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Abstract

We present Kepler exoplanet occurrence rates for planets between 0.5 and 16 R⊕ and between 1 and 400 days. To
measure occurrence, we use a nonparametric method via a kernel density estimator and use bootstrap random
sampling for uncertainty estimation. We use a full characterization of completeness and reliability measurements
from the Kepler Data Release 25 catalog, including detection efficiency, vetting completeness, astrophysical
reliability, and false alarm reliability. We also include more accurate and homogeneous stellar radii from Gaia Data
Release 2. In order to see the impact of these final Kepler properties, we revisit benchmark exoplanet occurrence
rate measurements from the literature. We compare our measurements with previous studies to both validate our
method and observe the dependence of these benchmarks on updated stellar and planet properties. For FGK stars,
between 0.5 and 16 R⊕ and between 1 and 400 days, we find an occurrence of 1.52± 0.08 planets per star. We
investigate the dependence of occurrence as a function of radius, orbital period, and stellar type and compare with
previous studies with excellent agreement. We measure the minimum of the radius valley to be -

+1.78 0.16
0.14 R⊕ for

FGK stars and find it to move to smaller radii for cooler stars. We also present new measurements of the slope of
the occurrence cliff at 3–4 R⊕, and find that the cliff becomes less steep at long orbital period. Our methodology
will enable us to constrain theoretical models of planet formation and evolution in the future.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet formation (492); Exoplanet astronomy (486);
Exoplanet evolution (491); Transit photometry (1709)

1. Introduction

Keplerʼs foremost legacy has been enabling detailed exoplanet
demographic studies. Launched in 2009, Kepler was designed as
a demographics mission to study the population of planets in our
galaxy orbiting within 1 au of their host stars (Borucki et al.
2010). It also aimed to measure the frequency of Earth-like
planets within their star’s habitable zone. These small planets are
difficult to detect around Sun-like stars due to both their small
size and long orbital period. To detect these planets, Kepler
observed a single field continuously for almost 4 yr.

In order to enable studies of planetary demographics, the Kepler
Mission built a homogeneous planet catalog. A considerable
amount of resources went into characterizing this catalog: both in
the completeness (the fraction of planets that were correctly
identified and vetted as planet candidates, hereafter PCs) and in the
reliability (the fraction of PCs that are truly planets). The final
uniform planet catalog, Data Release 25 (hereafter DR25), was
released in 2018 and contained 4043 PCs (Thompson et al. 2018).

Over the past decade, a large amount of work has gone
into measuring Kepler occurrence rates. Many early works
(e.g., Borucki et al. 2011; Catanzarite & Shao 2011;
Youdin 2011; Howard et al. 2012; Traub 2012) aimed to
measure the frequency of small planets with the first two
Kepler planet catalog releases, which contained a cumulative
1235 planets found in the first 13 months of data (Borucki
et al. 2010, 2011). In the following years, multiple
intermediate planet catalogs were created, and many

occurrence rate studies were performed on them (e.g., Mann
et al. 2012; Wright et al. 2012; Beaugé & Nesvorný 2013;
Dong & Zhu 2013; Dressing & Charbonneau 2013, 2015;
Fressin et al. 2013; Kopparapu 2013; Petigura et al. 2013;
Swift et al. 2013; Foreman-Mackey et al. 2014; Kane et al.
2014; Morton & Swift 2014; Burke et al. 2015; Mulders
et al. 2015a, 2016; Silburt et al. 2015; Bryan et al. 2016;
Gaidos et al. 2016; Narang et al. 2018; Zhu et al. 2018;
Hardegree-Ullman et al. 2019, among others).
These studies were improved with an accurate model of the

Kepler completeness function. Understanding the Kepler
completeness function via injection and recovery tests
(Christiansen et al. 2013, 2015, 2016; Burke & Catanzar-
ite 2017; Christiansen 2017) proved successful in improving
our understanding of the intrinsic planet population. Burke
et al. (2015) first used direct measurements of the Kepler
detection efficiency to present occurrence rate calculations on
the Q1–Q16 Kepler planet candidate sample from Mullally
et al. (2016). These improvements revealed new features in the
period–radius plane: Fulton et al. (2017) uncovered the radius
valley, long theorized but not previously observationally seen.
This feature is robust against various stellar samples. It can be
seen in K2, second-mission Kepler, data (Hardegree-Ullman
et al. 2019), implying its formation cause is not reliant on
galactic position. Further, Van Eylen et al. (2018) showed that
with asteroseismology the valley emptied, indicating that the
more precise our stellar parameters, the more features we can
pull out of the true planet population.
However, few occurrence studies used the DR25 catalog with

DR25 completeness measurements, and with few exceptions,
these measurements also did not incorporate any reliability
measurements for individual planets. Hsu et al. (2019,
hereafter H19) calculated Kepler occurrence rates with DR25
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and updated Gaia-derived stellar properties, however without any
reliability measurements. Kunimoto & Matthews (2020,
hereafter KM20) used catalog reliability in their measurements
but used their own pipeline to detect planets from the Q1–Q17
data (Kunimoto et al. 2020). Bryson et al. (2020a) calculated
Kepler occurrence rates using a joint DR25-Gaia DR2 stellar
catalog as well as DR25 reliability measurements, albeit for a
focused domain in the period–radius domain.

Precise and uniform planet catalogs allowed us to measure
new structures in the period–radius diagram, just as they did to
reveal the radius valley in Fulton et al. (2017). The period–
radius diagram is rife with features, such as the Neptune desert
at low orbital period, the aforementioned radius valley
bifurcating the small planet population, and the radius cliff
that marks the steep drop in occurrence from the sub-Neptunes
to the Neptunes. Many of these structures in the period–radius
diagram have been tied to planet formation and evolution
theory (e.g., Ginzburg et al. 2016; Mazeh et al. 2016; Owen &
Wu 2017; Owen & Lai 2018; Kite et al. 2019). Billions of
years of planet formation have driven our planets to their
current places on the period–radius diagram. We can trace the
history of planet formation through these end locations. By
measuring planet occurrence, we can map the structure of the
period–radius diagram to the physics that put each planet there.
Therefore, the better we can describe the underlying structure
of occurrence in the period–radius diagram, the better we can
explain how planets form and evolve.

The purpose of this paper is to revisit the planet occurrence
rate measurements from the past decade, now with a uniform
treatment of all DR25 inputs, in order to well-measure the
structure in occurrence space. We develop a methodology to
calculate planet occurrence using a kernel density estimator
(KDE). Our methodology incorporates DR25 completeness and
reliability measurements in a nonparametric form in order to
measure planet occurrence rates. Because it is of particular
interest to measure structure in the period–radius diagram, the
future goal of using this KDE methodology is to glean complex
structure in multiple dimensions from the data, instead of fitting
parametric forms to it. To validate the method, we have
identified several benchmark demographic measurements from
previous Kepler studies: the hot Jupiter occurrence, the radius
distribution for small planets, and a parameterized period
distribution.

Due to evolving planet catalogs and stellar samples, there
has been a spread in the measurements for each of these
benchmarks over the years. We measure these with our
methodology and compare to previous studies, but we are
unable to make truly direct comparisons between our
measurements and those of previous studies because of
different input assumptions. We combine the final DR25
parameters with Berger et al. (2020b) stellar parameters, so we
can see how adding in the updated stellar values and reliability
measurements impact the final results.

