to a good minima more consistent. In this work, we assumed that we
were only interested in time-independent features and that we were
using the same features in each dimension. In this case, we can write,
filx, ) = ((x,) ® DO, inwhichyp: R? > R¥M returns a row vector of fea-
tures and 8 € R is a vector of parameters. Let ¢/(x) be the basis func-
tions evaluated at a batch of inputs. During training, each time we
compute (x), we normalize on the basis of the running variance, that s,

P
Jvar[p()]+e’

in which Var[g(x)] is the running variance of the output features
and ¢ > 0 is a constant we choose to be 1075, The running variance is
updated according to the rule Var[((x)] e, = (1 = gt) x Var[p(x) 154 + pt %
Var[¢(x)].. in which Var[¢(x)]., is the estimated variance for the
current batch of inputs and the momentum, i, was set to 0.1. The con-
stant basis function ¢(x) = 1was not normalized. Thisis very similar to
the batch-normalization®* implementation provided in PyTorch*. The
running variance wasinitialized using the variance of the inputs at the
data timestamps using the initialized mean approximation.

Yo < 19

KL divergence for the half-Cauchy prior

This sectionsummarizes the parametrization defined by ref. 37 thatis
used to estimate the posterior over the parametersinequation (3) when
performing symbolic-governing-equation discovery. This is a useful

parametrization asit allows us to easily sample from the approximate
posterior and express the KL divergence between the approximate
posterior and the prior in closed form.

Recall that the prior for the parameters is written as p(6), in which
6 € RM*P Misthe number of basis functions in the dictionary and D s
the dimension of the state. We express the full hierarchical prior as
6,=6; S48, @3, inwhich

8- M0,1), s5,-6(0.5,72), 5,~76(0.5,1), (20)

@;~G(0.5,1) and B,-76(0.5,1). 21

Here Gand ZG denote the Gamma and inverse Gammadistributions,
respectively, and t, is a small positive constant chosen by the user,
typically 0(107°) - ©(10”7). The product z= /s, corresponds to a
half-Cauchy distribution onz. Theideabehind the prioris ‘global-local’
shrinkage. Here s, and s, are ‘global’ scales that encourage all param-
eterstobesmalland a;and B;arelocal scales that allow the correspond-
ing parameter to remain unconstrained.

Having specified the prior, we must now specify an approximate
posterior. Following ref. 37, we make use of a mean-field assumption,
approximating the posterior over the shrinkage parameters using
log-normal distributions. The approximate posterior over all param-
eters can be expressed as the product

M+D

q,(0) =, (S 5p) n1 q,(%:, 8)q,(6), (22)

in which ¢ is the vector of variational parameters corresponding to
the distributions

q,(Sar S) = LN, , 02) LN SylH, 03); (23)
q,(a, B) = LA, , 00) LBl 5, 07); (24)
q¢(e7,.) = ,/\/'(§,~|[1§i, 03’_). (25)

Given this choice of prior and posterior, the KL divergence between
the approximate posterior and the prior factorizes as follows:

DKL(q(p(e)”p(e)) = DKL(q(p(Sb) [1p(sp) + DKL(%(QN Ip(a))+ (26)

Dyu(q,BIP(B) + Dy (,(O)11p(6)). 27)

We can write each termin the KL divergence between the approxi-
mate posterior and the prior as

D@, (splIp(sy) = exp@aﬁ;us,,)
1 (28)
5 (—psb +2logo, +1+log2),
M+D 1
Dyu(q,(@)lIp(a) = (exp(yai + Ea;)
=1 29)
- % (pai + 2Iog0ai +1+ IogZ)J,
M+D 1
Dlq BN = 3. (exp[ 5051y
i=1 (30)

1
—5(—;% +2|ogoﬁi+1+log2)J,
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M+D

> (1+210g0§i—ﬂ§—0;~i).

i=1

DKL(q(p(@N)lUJ(g)) =-= (31)

2

Linear measurement function

In the case of a linear observation function with Gaussian noise,
the expected log likelihood of the measurements can be written in
closed form. Specifically, when y, = Gx(¢,) + n, inwhichG € R and
€~ MO0, R), we can write '

1 _
Extm(ep sepn108P(Y )1 == 5 (3= Gm(t))"R™(y, - Gm(ty))
1 T -1 1 d (32)
—Etr(G RTGS(¢t)) - ElogIRI - EIoan.

This is a useful, well-known result that reduces the variance of
gradients of the approximation to the ELBO in equations (17)
and (18).

List of governing equations used in numerical studies

Most of the problems used for benchmarking studies have been
used previously to benchmark the performance of methods for
governing-equation discovery??*, We list the governing equations,
initial conditions, time intervals and the distribution over the proba-
bilistic corruption coefficients. As a reminder, we add the following
probabilistic corruption to the dynamics of the first state in the second
set of numerical studies: X; < X; — ax, + .

Damped linear oscillator:

_[-01 2 _[25
x‘[—z —0.1}(' X(O)_[—s}’

a, B-U(-0.25,0.25)

t<[0,20] (33)

Damped cubic oscillator:

. [-01 2 7.3 o
x‘[—z —0.1}(' X(O){—J'

a, B~U(-0.15,0.15)

t<[0,25] (34)

Coupled linear system:

X=-(4+2)x+2x,
X=24-Q2+4)x,

ﬂmzﬁ}
£(0)= m, te0,20]

a, B-U(-0.25,0.25)

(35)

Duffing oscillator:

Mo x(0) = m t€[0,20]

X%=—(c}-x) - 0.35%, (36)

a, B-U(-0.25,0.25)

Selkov glycolysis®:
X =-Xx+0.08x, + x2x, 0.7
%= 0.6-0.08x, - x2x, 1.25
a, B-U(-0.04,0.04)

x(0) :{ } t<[0,30]

(37)

Lorenz’63:
X=1006 - x) -8
X%=x%028-x)-x, x(0)=| 7 | t€[0,10]
) (38)
X3 =06 8/3%, 27
a,B~U(-2.5,2.5)
Hopfbifurcation:
X%=0.5%+x, - x,(x?+x3
1 1+ =00 ) 2)2 x(0)=[2}, t€[0,20]
X2=—XI+O.SX2—X2(X1 +X2) 2 (39)

a, - U(-0.125,0.125)

Detailed setup for example1

This section provides a detailed breakdown of the comparison activi-
ties related to state estimation with aknown motion modelintroduced
in the first set of numerical studies. To reiterate, in this set of bench-
marks, we compared our method (SVISE) to the PF* using an imple-
mentation provided by DAPPER* when the form of the motion model
is known exactly. This serves as the best-case scenario for standard
state-estimation methods.

We use the dynamical system definitions described previously as
wellas the identity observation function. For each dynamical system,
we generate 20 independent datasets and task the algorithms with
estimatingthe mean and variance of the state at each timestamp. Each
dataset consists of 128 evenly spaced data points generated by simulat-
ing the system forward from the initial condition listed previously using
Euler-Maruyama integration assuming a diffusion matrix whose
diagonal values are given by 1% of the range of the system and additive
zero-centred Gaussian observation noise with a standard deviation
thatis10% of the range of the system. We define the range of the system
asl/2(max({x(t,-)}l.'\il) —min ({x(t,-)}l.’il) ), inwhichx(¢,) is the true system
state at time ¢;assuming zero diffusion.

To assess the performance of the methods, we used the normalized
root mean squared error (NRMSE) between the mean estimate for tll)e
stateand the truestate position, NRMSE = (3%, 1x(£) -2/ S 1Ix(IE)
in which x; is the predicted mean of the state at time i and x(¢,) is the
true system state.