The paper is structured as follows. In Section 2, we discuss
the stellar and planet samples we use from the Kepler survey.
We then discuss how we characterize the survey bias with
completeness and reliability measurements, as well as our
methodology for measuring planet occurrence in Section 3. In
Section 4, we compare to other works and measure features on
the period–radius diagram. In Section 5, we tie these rates to
physical theory. We conclude and lay out possible future work
in Section 6.

2. Stellar Sample

We base our parent stellar sample on the Q1–Q17 DR25
stellar catalog, containing 198,709 stars (Mathur et al. 2017). In
order to have the most precise and uniform catalog of stellar
properties, we use Berger et al. (2020b) stellar properties.
Berger et al. (2020b) derives a homogeneous catalog of stellar
properties from isochrone fitting using Gaia parallaxes, broad-
band photometry, and spectroscopic metallicities where avail-
able. The Berger et al. (2020b) stellar properties cut down on
the dominant sources of systematic errors in stellar radii by
deriving them from isochrone-fit temperatures and luminos-
ities, resulting in the average stellar radii error of less than 10%.
Because all stellar parameters used in our model are from this
catalog, we restrict the stellar sample in the DR25 catalog to
those included in Berger et al. (2020b), cutting the stellar
sample down to 177,661 stars.
We then make further cuts to our stellar catalog following

Bryson et al. (2020a). First, we make cuts for binarity. The
stellar multiplicity can bias the measured planet properties and
suppress the planet occurrence for close-in binaries (Sullivan
et al. 2022). The Gaia renormalized unit weight error (RUWE)
is often used as a stellar multiplicity indicator. It is a goodness-
of-fit metric to the astrometric fits based on Lindegren et al.
(2018), who suggest a single-star cutoff at RUWE > 1.4. We
apply a slightly harsher cut of 1.2 because there are few single
stars below this limit (see, e.g., Bryson et al. 2020a; Berger
et al. 2020b, for more discussion). After removing targets with
RUWE > 1.2, there are 163,254 stars remaining. Gaia DR3
contains additional flags for binarity, specifically the non_-
single_star flag. We did not consider this flag prior to our
analysis. The RUWE cutoff, however, is very effective,
removing all but one of the 2319 binaries identified by the
non_single_star multiplicity flag. The remaining flagged
star has a RUWE value below the“typical” cutoff of 1.2, and
therefore would not have been cut with a harsher RUWE
metric. This single exception does not justify the cost of
reanalysis, and it remains in our stellar sample. We also remove
stars that are flagged in Berger et al. (2018) as likely binary
(BIN flag= 1 or 3). Stars were flagged based on their inflated
radii in the H-R diagram (161,075 remain). We leave stars
flagged with BIN= 2 because the flag comes from high-
resolution imaging, which was only performed for a subset of
stars. We remove stars with Berger et al. (2020b) goodness-of-
fit parameter <0.99, which measures the quality of isochrone
fitting (160,638 remain). Our final stellar classification cut is to
remove stars flagged as evolved stars according to Berger et al.
(2018). This flag is determined using solar-metallicity PARSEC
evolutionary tracks (Bressan et al. 2012) to define the terminal
age main-sequence stars in the temperature-radius plane;
anything above this boundary is classified as a subgiant or
red giant star (and cut from our sample; 107,472 remain).
We then cull our sample of poor targets. We remove noisy

targets identified in the KeplerPORTs package3 (105,994
remain) and stars with NaN limb darkening coefficients
(105,538 remain). We then cull based on duty cycle, the
fraction of data cadences with valid data: we check for stars
with duty cycle=NaN (105,538 remain), targets with duty
cycle drop >0.3 (101,544 remain), and targets with duty cycles
<0.6 (98,150 remain). We remove the stars with data span
<1000 days, which ensures that each star in the sample has

3 https://github.com/nasa/KeplerPORTs
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enough data to meet the 3-transit requirement for orbital
periods of 500 days (89,868 remain). The cut removes some
stellar targets with short-period planets, but we require a
uniform treatment for all stellar targets. Lastly, we remove the
stars with the timeoutsumry flag != 1, which removes
incompletely searched targets, resulting in 84,341 stars.

We split our sample by stellar type using the temperature
boundaries from Pecaut & Mamajek (2013). The remaining
84,341 stars are thus split into 21,999 F stars (6000 K
�Teff< 7300 K); 41,501 G stars (5300 K � Teff< 6000 K);
19,412 K stars (3900 K � Teff< 5300 K). We use the sample
of 82,912 FGK stars for our parent sample in the analysis.

2.1. Planet Sample

We derive our planet sample from the Q1–Q17 DR25 Kepler
Object of Interest (KOI) table, restricted to KOIs with
koi_disposition= CANDIDATE on the stars in our
parent stellar sample. We recompute the planet radius, RP,
based on the ratio of planet radius to stellar radius, RP/R*
(koi_ror), using the updated stellar radii from Berger et al.
(2020b). Because there is an excess false-positive rate below 1
day in both the TCE population and the PC sample (see Figures
1 and 7 of Thompson et al. 2018), we cut our planet sample at
1 day.

After culling the stellar sample and cutting on planet orbital
period and radius, we are left with 2575 PCs in our total FGK
sample. There are 610 PCs around F stars, 1275 PCs around G
stars, and 690 PCs around K stars. Figure 1 shows the period–
radius distribution of the planet sample.

3. Methodology

With an idealized (100% complete and reliable) data set, our
definition of planet occurrence for a defined stellar sample
would be

( )
*

=
N

N
NPPS 1P

where the number of planets per star (NPPS) is the number of
detected planets, NP, divided by the total number of stars N*. In
practice, however, not all planets are detected by our survey,

nor are all the planets that our pipeline detects truly planets. We
can attempt to account for these biases by computing various
performance metrics for the survey: we must account for both
the completeness of our survey and the reliability of our
sample.
The Kepler pipeline identifies potential transit signals in

lightcurves as threshold crossing events (TCEs; Jenkins 2002).
The Robovetter, an automated vetting algorithm that disposi-
tions signals based on decision trees (Thompson et al. 2015),
classifies these events as PCs or not. These signals are not
always correctly categorized, however. Some planets are
missed, and other dispositioned PCs are not actual planets.
Completeness (or sensitivity, or recall) asks the following: out
of all real planets, how many do we correctly disposition as
PCs? Reliability (or precision) asks, out of all TCEs
dispositioned as PCs, how many are true positives?
Using measured completeness and reliability, we update our

occurrence equation:

( )
*
å=

N
wNPPS

1
2

i
i

where we sum over all detections, using wi as our weighting
factor to account for the bias in our survey. The weighting
factor wi is defined as follows:

( )
w

=w
r

; 3i
i

i

ω is total summed completeness, which can be calculated at
each (pi, ri) for each planet candidate as defined in Section 3.1,
and r is reliability, calculated for each planet as defined in
Section 3.2. The method expressed in Equation 3 to calculate
occurrence is generally called the “Inverse Detection Efficiency
Method” or IDEM (Howard et al. 2012; Petigura et al. 2013;
Foreman-Mackey et al. 2014). We build upon this method
using a KDE (Section 3.3).