The state estimators in the DAPPER implementation all require an
initial condition. To not unfairly advantage our method, we provided
the algorithms we compared ourselves to with the true initial condi-
tion for all systems except the Hopf bifurcation (for which we provided
the true system state at the time of the first measurement to avoid
particles diverging to infinity). Also, we set the initial variance to be
0, as we were providing the PF with the exact initial condition. For the
Hopfbifurcation, so asto not unfairly advantage our method, we only
measured performance for estimates of the state provided after 10 s
(thereby giving the PF sufficient burn-in time).

Forall comparisonsin this section, we used the default settings pro-
vided by DAPPER v1.3.0 (ref. 43), with the exception of choosing 1,000
particles. The results were summarized in the main text and in Fig. 2a.

Detailed setup for example 2

This section provides a detailed description of the comparison activi-
ties related to state estimation with modelling errors that was intro-
duced in the second set of numerical studies. To reiterate, in contrast
to the comparisons described in the previous section, in this set of
comparisons, we introduce a corruption to the differential equations
that the PF was not made aware of. If the uncorrupted dynamics are
given by x € R?, inwhich X; is the differential equation governing the
dynamics of the ith component of x, we corrupt the dynamics of
the first state by setting X; < X; — ax, + 8 while all other states are left



uncorrupted. The corruption terms a and f are sampled from
zero-centred uniformdistributions using the bounds listed previously.
Inthe case of the cubic oscillator, for example, this introduces a small
amountof extralinear damping to the system. We use the same settings
asinthe previous benchmarks except for the fact that we generate data
by simulating with the corrupted dynamics. For the PF, we setreg = 2.4
andNER = 0.3. These settings were found by starting with the DAPPER
defaults and manually tuning.

Looking to Fig. 2b, we see that our method outperforms the PF on
average at this level of corruption. To reiterate what was discussed in
the main text, we believe that these results make clear the usefulness
ofthiswork. Eveninthe presence of mild modelling error, our method
outperforms standard state-estimation tools. As modelling errorisan
unavoidable reality in many systems of interest, our method for state
estimation has the potential to be useful.

Detailed setup for example 3

To generate data, we used animmersed boundary projection method
codebase for solving the two-dimensional incompressible Navier—
Stokes equations®®. We generated 1,953 evenly spaced snapshots each
with dimension of 596,602 over the timeinterval [61, 256.2]. We assume
aGaussian likelihood with a constant variance of 107, In this problem,
38 POD modes were required to capture 90% of the variance. The fully
connected neural network model for the drift was chosen to have one
hidden layer with 128 hidden units and tanh nonlinearities. We used a
batch size of 64, set K=100, M =100 and used 500 basis functions to
approximate the posterior of the state. To reiterate what was mentioned
previously, looking to Fig. 3, we see that we are successfully able to infer
aprobabilistic ROM for the flow.

Example 4: symbolic-governing-equation discovery benchmarking
Inthis section, we compare our method to standard governing-equation
learning algorithms from the literature on the suite of benchmark
systems listed previously in Methods. For allexperiments in this section,
werequiregtobetheidentity measurement function so that methods
from the literature can be applied. Also, we provide our method with
no knowledge of the underlying dynamics (that is, we set Jz=0 and
¥ 5= 0). We compared our method to the algorithm for sparse identi-
fication of nonlinear dynamics (SINDy), SINDy with sequentially thres-
holded least squares regression (SINDy-STLSQ)%, SINDy with sparse
relaxed regularized regression (SINDy-SR3)* and Ensemble-SINDy
(ENS-SINDy)®° using implementations provided by PySINDy®"2, Each
method is given a dictionary of functions containing all polynomials
up toorder>5.

For each system, we generate 40 independent datasets and task the
algorithms with recovering the underlying governing equations. These
40 independent datasets are split up equally into two cases: (1) the
low-noise, low-dataregime and (2) the high-noise, large-data regime.
In the low-noise, low-data regime, we generate 16 data points for the
damped linear and damped cubic oscillators, 32 data points for the
Hopfbifurcation, Selkov glycolysis model and Duffing oscillator, and
64 data points for the Lorenz 63 and coupled linear oscillator. Each
data point is sampled by assuming zero-centred Gaussian noise with
a standard deviation that is 1% of the range of the system. In the
high-noise, large-data regime, we generate 2,048 evenly spaced data
points for each dataset assuming zero-centred Gaussian noise with a
standard deviation that is 25% of the range of the system. We again
define the range of the system as1/2 (max({x(t,-)}ll.il) -min ({x(t,-)}l.'il) ),
inwhichx(t;) is the true system state at time ¢;.

The reconstruction error and the number of incorrect terms are
metrics commonly used in compressive sensing to validate the efficacy
of sparse learning algorithms; see, for example, refs. 63,64. Therecon-
struction error is defined asRER = ||6 - 6| ,/1161l,, in which is the true
vector of sparse weights that we are trying to estimate and 6 is our
estimate for the set of sparse weights. For all estimates of the

reconstruction error, we use the mean of the estimated posterior for
the weights. The reason for looking at both metrics is that some algo-
rithms may achieve alow reconstruction error without correctly prun-
ing weights.

Summary plots for benchmarking in the high-data regime are pro-
vided in Extended Data Fig. 1. Detailed benchmarking tables broken
down by each system can be found in Extended Data Tables 2-5. In
these tables, the error bars for all terms are given by one standard
deviation from the mean. A dashindicates that the equation-recovery
algorithm predicted that the governing equations were given by x = 0.

It can be seen from the results that, as well as improving on recon-
struction error, often by more than an order of magnitude, our method
was able toidentify the correct functional form of the governing equa-
tions far more frequently than the methods with which we compared
inboth the low-data and high-noise regimes. These results are notable
because, in many problems for which governing equations are not
available, we only have access to noisy/limited data.

Looking more closely at Extended Data Table 2, we see that the
proposed method (SVISE) outperformed all other methods in terms
of reconstruction error in the low-data regime except on the Duff-
ing oscillator problem, for which our approach was outperformed
by ENS-SINDy. For this benchmark, our approach still outperformed
ENS-SINDy in terms of the number of mismatched terms. Looking
now to Extended Data Table 3, we see that the proposed method out-
performed all other methods in terms of the number of mismatched
terms for allbut the Lorenz’63 benchmark; however, the SINDy-STLSQ
method achieved thislower number of incorrect terms score by often
ignoring the dynamics in the third state.

Inthe high-noise regime, we see that SVISE outperformed the meth-
ods we compared with in terms of RER on all but the Duffing oscilla-
tor benchmark, for which our approach was again outperformed
by ENS-SINDy (see Extended Data Table 4). For this benchmark, our
method was again the clear winner in terms of the number of mis-
matched terms (see Extended Data Table 5).

Taken together, these results demonstrate that the method intro-
duced inthis workis agood choice for governing-equation discovery
in the low-data and high-noise regimes. Also, although the methods
we compared ourselves to in this section require that the measure-
mentfunctionisidentity (thatis, the full state vector is measured), our
method is applicable to cases with arbitrary observation functions.

Example 5: high-dimensional, spatially extended differential-
equation discovery with low-rank observation matrices

We now consider the problem of recovering the underlying governing
equations for the Lorenz’96 system with 1,024 states using alow-rank
observation matrix. The Lorenz’96 modelis aset of coupled, chaotic,
ODEs designed to be a simplified model of the climate along a line of
constant latitude®. The governing equations for this system are given
by X = X1 (k1= Xx_2) — X, + 10, for which the boundary conditions
are assumed to be periodic (k=1, 2,...,1,024).