3.1. Completeness

Our completeness model is based on the Bryson et al.
(2020a) model and is comprised of two parts: detection and
vetting completeness. Detection completeness is the fraction of
true transiting planets that the Kepler pipeline could detect.
Vetting completeness is the fraction of true transiting planets
that are classified as PCs by the vetting pipeline. We expect
both to be a function of orbital period and the signal-to-noise
ratio of the transit lightcurve, which the Kepler pipeline
measures as the multiple event statistic (MES; Jenkins 2002).
First, we calculate detection efficiency via a modified version

of the KeplerPORTs code base. Burke & Catanzarite (2017)
used flux-level injection tests to generate detection efficiency
curves for individual target stars, which are a function of
expected MES. KeplerPORTs calculates an expected MES
value for a hypothetical planet at any given period and radius
within the given parameter space, resulting in a per-star
completeness contour ωs(p, r) as a function of period and
radius. Geometric transit probability, the probability the planet
can be seen transiting its host star, is also computed at this step.
We then compute vetting completeness. Vetting complete-

ness is the fraction of detected TCEs that are correctly
dispositioned as PCs. We use the same process to calculate
vetting completeness as that from Bryson et al. (2020a), where
it is described in detail, and briefly summarize it here.

Figure 1. Period–radius diagram of the 2575 planet candidates in our planet
sample, divided by stellar type.
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Vetting completeness is computed by analyzing the fraction
of recovered PCs in the injected set of planets from
Christiansen (2017) in period-expected MES space. We grid
period-expected MES space into cells and treat the fraction of
correctly vetted PCs in each cell as a binomial rate. We fit these
rates to a surface in period-expected MES space. As in Bryson
et al. (2020a), this rate surface is the product of a nonrotated
simplified logistic function in period and a rotated logistic in
period and expected MES, fit via Markov Chain Monte Carlo
(MCMC) inference using emcee (Foreman-Mackey et al.
2013). Since we use a different stellar sample than that from
Bryson et al. (2020a; FGK versus GK), we refit the parameters.
We do this for each stellar type (F, G, and K separately) but
find no substantial difference between stellar types. We do find
differences between our FGK fit and the GK fit from Bryson
et al. (2020a), which is expected for the differences in stellar
samples. See Appendix A for the specific coefficients.

Each component of the completeness function (detection
efficiency, geometric transit probability, and vetting complete-
ness) is treated as independent; for each star, they are
multiplied together to calculate total completeness. We sum
these functions over all stars to get an average completeness
over the total stellar sample.

We do not account for how transit multiplicity impacts our
detection efficiency. When searching for PCs, the highest
signal-to-noise ratio signal is removed from the lightcurve by
the Kepler pipeline, leaving less and less data for each
subsequent search. The detection efficiency for higher-order
planets decreases as a result and is a function of both planet
radius and orbital period (Zink et al. 2019). Properly
accounting for this effect is out of the scope of this paper.
However, we would expect it to decrease our completeness
contours (we are not accounting for missing planets), which
would increase our occurrence rates. When comparing
parametric fits to measured occurrence, the GK occurrence
rates computed by Zink et al. (2019) agree with those of Burke
et al. (2015), so we would expect the resulting difference in our
measurements to be small.

The FGK completeness can be seen in Figure 2. It degrades
as both a function of orbital period and planet radii and does

not degrade smoothly. We would not expect it to be entirely
smooth, though. For example, the window function is a key
component to computing occurrence, which quantifies the
probability that a target star meets the minimum of three
transits in observational data. It is not smooth due to gaps in
observations. There are alsonoticeable structures that appear as
jumps at exactly 100, 200, and 400 days. This is a result of a
correction factor for orbital period in the detection efficiency
model (see Section 3.4 of Burke & Catanzarite 2017) computed
in discrete bins. The discontinuities due to the window function
average out over our entire stellar sample, but the orbital period
discontinuities do not. Those remaining discontinuities can be
seen in the right panel of Figure 2. Although small, they can
add additional structure to our occurrence maps. For this study,
we limit our occurrence measurements to 400 days.

3.2. Reliability

In addition to completeness, we must also characterize the
potential for false positives contaminating our planet sample
via reliability measurements. Using the methodology of Bryson
et al. (2020a), we use a probabilistic approach to characterize
whether a planet candidate is actually a false positive. We break
these into two categories: (1) false positives, which are due to
astrophysical signals that imitate transits, and (2) false alarms,
which are due to instrumental systematics or stellar activity.
The process to calculate the different parts of reliability is
described in detail in Bryson et al. (2020a), and its effects are
characterized in-depth in Bryson et al. (2020b).
PCs can be false positives due to astrophysical causes, such

as grazing or eclipsing binaries. We use the Q1–Q17 DR25
False Positive Probabilities Table for our false-positive
probabilities. These probabilities were created using the
technique developed in Morton & Swift (2014) and were
computed for all KOIs based largely on photometric data in
Morton et al. (2016). We define the astrophysical reliability as
(1 − the false-positive probability).
We characterize the false alarm reliability with an algorithm

very similar to the vetting completeness. The inputs used to
characterize are very different: instead of injected data, used to

Figure 2. Left: FGK completeness function. Completeness degrades quickly along orbital period. White contours mark the 10-, 1-, 1e-2-, and 1e-4% completeness
levels. Right: the completeness contour for specific radii. There is a discontinuity in occurrence at 400 days caused by discontinuities in the detection efficiency model.
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find how incomplete the pipeline is, we use inverted and
scrambled data (Coughlin et al. 2017). Inverted data inverts
transit signals in lightcurves, while scrambled data mixes the
lightcurve data order. Both of these create data that cannot
contain true transits or astrophysical false positives, so any
transit-like TCE is due to instrumental false alarms. As
explained in Thompson et al. (2018), these inverted and
scrambled false alarms have the same statistics as the dominant
source of false alarms in the observed data.

The fraction of recovered signals in inverted and scrambled
data is treated as a binomial rate problem in period-expected
MES space, and MCMC inference is used to fit parameters to
that surface. We fit the false alarm reliability with a rotated
logistic function. As with vetting completeness, we fit each
stellar type separately and find no substantial difference
between the resulting posteriors. However, we do find a
difference between the fit of Bryson et al. (2020a) and our FGK
fit. See Appendix B for the specific coefficients.

The total reliability for each planet candidate is the product
of the false-positive probability and the false alarm probability.

3.3. Computing Occurrence

The simplest way to measure occurrence is to count planets
within some defined bin in period and radius (Equation (2)).
However, this binning can leave “binning artifacts” in the
measured occurrence (Foreman-Mackey et al. 2014). One can
also fit power-law functions to the data to measure occurrence
rates, but these fits limit the measured occurrence to that
specific model, which may not be the correct choice.

We use a KDE to measure planet occurrence. KDEs allow us
to measure closer to the underlying distribution by not
assuming a model. We are not the first to employ KDEs in
our occurrence framework. Other studies include Morton &
Swift (2014), Mulders et al. (2015b), Dressing & Charbonneau
(2015), Jin (2021), and Petigura et al. (2022).

We define f as the true planet occurrence and f̂ as our
measured occurrence. Traditionally, a KDE attempts to
measure the underlying probability distribution of a sample
using a function:

ˆ ( ) ( ) ( )å= -
=

f x
N

K x x h
1

; 4
i

N

i
1

where K is the kernel function, and h is the bandwidth. We use
a 2D Gaussian kernel to represent the planet in log-uniform
period–radius space, so ˆ ( )f x becomes ˆ ( )f p r, . The bandwidth
is the size of the kernel and acts as a smoothing function for the
discrete data set. The bandwidth needs to be optimized so that
the final f̂ is not oversmoothed or undersmoothed. For this
paper, we use an empirically optimized bandwidth of (σp,
σr)= (0.05, 0.05) (see Section 3.4.1). Our resulting function is
as follows:

ˆ ( ) ( ) ( ) ( )å s s= - -
=

f p r
N

K p p K r r,
1

; ; ; 5
i

N

i p i r
1

where (pi, ri) represents each planet in our sample, and (σp, σr)
denotes the bandwidth of (0.05, 0.05).