We generated observation matrices of rank r using the expression
g(0) = (r 'YL, wulyx,inwhicheachu; € R isarandom vector sampled
from a standard normal distribution. We studied the performance of
our approach in which the rank of the observation matrix is 256, 512
and 1,024. For each experiment, we used 512 snapshots over the time
interval of 0 to 10 corrupted by noise that is 2% of the range of the
system. We make the assumption that the dynamics are given by
X = Py(Xie2 Xi_1, Xiy Xio1, Xi42)0, in Which P, : R > RPM returns all quad-
ratic polynomial functions that are a function of x; and its two closest
neighbours to the left and right of the node. Although we found that
we were able to exactly recover the underlying functional form of the
governing equations with an observation matrix whose rank was half
the dimensionality of the state, further workis required to theoretically
establish conditions under which the governing equations can be exactly
recovered. These results are summarized in Extended Data Fig. 2.
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Because many real-world systems for which governing equations are
challengingto derive from first principles are both (1) high-dimensional
and (2) challenging to measure, we believe this to be a useful result.
Our method has a computational cost that scales linearly in the state
dimensionand canbe applied givenanarbitrary observation function.
Thisresult opens the door for equation discovery in systems that were
previously believed to be too large and/or difficult to measure.

Example 6: governing-equation discovery for second-order
systems with unobserved states

We now examine the problem of learning governing equations of
second-order systems using only displacement/position measure-
ments. For many physical systems, we often only have access to position
measurements (thatis, through GPS/Vicon camera measurements) for
certain states and/or accelerometer measurements for other states.
To apply existing methods from the literature to this class of problem,
it becomes necessary to estimate velocities and accelerations using
finite-difference approximations® in the preprocessing stage or use
the weak form of the governing equations®. The proposed method
can be directly applied to such problems without resorting to finite
differences or the weak form.

We consider the task of learning the governing equations of the
coupled linear oscillator defined in governing-equations definitions
discussed previously. We generate 32 measurements of the system
position corrupted by 10% measurement noise. Assuming that the
system is autonomous and second order, we know that the dynamics
must be governed by second-order differential equations, which are
functions of both the position and the velocity.

Using a dictionary containing polynomials up to order five in the
state and velocity, we were able toinfer both the structural form of the
underlying governing equations as well as estimates for the uncertainty
in the parameters. The governing equations inferred by our method
are provided below (only the mean coefficients are shown):

X =-5.23x,+ 1.74x,,

- (40)

X =1.61x; - 5.45x,,
whichis relatively close to the true functional form of the underlying
governing equations. Extended Data Fig. 3 shows the measurements
and underlying state inferred by our method. It can be seen that the
probabilistic state estimate agrees well with the true trajectory.

This experiment demonstrates the use of our method in practical
situations in which we only have access to partial measurements of
the state for second-order systems. So far, we have only considered
problems in which the observation function is linear. In the next sec-
tion, we consider a problem with a nonlinear observation functionin
which there are fewer observations than states.

Example 7: binary black hole system from gravitational-wave
measurements
The binary-black-hole modelling problem is concerned with estimat-
ingblack-hole orbital trajectories using observations of gravitational
waves®, In comparison with the examples considered so far, this prob-
lem involves a nonlinear observation likelihood and the number of
observationsis less thanthe number of states. Moreover, in this prob-
lem, itis not clear what choice of basis functions might be appropriate
forapproximating the underlying dynamics. We shall demonstrate that
itisindeed possible to use aneural networkin place of alinear combina-
tion of basis functions, as was mentioned when outlining our approach.
Traditional approaches to solving this problem typically involve
reconciling gravitational-wave measurements with the complex partial
differential equations that govern their dynamics. This is typically a
computationally expensive undertaking. In this section, we attempt
to infer the governing equations that were likely to have generated
the waveform observations simultaneously to the underlying orbital

trajectories. We consider a special case of the binary-black-hole mod-
elling problem for an extreme-mass-ratio system (thatis, in which the
mass of one object is far greater than the other); see Keith et al.*” and
references therein for more details on this problem.

Centring the origin of the coordinate system at the more massive
object, the dynamics can be written as a set of coupled differential
equations in terms of the angle of the smaller object with respect to
thexaxis, §(t), and the anomaly, x(¢),

. (p—2-2ecosy)(1+ecosy)?
8= - s (41)

= (p-2-2ecosy)(1+ecosy)*(p - 6 - 2ecosy)"?

PA(p-2 - 4" S

inwhiche=0.5isthe eccentricity and p =100 isthe semilatus rectum.
The angle and anomaly relate to the orbital trajectory according to

x(6)| p cosé(t)
)| (1+ecosy()| siné(e) ||
As mentioned previously, in practice, we cannot observe the

state variables directly. Instead, we only have access to noisy
gravitational-waveform measurements, w(t),

_[Am(d® ., dE
w(t)—,ﬁ[dtzx(t) @y(t) }

Note that we consider only the dominant (2,2)-mode gravitational
waveforms.

Given gravitational-waveform observations, w(t), our goal is to
reconstruct the underlying orbital trajectories, x(¢) and y(¢), and to
infer with an approximate forward model that can be used to forecast
future orbital trajectories. Rather than working directly inthe trajectory
coordinates, we willinfer aSDE interms of the orbital parameters, 6(¢)
and x(¢), in which x(¢) is the anomaly and 6(¢) is the angle with respect
to the x axis of the smaller object. Following the parametrization
suggested by Keith et al.*’, we model the drift as

(43)

(44)

_ (1+ecosy)?

- Mp3/2 (45)

fo(&,6,%) (1+ Fy(cosy)),

in which Fyis a fully connected neural network with two outputs, Mis
the mass of the more massive object, e = 0.5 is the eccentricity and
p =100 is the semilatus rectum. We use two hidden layers, each with
128 hidden units and tanh nonlinearities. We collect 1,000 evenly
spaced gravitational-waveform observations, w(t), over the interval
[0, 0.6 x 10°] corrupted by Gaussian noise with a standard deviation of
1073 We also provide our algorithm with the initial condition of the
underlying state at the first observation time. We place a sparsity-
inducing prior on the diagonal of the diffusion term.

We choose a batch size of 256, a learning rate of 1072, 20 samples
from the variational posterior, 1,000 warm-up iterations, 100 basis
functions to approximate the posterior over the state and decayed
the learning rate by 0.9 every 500 iterations; see Methods for more
details. The results are summarized in Extended Data Fig. 4. We find
that we are able to infer a reasonable model for the orbital trajectory
while estimating the state. We reiterate that, in contrast to previous
approaches to solving this problem, we were not required to solve
any differential equations in training. Also, our approach provides
probabilistic predictions for the orbital trajectories.

Like for the Lorenz '96 example, further work is required to deter-
mine when uncovering the governing equationsis possible for general
nonlinear observation functions, particularly when there are fewer



observations than states. For example, in this problem, we found that
the success of our approach relied heavily on the carefully designed
parametrization for the drift term suggested by Keith et al.*’. It is also
worth mentioning that, because we are estimating the parameters of
the neural network using maximume-likelihood estimation, we expect
to systematically underestimate uncertainty. Future work could con-
sider placing priors on the neural-network parameters and perform-
ing approximate variational inference over said parameters to more
accurately capture uncertainty.

Data availability

Thedatainthe paper and the Supplementary Informationare available
at https://github.com/coursekevin/svise.