In essence, we place each planet in our sample down at its
period and radius as a bivariate Gaussian with width (0.05, 0.05)
and amplitude equal to its reliability value, normalized so that the
area under its curve is also equal to its reliability. We calculate the

variance of f̂ by performing a bootstrap of our sample 5000
times. For each bootstrap iteration, we calculate a new KDE, ˆ*f ,
and average the collection for our final KDE model. The
collection of ˆ*f measures the variance about f̂ , which mimics the
variance of f̂ about f. Our final occurrence rate KDE is computed
by dividing f̂ (which is equivalent to the averaged ˆ*f ) by the
completeness contour described in Section 3.1.
Because the KDE is a nonparametric method, we are not

limited to a set grid for our measurements. We compute the
KDE over a 1000 × 1000 grid and then integrate to smaller bin
sizes such that there are detections in each bin. This gives us
the flexibility to be able to change our binning scheme to
compare to other studies.
Throughout the paper, we refer to the average number of

planets per star over a set domain as NPPS, which is computed
as follows:

ˆ ( ) ( )ò ò w
= =F

f p r
dr dpNPPS

,
. 6

P R

3.4. Method Validation

There are two questions we seek to address on the limitations
of this methodology. Because the KDE kernel acts as a
smoothing parameter, we need to understand what scale of
structure we are able to measure. We also need to understand
how we are limited by KDE edge effects and our survey
completeness.
To address both of these, as well as to justify the choice of

kernel size, we create a toy model. We generate a synthetic
population with a known occurrence rate across our parameter
space. Each (log-uniform) grid cell is sampled by a Poisson
function, where the Poisson rate is the occurrence rate within
that cell. This gives us the number of planets per cell. Each
planet is then assigned a period and radius value from a
uniform distribution bounded by the cell edges.
To create the detected synthetic population, we must

determine if each planet is “observed.” Whether a planet is
observed or not can be thought of as a Bernoulli trial–it is either
observed (a success) or not (a failure). We set an observational
completeness across the entire parameter space. The complete-
ness value at each planet’s period and radius acts as the
probability of success for each “trial.” The planets successfully
“observed” create the detected synthetic population, ready for
our KDE pipeline. We use a reliability value of 1 for every
planet. Once the KDE is created, it is divided by the
completeness to get the measured occurrence. To validate the
method, we compare input and measured occurrence. We input
an occurrence of 1.0 planet per star within each grid cell.
Between 1–400 days and 0.5–16 R⊕, we measure an average
occurrence of 1.04± 0.06 . The occurrence outside this range,
between 0.4–0.5 R⊕ and 16–22 R⊕, is systematically lower due
to KDE edge effects (discussed in Section 3.4.2). We examine
the level of structure we can measure in Section 3.4.1 and low-
completeness boundaries and KDE edge effects in Section 3.4.2.

3.4.1. Testing Structure

To test the amount of structure we can truly measure, we
inject occurrence patterns and see what details we can recover.
We do this with four different tests with varying Gaussian
occurrence width and separation, shown in the first row of
Figure 3:
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1. “Small/far” has Gaussian occurrence width of (period
width, radius width)= (0.1, 0.1) and separated in radius
by log(radius)= 0.5 log R⊕.

2. “Small/near” has Gaussian occurrence width of (0.1, 0.1)
and separated in radius by log(radius)= 0.25 log R⊕.

3. “Large/far” has Gaussian occurrence width of (0.17,
0.17) and separated in radius by log(radius)= 0.5 log R⊕.

4. “Large/near” has Gaussian occurrence width of (0.17,
0.17) and separated in radius by log(radius)=
0.25 log R⊕.

For each test, we use a proxy completeness that decreases
linearly with increasing orbital period. We use three pairs of
Gaussian occurrence for each test to investigate the effect of
decreasing completeness and run the injected occurrence
through the entire methodology. The second row of Figure 3
shows our measured occurrence. In each of the four tests, the
low-completeness occurrence at long orbital period is noise-
dominated.

We marginalize each Gaussian occurrence pair and look at
their radius distribution, shown in the third row of Figure 3. We
are able to recover the structure (maximum of the two Gaussian
occurrence peaks and the minimum between them) for all but
one case: the low-completeness pair for the large/near case.
The measured occurrence is noise-dominated, and the

measured peak is 0.51± 0.34 R⊕ from the input location. We
are able to measure the structure on the expected scale of the
radius valley for completeness values greater than 1%.
We empirically determine the kernel size by using the small/

near injected kernels with three different kernel sizes, shown in
Figure 4. The smallest kernel size (σx, σy)= (0.05, 0.01) (first
column) recovers the injected structure well, with each pair
measuring the peak or minimum within 1σ of the true value.
However, there is a large amount of fine structure in the
marginalized occurrence because the σy is smaller than our bin
size. The middle column, with (σx, σy)= (0.05, 0.05), likewise
recovers the input structure within 1σ of the input values for all
levels of completeness. The right column, with (σx, σy)= (0.1,
0.1), oversmooths the occurrence distribution and does not
measure a valley at all.
For the smallest kernel size, the measured peaks are in

agreement with the input occurrence, but the measured
distributions are noisy. The largest kernel size oversmooths
the distribution, resulting in a lack of any structures. We use a
kernel size of (σx, σy)= (0.05, 0.05) for the occurrence
measurements in Section 4. The choice of kernel does not
affect our total occurrence measurement; the total occurrence
measured in each case is within 5% of the input occurrence. Jin
(2021) also found this to be true; they used a KDE to measure
relative planet occurrence and likewise found that kernel size

Figure 3. Testing what type of structure we can measure with a kernel size of (σx, σy) = (0.05, 0.05). From top to bottom, the three parts to test our ability to measure
structure: the input occurrence (top, blue); the measured occurrence (middle, green); and the marginalized radius distributions for each pair of Gaussian occurrence,
with the input occurrence in green and the measured occurrence in blue, with 1σ uncertainties. We test four different scenarios as described in the text. For each
scenario, we use a linear completeness function to degrade the input occurrence, with high completeness to the left (low period) and low completeness on the right
(high period). We are able to recover the input occurrence within 1σ of our measurements.
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acted only as a smoothing factor and that overall occurrence
was robust to choice of kernel size. The difference in
smoothing, however, is significant, which can limit the
structure we are able to measure.

3.4.2. Looking at Low Completeness and Edge Effects

There are also limits on where we are able to measure
occurrence with a KDE. We are limited by KDE edge effects
and our completeness function.

The KDE is computed for a specific parameter space. Within
1 kernel-width of the boundary, there is a systematic under-
reporting of occurrence because the KDE acts as if there is no
population on the other side of the boundary as opposed to it
being undefined. Our completeness function also limits where
we may measure occurrence: the Kepler completeness function
steeply degrades at small radius and long orbital period, creating
a region where we expect to detect less than one planet.

We can test both of these limits by applying a uniform
occurrence across the entire parameter space and seeing what
we can recover by assuming (1) a uniform, 100% completeness
to test edge effects, or (2) the true Kepler completeness to see
where the planet recovery per bin falls to zero.

We test this by uniformly populating our parameter space at 10
planets per star per grid cell and using a 100% completeness
function (so there is no degradation of the occurrence). We use the
largest tested kernel size of h= (0.1, 0.1) as this will have the
largest edge effect. The sample is then bootstrapped 5000 times
and averaged for our final measured occurrence. The first column
of Figure 5 shows the measured occurrence (center panel, in blue)
and the residuals (bottom panel, in black) of this test.
Edge effects. The density of the KDE will always be lower

at the edges; there is no contribution of neighboring Gaussians
outside of the specified parameter space. How large of an effect
this is depends on the width of the Gaussian kernel. The size of
the underdensity region is 1 kernel-width.
We specifically calculate our KDE from 1–500 days and

0.4–22R⊕ and only calculate occurrence on the subdomain of
1–400 days and 0.5–16R⊕ in order to mitigate these edge
effects. This completely removes any edge effects in radius. In
the period, we only integrate to 400 days in part to avoid the
edge effects; however, we are unfortunately limited in our
approach at the lower-period boundary.
We require occurrence measurements down to 1 day to

compare with previous studies (as is the goal of this paper). To

Figure 4. Comparison of different kernel sizes. Each column, from left to right: (σx, σy) = (0.05, 0.01); (0.05, 0.05); (0.1, 0.1). The top row is the true input
occurrence. The middle row is the occurrence returned from our methodology. The bottom row compares the marginalized occurrences with 1σ uncertainties for the
measured occurrence. The 1–10 days marginalization for the largest kernel size has uncertainties smaller than the line width.
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avoid edge effects at the low-period boundary, we would need
to extend our computation domain to 0.9 days for our
completeness, reliability, and planet density KDE. We do not
extend our KDE domain to below 1 day because we do not
want to include the spurious detections below one day
(discussed in Section 2.1). Including these planets would
extend our domain, therefore avoiding KDE edge effects, but
including those spurious PCs would impact our occurrence rate
measurements more than the edge effects.

KDE edge effects are a limitation of the methodology in
general. A different way to mitigate these effects would be to
use “reflected boundaries,” where it is assumed that the KDE is
constant on the other side of the boundary (Silverman 1986).
We do not believe this would be an appropriate assumption for
low-period planets due to the small number of planet detections
in this regime.

Further, the region where these edge effects are impactful is
only from 1–1.12 days for our kernel size. These edge effects
are the most extreme when there is a high KDE density right at
the boundary. For low orbital period, between 1 and 1.12 days,
the low density affects the occurrence measurement in Figure 5
by about 27%. 1–1.12 days is small relative to the bin size we
use throughout the paper. How much this affects the reported
occurrence values scales with the bin width; for the binning
scheme presented in Figure 7, this amounts to ∼4% of the
reported occurrence for the lowest-period bin, 1.0–2.11 days.

Low completeness. The low-completeness limit can also be
investigated by setting a uniform occurrence and using the real
FGK completeness function.
We measure this in the third column of Figure 5. The three

contours represent the completeness level of 100/Nstars,
10/Nstars, and 1/Nstars where Nstars is the total number of stars
in our sample. A conservative threshold of low completeness
can be set at the 100/Nstars level; there is complete recovery
above this contour. While there is not complete recovery at the
10/Nstars level, there is still some recovery, and we set this as
our low-completeness boundary. Below this contour, there is
very little recovery, and none below the 1/Nstars level. We only
report upper limits on the occurrence below the 10/Nstars level.

4. Occurrence

We have described a nonparametric technique for comput-
ing occurrence rates. The long-term goal of this methodology
is to map features in multidimensional parameter space to
theoretical models of planet formation and evolution. The
observed planet KDE and its occurrence counterpart can be
seen in Figure 6. There is a wealth of features to be seen in the
occurrence map. There appears to be a limit in period to the
small planet distribution, tracing out the lower boundary to
the Neptune desert. The radius valley can clearly be seen just
below 2 R⊕. Above the large population of sub-Neptunes,

Figure 5. Toy model for three different completeness contours with uniform input occurrence. Left column: 100% completeness. Middle column: sloped completeness
contours used in Figures 3, 4. Right column: Kepler FGK occurrence. The center row is the measured occurrence from our KDE methodology. The bottom row is the
percent error. The leftmost column shows the impacts of edge effects on the resulting KDE. In the rightmost column, we use the middle contour line as our FGK low-
completeness boundary.
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there is a decline in occurrence. Further, the shape of this
drop-off in occurrence is not constant across different orbital
periods. Not all of these structures can be well-described with
analytic functions, so a nonparametric approach is key to be
able to describe these structures. In order to tie these
structures in with theory, we must first validate our
methodology by comparing benchmark measurements against
literature values. To do this, we bin the parameter space,
integrate occurrence over specific domains, and collapse the
2D map into 1D distributions for comparisons. In Section 4.1,

we compute integrated rates; in Section 4.2, we look at the 1D
radius distribution; in Section 4.3, we look at the 1D period
distribution; in Section 4.4, we look at these as a function of
stellar type. In Section 4.5, we explore the occurrence cliff.

4.1. Integrated Rates

Figure 7 shows our occurrence rate estimates and 1σ
uncertainties for the entire period and radius range of 1–400
days and 0.5–16 R⊕. The gray bins represent either bins with

Figure 6. KDE maps of the observed FGK planet population (left) and the completeness-corrected intrinsic occurrence (right).

Figure 7. FGK occurrence rate estimates. The number of planets per 100 stars (shown) is comparable to a percentage. Gray cells are either those with no planet
detections or below the low occurrence boundary (see Section 3.1), with only the upper limit shown.
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no planet detections in our chosen binning scheme or bins that
fall below the completeness boundary established in
Section 3.4; they contain upper limits for the occurrence. We
use the log-uniform bins P= [1.0, 2.11, 4.47, 9.46, 20.0, 42.29,
89.44, 189.15, 400.0] days in period, and RP= [0.5, 0.73, 1.08,
1.59, 2.33, 3.43, 5.04, 7.41, 10.89, 16.0] R⊕ in radius to
minimize the number of empty bins in our sample.

Integrating over bins with detections above the low-
completeness boundary (colored bins in Figure 7), we measure
1.52± 0.08 planets per star. Petigura et al. (2018,
hereafter P18) report an average value of 1.10 NPPS (albeit
for a smaller parameter space; from Figure 6 of their
paper), KM20 report -

+1.06 0.07
0.09 NPPS, and H19 measure a

lower limit of -
+2.37 0.67

0.93 NPPS (for periods out to 500 days;
derived from Figure 2 of their paper) on total FGK occurrence.

While the differences between these measurements are
significant, they are not comparable quantities. The integrated
occurrence rate does not serve as a reliable benchmark because
integrating over such a large domain encompasses regions of
parameter space with zero detections and/or exceptionally low
completeness. The degree to which this impacts the integrated
occurrence depends not only on the input assumptions but also
on the details of sample selection, which varies between
studies. The benchmarks discussed in subsequent sections,
however, are based on marginalized distributions that better
facilitate comparisons.