Code availability

The software library that was developed to generate the results along
with documentation is available at https://github.com/coursekevin/
svise.
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Extended DataFig.1|Identifying missing terms. a, Reconstructionerror.b, Number of mismatched terms. Our method (SVISE) outperforms state-of-the-art
algorithms for governing-equation discovery in the high-noise and low-dataregimes.
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Extended DataFig.2|Experiment ondiscovering governing equations basis functions from the dictionary of quadratic polynomial functions of the
for ahigh-dimensional system with alow-rank observation matrix. node state and its four closest neighbours to the left and right of the node. We
a, Visualization of Lorenz’96 fullunderlying state data with 1,024 states. were able tosuccessfully recover the exact functional form of the Lorenz’96
b, Reconstruction error for varying observation matrix ranks. c, Number of governing equations using an observation matrix whose rank was half that of
mismatched terms for varying observation matrix ranks. In this experiment, the fullunderlying state.

we assumed that the governing equations were a sparse linear combination of
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Extended DataFig. 3| Governing-equationdiscovery for second-order aremarked by x, and x, and the state velocities are marked by v,and v,. Here
systemusing only position measurements. The dashed linesindicate the only 32 measurements of the oscillator position corrupted by noise that was
true oscillator state and the shaded blue regions indicate two standard 10% of the range of the system state were available.

deviations from the mean of the underlying state estimate. The state positions
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Extended DataFig. 4| Binary-black-hole modelling problem. a, Orbital function of time. Theblack linesindicate the data windows, the orange lines
trajectory estimates. b, Trajectory estimates versus time. In this experiment, indicatethetestingdataandtheblueintervalsindicate probabilistic predictions
we approximate the dynamics using a neural network. Thisis a useful model from our model. Note that we only have access to the waveform observations,
insituationsinwhichitis not clear what dictionary of basis functionsis w(t), uptotime 0.6 x 10°in training. We are able to accurately estimate the states

appropriate. Theleftfigure showsthe predicted orbital trajectoriesintheplane  and provide probabilistic estimates for the orbital trajectories well into the
oftheorbitand theright figure shows the predicted orbital trajectoriesas a future, despite not having access to the underlying governing equations.
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Extended Data Table 1| Assumption comparison table

Method Parametric uncertainty Bayes (non-MAP) Non-Gaussian posterior Unknown dynamics Symbolic dynamics
ERTS [1] v X X X X
ESGVI [5] v v X X X
PF [41] v v v X X
KoopSE [4] v X X 4 X
SVISE (ours) v 4 X v v

Capability comparison between the extended Rauch-Tung-Striebel smoother (ERTS), the exactly sparse Gaussian variational inference method for state estimation (ESGVI), the PF and our
approach, SVISE. We note that ours is the only method that allows for symbolic-governing-equation discovery as well as a Bayes (non-MAP) state estimate.



Extended Data Table 2 | RER in the low-data regime

Benchmark SVISE SINDy-SR3 SINDy-STLSQ ENS-SINDy
Damped linear osc. 0.049 + 0.003 1.001 £ 0.001 1.000 £ 0.001 1.000 + 0.001
Damped cubic osc. 0.046 + 0.007 1.366 + 0.133 1.195 + 0.500 1.008 + 0.013
Lorenz ‘63 0.767 + 0.081 26.082 + 26.105 1.275 £1.017 1.000 + 0.000
Hopf bifurcation 0.618 + 0.050 69.839 + 36.571 - N
Selkov glycolysis 0.074 + 0.006 515.730 + 202.063 0.999 + 0.005 0.989 + 0.034
Duffing osc. 1.106 £ 0.021 0.979 + 0.059 — 0.992 + 0.035
Coupled linear 0.012 + 0.007 0.352 + 0.296 0.345 + 0.017 0.350 £ 0.001

Reconstruction error averaged over 20 independent trials. Error bars given by 1 standard deviation.
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Extended Data Table 3 | Number of mismatched terms in the low-data regime

Benchmark SVISE SINDy-SR3 SINDy-STLSQ ENS-SINDy
Damped linear osc. 1.000 + 0.000 5.700 + 6.520 5.650 + 6.966 6.800 + 8.687
Damped cubic osc. 1.000 + 0.000 12.150 £ 12.920 8.500 + 10.371 13.550 + 14.692
Lorenz ‘63 9.800 + 1.030 93.600 + 19.075 4.550 + 2.655 10.450 + 7.117
Hopf bifurcation 3.200 + 0.600 32.150 + 2.688 - -

Selkov glycolysis 1.800 =+ 0.400 34.400 + 1.685 6.100 + 0.436 5.850 + 0.477
Duffing osc. 0.000 -+ 0.000 4.950 + 4.842 - 3.850 + 0.654
Coupled linear 0.000 + 0.000 4.950 + 2.617 3.950 + 0.218 4.000 + 0.000

Number of mismatched terms averaged over 20 independent trials. Error bars given by 1standard deviation.