A more reliable benchmark is the hot Jupiter domain, where
completeness is high. The Kepler hot Jupiter occurrence rate
has stayed almost constant over the past decade. Between
8–16R⊕ and over a period of 1–10 days, we measure an
occurrence rate of η= 0.46%± 0.1%. Our measurement is in
agreement with the literature values, which range from 0.4%–

0.6% (Howard et al. 2012; Fressin et al. 2013; Mulders et al.
2015c; Petigura et al. P18; KM20). However, this rate is
roughly half of the rate measured from radial velocity surveys,
which measure between 0.8% and 1.2% (Mayor et al. 2011;
Wright et al. 2012; Wittenmyer et al. 2020). The pile-up could
be a result of metal-rich stars, while the Kepler sample has
systematically lower-metallicity stars than radial velocity (RV)
samples (Wright et al. 2012; Dawson & Murray-Clay 2013).
Studies on the dependence of giant planet occurrence on host
star metallicity have found a strong correlation between the two
(P18). However, this is still debated as Guo et al. (2017) found
that metallicity alone cannot explain the difference in rates. It
could possibly be explained by differences in false-positive
rates (Wang et al. 2015; Guo et al. 2017). The Kepler results
have been shown to be within 1σ of the large uncertainty
associated with the RV data (Fernandes et al. 2019). Recently,
Beleznay & Kunimoto (2022) measured the hot Jupiter
occurrence rate for AFG stars with TESS and found a rate of
0.39%± 0.06% for F and G stars, which are within 1σ of our
result.

4.2. The Small Planet Radius Distribution

The radius distribution of small planets (<4R⊕) is rife with
structure. The large population of observed planets can be split
into the dense super-Earths and the puffier sub-Neptunes,
separated by a region of low occurrence called the radius
valley. The bimodal population was first observationally seen
with the California-Kepler Survey (CKS; Petigura et al. 2017)
in Fulton et al. (2017), following years of theoretical
predictions (e.g., Lopez & Fortney 2013; Lee & Chiang 2016;

Owen & Wu 2017; Gupta & Schlichting 2020; Rogers &
Owen 2021). The exact location and slope of the radius valley
have been the focus of many studies, as it could inform which
physical process is the primary driver of planet formation (see
Table 6 of Ho & Van Eylen 2023 for a summary of values).
We compare the radius distribution within 100 days with

selected previous studies in Figure 8. Only considering
occurrence within 100 days not only agrees with the limit to
most atmospheric mass loss processes but allows us to integrate
over a range where we are not hindered by low completeness
(see Section 3.4 for bounds). Fulton et al. (2017; blue in
Figure 8) measured this structure with the CKS sample, a
precisely characterized subsample of the Kepler data set,
including 36,075 stars and 900 planets. Fulton et al. (2017)
used an independent planet detection pipeline and associated
injection/recovery experiment to correct for completeness; we
compare it here to benchmark the evolution of radius valley
measurements. KM20 (pink in Figure 8) used their own
independent pipeline to detect and vet planets and calculated
their own reliability and completeness. They incorporate Gaia
DR2-derived stellar radii to update planet radii. Their catalog of
96,280 FGK stars and 2829 planets is similar to ours but not the
same. Overall, we find good agreement for all three distribu-
tions. We compare specific features of the distribution next.
There are three distinct structures we measure in the radius

distribution: the minimum of the radius valley, the peak of the
super-Earths (which we define as the portion of the distribution
to the left of the valley), and the peak of the sub-Neptunes
(which we define as the portion of the distribution to the right
of the valley). We measure them as follows: for each iteration
of our bootstrap simulation, we integrate the occurrence within
100 days binned to 50 log-uniform bins between 1 and 4 R⊕.
Then, we find the minimum occurrence bin between 1.4 and
2.2 R⊕ and set that radius, Rmin, as the minimum of the valley.
Finally, we rebin to the final binning scheme (RP= [1.0, 1.1,
1.21, 1.35, 1.49, 1.64, 1.81, 2.0, 2.21, 2.44, 2.69, 2.97, 3.28,
362, 4.0] R⊕); we use more bins than in the 2D occurrence

Figure 8. Radius distribution for small planet with P < 100 days. Blue is data
taken from Fulton et al. (2017), and pink is data taken from KM20. We find the
minimum of the radius valley to be -

+1.78 0.16
0.14 R⊕.
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maps both to resolve the radius valley and to compare
with KM20. We fit both planet populations with a Gaussian
distribution, from [1.0, Rmin] to the left and [Rmin, 4.0] to the
right with scipy curve_fit, giving us the location of the
peaks of the sub-Neptunes and the super-Earths. For our FGK
population, we find the peak of the sub-Neptunes to be at

-
+2.51 0.08

0.06 R⊕, the minimum of the radius valley to be at

-
+1.78 0.16

0.14 R⊕, and the super-Earth peak to be at -
+1.37 0.44

0.19 R⊕.
These measurements are within 1σ agreement to the peak and
minimum measurements reported in previous studies. Fulton
et al. (2017) finds the super-Earth peak to be 1.3 R⊕ and the
sub-Neptune peak to be 2.4 R⊕ while KM20 finds the super-
Earth peak to be 1.4 R⊕, the minimum of the valley to be
1.7 R⊕, and the sub-Neptune peak to be 2.6 R⊕. Martinez et al.
(2019) derive precise, spectroscopically derived radii of 1633
planets and obtain radius distribution measurements of
1.47± 0.05 R⊕, 1.89± 0.07 R⊕, and 2.72± 0.10R⊕, which
are in agreement with our measurements within 1σ.

It is not obvious that the super-Earth occurrence below the
radius valley turns over toward smaller radii (that there is a true
super-Earth “peak,” in other words). While Fulton et al. (2017)
reported a bimodal distribution with two distinct peaks, KM20
found a flattening of the population below the valley, and H19
found an increasing occurrence of planets below the valley
down to 0.5 R⊕. We fit the super-Earths (P= [1, 100] days, and
R= [1, 1.78] R⊕) with both a Gaussian distribution and linear
function to differentiate between these scenarios. To tell which
model is better, we compute the Akaike Information Criterion
(AIC; Akaike 1974). The (minimum, mean) AIC for the
Gaussian fit is (−33.04, −26.22) while the (minimum, mean)
AIC linear fit is (−30.48, −27.59). The difference in AIC
minimums is less than 3, which constitutes no substantial
evidence that either model is preferred, so we also compare
their Bayesian Information Criterion (BIC; Schwarz 1978). The
(minimum, mean) BIC for the Gaussian fit is (−36.85, −30.03)
while the (minimum, mean) BIC for the linear fit is (−33.09,
−30.27). D =BIC 3.76min , which means that the Gaussian
fit is slightly favored but still does not constitute substantial
evidence of a preferred model. We do not have precise enough
occurrence measurements below the valley to say if there is a
super-Earth peak or if occurrence flattens out below the valley.

While we find no substantive evidence that the population
within 100 days turns over at 1 R⊕, we can look at the
population below 1 R⊕ to see if there is a peak in occurrence
for the terrestrials, which we define here as the planets with
R= [0.7–1.0] R⊕. We limit our orbital period range to 30 days
for this analysis, in order to stay within our low-completeness
boundary. Overall, occurrence is higher at small radius, with
large error bars. We compute the same fits as before, a
Gaussian distribution and a linear fit, for the smaller orbital
period range (P= [1, 30] days, and R= [0.7, 1.75] R⊕).
D =AIC 1.85min , and D =BIC 0.66min when comparing
the Gaussian and linear fits, so we are unable to say which
model is preferred. We find less evidence of a peak in
occurrence for the terrestrials than for the super-Earths.
Substantial uncertainties on occurrence (∼23% relative errors
compared to <20% for the 100 day occurrence) are likely the
driver of the uncertainty in the fits. In comparison, H19
measure occurrence down to 0.5 days and found increasing
occurrence down to small radii. Even below 30 days, we do not
measure the substantial population of terrestrials that H19 does;

our occurrence for the bin P= [1., 32.] days, and RP= [0.75,
1.] R⊕ is F= 0.139± 0.03, where theirs is F= 0.186± 0.04.

4.3. Period Distribution

We marginalize our FGK occurrence rates into four different
radius bins to investigate the period distribution. The four
radius bins are 1–2 R⊕ (which we refer to as super-Earths in
this section), 2–4 R⊕ (which we refer to as sub-Neptunes in this
section), 4–8 R⊕, and 8–16 R⊕. We use these specific radius
bins to directly compare with previous studies, instead of using
the radius valley minimum measured in Section 4.2 as the
dividing radius between super-Earths and sub-Neptunes.
The period distribution can be seen in Figure 9.4 Overall, the

small planets, 1–2 R⊕ and 2–4 R⊕, show a sharp increase in
occurrence until a break period, where occurrence flattens out.
The large planets do not show evidence of a period break and
slowly rise in occurrence with increasing orbital periods.
We fit the small plant distributions with a broken power law

as in Howard et al. (2012):

( ) ( )( )= -b - gdf

d P
CP

log
1 exp . 7P P0

We fit this distribution with the scipy curve_fit
package, via the same method as the radius distribution fit.
The broken power law simplifies into a piecewise function of
the following form:
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µ
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The steep rise in occurrence, with slope α, traces out the edge
of the Neptune desert at short orbital period. The sharp rise in
occurrence implies there is a limit to how close planets can reside
to their host star. The processes that result in this limit could be the
disk inner edge inhibiting planet formation, the disk edge trapping

Figure 9. The period distribution of small planets, with fits to Equation 7 for
the small planets. The terrestrial planets, 1–2R⊕, are plotted in orange, and the
sub-Neptune planets, 2–4R⊕ are plotted in pink. Both small planet populations
show a rise in occurrence until a break period, where occurrence flattens out.
The larger planets, in bins 4–8R⊕ (purple) and 8–16R⊕ (navy), show no break
point and rise in occurrence across all orbital periods.

4 Figure 9 shows the integrated occurrence within each histogram bin, F, or
NPPS, to be consistent with all other plots in the paper. Equation (7) is given

for the occurrence rate, or df

d Plog
. To convert between the two, we multiply by

the bin size, or =Plog 0.25. Comparisons can be made to Figure 7 of P18,
which shows the period distribution as a rate, while Figure 6 of Howard et al.
(2012) and Figure 12 of KM20 show the integrated rates, as we do here.
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migrating planets, or tidal interactions removing planets. Past a
break point P0, the occurrence flattens out. The specific period P0
where this transition occurs could also relate to limits of where
planetary migration or formation is. Differences between the 1–2
R⊕ and 2–4 R⊕ break locations can indicate how those formation
processes depend on planetary size.

All of the fit parameters and 68.3% confidence intervals for
super-Earths (1–2 R⊕) and sub-Neptunes (2–4 R⊕) can be found
in Table 1. For planets 1–2 R⊕, occurrence rises with a slope of
a = -

+2.76 0.20
0.29, to a transition period of = -

+P 4.100 0.66
0.58 days.

The slope is much steeper, and the transition period is much
smaller than those measured in KM20 (a = =-

+
-
+P1.9 , 5.90.1

0.1
0 0.5

0.5)
or P18 (a = =-

+
-
+P2.4 , 6.50.3

0.4
0 1.2

1.6). The difference might be
explained by P18 measuring only 1–1.7 R⊕ for their fits. We
notably measure a much higher occurrence of super-Earths
than KM20 (as in the radius distribution in Figure 8), which
appears here as a steeper slope and earlier period break.

For the sub-Neptunes, 2–4 R⊕, we measurea = -
+2.11 0.17

0.18, and
= -

+P 11.120 0.93
1.14. These are consistent with a = -

+2.2 0.1
0.1, and

= -
+P 13.30 1.5

1.4 from KM20; and a = -
+2.3 0.2

0.2, and
= -

+P 11.10 1.5
1.7 from P18.

We measure an increase in occurrence out to long orbital
period for both super-Earths and sub-Neptunes, with
b = -

+0.26 0.08
0.09 for 1–2 R⊕ planets. A positive slope is in

conflict with the previous studies that measure a decrease in the
occurrence of small planets: KM20 measures the slope to be
decreasing with b = - -

+0.5 0.1
0.1 for 1–2 R⊕, and P18 measures

b = - -
+0.3 0.2

0.2 for 1− 1.7 R⊕. Even Dong & Zhu (2013),
which measures a relatively flat slope at β=− 0.10± 0.12 for
1–2 R⊕, is outside of our uncertainties.

For 2–4 R⊕ planets, we also measure a slope higher than
those from previous studies, with b = -

+0.17 0.05
0.04. Both KM20

and P18 measure a nearly flat slope of b = - -
+0.1 0.1

0.1. Dong &
Zhu (2013) does measure a rise in slope for this radius range,
but it is still outside of our uncertainties at β= 0.11± 0.05.

We attribute this rise in slope to the higher occurrence of
planets we find in the last period bin, 189.15–400 days. For
both radius ranges, this period bin is the main driver of the
positive β slope. P18 does not measure past 300 days and so
does not see this increase. KM20 systematically measures
lower planet occurrence than our measurements below 2 R⊕.
H19 does not fit any distributions to their occurrence rate
estimates, but they do measure an increased occurrence for
their last period bin, 256–500 days. If we exclude the bin, we
measure slopes of b = - -

+0.086 0.01
0.01 for the 1–2 R⊕ bin, and

b = -
+0.089 0.01

0.02 for the 2–3 R⊕ bin. Without the last bin, super-
Earth slope is negative and in line with those from Dong & Zhu
(2013), P18. The sub-Neptune slope is still positive, but
without the last bin is comparable to that from Dong & Zhu
(2013). Further, if we were to take into account the effects of

transit multiplicity into account, we would see an even more
increased positive slope relative to the other measurements.
The larger planet populations, in the 4–8R⊕ and 8− 16R⊕ bins,

do not show a break in occurrence but are instead a steady rise
across all orbital periods. We do not see evidence for a 3 day pile-
up in the hot Jupiters, as found in radial velocity surveys (Mayor
et al. 2011; Wright et al. 2012; Weiss & Marcy 2014; Wittenmyer
et al. 2020). Studies from Kepler have likewise not seen this
overabundance (Howard et al. 2012; Fressin et al. 2013; KM20).