Extended Data Table 4 | RER in the high-noise regime

Benchmark SVISE SINDy-SR3 SINDy-STLSQ ENS-SINDy

Damped linear osc. 0.046 + 0.009 0.308 + 0.045 0.295 + 0.030 0.305 + 0.046
Damped cubic osc. 0.064 + 0.012 0.839 + 0.056 0.833 + 0.059 0.867 + 0.070
Lorenz ‘63 0.937 + 0.171 1.417 £+ 0.303 1.371 £ 0.276 1.340 + 0.214
Hopf bifurcation 0.727 + 0.047 0.927 + 0.054 0.916 + 0.055 0.921 + 0.046
Selkov glycolysis 0.533 + 0.282 18.398 + 7.731 12.969 + 12.383 1.556 + 0.194
Duffing osc. 1.015 + 0.082 0.879 +£0.123 0.902 + 0.095 0.878 + 0.078
Coupled linear 0.022 + 0.009 2.551 +0.193 2.718 4+ 0.246 2.684 + 0.166

Reconstruction error averaged over 20 independent trials. Error bars given by 1 standard deviation.
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Extended Data Table 5 | Number of mismatched terms in the high-noise regime

Benchmark SVISE SINDy-SR3 SINDy-STLSQ ENS-SINDy

Damped linear osc. 1.200 + 0.510 8.850 + 13.499 4.800 + 7.814 7.950 & 10.745
Damped cubic osc. 2.000 + 0.000 22.050 + 7.263 21.950 + 8.482 23.050 + 9.367
Lorenz ‘63 8.650 + 1.931 91.150 + 2.574 68.400 + 3.693 71.700 + 3.593
Hopf bifurcation 4.400 + 0.800 22.800 + 5.913 22.200 + 7.400 24.000 + 7.849
Selkov glycolysis 3.150 + 1.824 29.450 + 4.769 28.550 + 6.111 29.300 + 7.894
Duffing osc. 0.000 + 0.000 29.750 £+ 12.078 32.950 + 10.562 28.550 + 12.576
Coupled linear 0.000 + 0.000 184.100 + 54.828 324.050 £ 99.701 381.100 £ 7.999

Number of mismatched terms averaged over 20 independent trials. Error bars given by 1standard deviation.



	State estimation of a physical system with unknown governing equations

	Results

	Problem statement

	Related work

	Stochastic variational inference

	Priors

	Variational distributions

	ELBO

	Example 1: state estimation with known motion model

	Example 2: state estimation with modelling errors

	Example 3: governing-equation discovery with neural SDEs


	Discussion

	Online content

	Fig. 1 Main ideas.
	Fig. 2 Benchmarking summary with 20 independent trials per system.
	Fig. 3 Flow behind a cylinder ROM problem.
	Extended Data Fig. 1 Identifying missing terms.
	Extended Data Fig. 2 Experiment on discovering governing equations for a high-dimensional system with a low-rank observation matrix.
	Extended Data Fig. 3 Governing-equation discovery for second-order system using only position measurements.
	Extended Data Fig. 4 Binary-black-hole modelling problem.
	Extended Data Table 1 Assumption comparison table.
	Extended Data Table 2 RER in the low-data regime.
	Extended Data Table 3 Number of mismatched terms in the low-data regime.
	Extended Data Table 4 RER in the high-noise regime.
	Extended Data Table 5 Number of mismatched terms in the high-noise regime.