4.4. Stellar Type Dependence

We separate the parent FGK population into F, G, and K
stars based on the effective temperature boundaries from Pecaut
& Mamajek (2013). Figure 10 shows the occurrence for F stars
(6000 K �Teff< 7300 K), Figure 11 for G stars (5300 K
�Teff< 6000 K), and Figure 12 for K stars (3900 K
�Teff< 5300 K).
The occurrence between 1–400 days and 0.5–16 R⊕ is

1.05± 0.09 planets per F star; 1.26± 0.09 planets per G star; and
1.61± 0.13 planets per K star. As in Section 4.1, these numbers are
the lower limits to occurrence and are the sum of filled cells in their
respective figures; if combined and weighted appropriately, they do
not add up to the given FGK occurrence. The total occurrence
calculated above the strictest occurrence boundary but including the
upper limits for otherwise empty cells (e.g., the Neptune desert) is
1.01± 0.09 planets per F star, 0.97± 0.06 planets per G star, and
1.47± 0.12 planets per K star.5 We measure a significant increase
in planet occurrence toward cooler stars.
The relationship between increased planet occurrence at

lower stellar effective temperature has been well documented in
occurrence rate studies (Howard et al. 2012; Mulders et al.
2015b; KM20; Yang et al. 2020). In each study, an increased
occurrence for later-type stars is measured. The physical cause
of the increased occurrence is not well understood. Mulders
et al. (2015b) found that the increasing occurrence rates for
later stellar types (M dwarf compared to FGK) cannot be
simply explained by redistributing the same amount of heavy
element mass of larger (sub-Neptune-sized) planets in systems
around earlier-type systems into many smaller planets.
KM20 is the closest comparable study to ours. They report a

much stronger trend of increasing occurrence with cooler stars:
they report -

+0.89 0.16
0.23 planets per F star; -

+1.67 0.16
0.21 planets per G

star; and -
+2.56 0.24

0.29 planets per K star. These differences in
integrated occurrence are subject to the same issues that
prevent a quantitative comparison as discussed in Section 4.1.

4.4.1. Radius Valley as a Function of Stellar Type

We measure the features of the radius distribution via the
same method as we did for the FGK sample for each stellar
type. This analysis supposes there is an underlying two-peak
structure to the occurrence. Because F, G, and K total
occurrence differs, this structure is not as obvious by-eye as
it is for the FGK occurrence. The choice of two peaks may also
be suspect, as discussed at the end of Section 4.2.
As seen in Figure 13, there is a substantial shift in the

minimum of the valley between stellar types: the minimum of
the valley shifts to smaller radii with lower stellar effective

Table 1
Period Distribution Fit

RP (R⊕) C β γ P0

(days)

1-2 -
+0.13 0.03

0.05
-
+0.26 0.08

0.09
-
+2.5 0.12

0.20
-
+4.10 0.66

0.58

2-4 -
+0.21 0.04

0.5
-
+0.17 0.05

0.04
-
+1.94 0.12

0.14
-
+11.12 0.93

1.14

Note. Median and 68.3% confidence intervals for the fits to the parametric
period distribution from Equation (7).

5 Following, the total FGK occurrence calculated above the strictest
completeness boundary (the K star boundary) but including the upper limits
for otherwise empty cells is 1.09 ± 0.04. These measurements are then within
firm agreement with the previously cited studies.
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temperature. We measure the minimum of the valley to be
= -

+R 1.92min 0.18
0.26 R⊕ for F stars, = -

+R 1.80min 0.05
0.16 R⊕ for G

stars, and = -
+R 1.62min 0.04

0.02 R⊕ for K stars. As with the FGK

sample, we measure the location of the super-Earth and sub-
Neptune peaks individually for each stellar type. The sub-
Neptune peak follows the minimum of the radius valley and

Figure 10. Same as Figure 7, calculated only for F-type stars.

Figure 11. Same as Figure 7, calculated only for G-type stars.
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moves toward smaller radii for cooler stellar types. Individual
measurements are reported in Table 2.

We can also compare the stellar type dependence of the
radius valley to those from previous studies if we take stellar
effective temperature as a proxy for stellar mass. For main-
sequence stars, mass and effective temperature correlate. We

can derive the relationship via the Stefan–Boltzmann law and
the classical mass–luminosity relationship p s=L R T4 2

eff
4 , and

 
=

aL

L

M

M
C, where classically αC= 3.5. Eker et al. (2018) uses

a variable mass–luminosity relationship for different mass
ranges, with αC ranging from 2.028–5.743. For all proposed
values of αC, the relationship has a positive correlation and
classically is µM T

8
7 .

The stellar mass dependence of the radius valley has been
investigated in Wu (2019), Berger et al. (2020b), Petigura et al.
(2022), and Ho & Van Eylen (2023) by quantifying the slope,
α, of the valley in the stellar mass versus planet radius plane,
with values ranging from α= 0.23–0.35. Wu (2019) investi-
gated the mass dependence of small planets (both super-Earths
and sub-Neptunes together) on host star mass. The analysis of
1841 confirmed Kepler planets (using Gaia-derived stellar mass
and planet radii) finds a positive correlation for both super-
Earth and sub-Neptune populationʼs radius with stellar mass, at
a slope of α= 0.23–0.35, indicating that there is a linear
relationship between planetary core mass and host star mass.
Berger et al. (2020a) find agreement and measure the slope of
the radius valley in radius–stellar mass space to be

Figure 12. Same as Figure 7, calculated only for K-type stars.

Figure 13. Population of small planets within 100 days (same as in
Figure 8, now with valley minimums marked with vertical lines), now
separated by stellar type. The minimum of the radius valley moves to
smaller radius for cooler stars: = -

+R 1.92min 0.18
0.26 R⊕ for F stars (red;

dotted), = -
+R 1.80min 0.05

0.16 R⊕ for G stars (teal; dotted–dashed), and
= -

+R 1.62min 0.04
0.02 R⊕ for K stars (yellow; dashed), compared to

= -
+R 1.78min 0.16

0.14 R⊕ for all FGK stars.

Table 2
Radius Valley Fits

Super-Earth Peak Minimum Sub-Neptune Peak Ratio

FGK -
+1.37 0.44

0.19
-
+1.78 0.16

0.14
-
+2.51 0.08

0.06
-
+2.24 0.64

0.78

F -
+1.28 0.76

0.32
-
+1.92 0.18

0.26
-
+2.58 0.59

0.19
-
+1.37 0.52

0.83

G -
+1.41 0.59

0.24
-
+1.80 0.05

0.16
-
+2.61 0.08

0.07
-
+2.50 0.71

0.64

K -
+1.39 0.12

0.25
-
+1.62 0.04

0.02
-
+2.34 0.09

0.08
-
+3.41 0.68

0.77

Note. Measured locations of radius distribution features for different stellar
types. Each location given in R⊕.
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a = -
+0.26 0.16

0.21. Petigura et al. (2022) looked at the radius
valley as a function of stellar mass in the CKS survey. They do
not find a constant slope for the radius valley in radius–stellar
mass space, instead finding that the super-Earth population
stays constant over stellar mass and that the sub-Neptune
population grows to larger radii with stellar mass. The positive
correlation between planet size and stellar mass for the sub-
Neptunes implies that larger stars produce larger planet cores,
agreeing with Wu (2019). Ho & Van Eylen (2023) use
Kepler short cadence observations to find a slope of
a = -

+0.231 0.06
0.053. It should be noted that these analyses are in

the observed density of planets, and not in the occurrence of
planets. Observed versus intrinsic populations could explain
why we see a shift in the lower edge of the radius valley where
they see that the super-Earth population is constant.

We do not directly measure the slope of the valley as a
function of stellar mass–planet radius, but can make an
approximation by looking at the average stellar mass within
each stellar type bin as a function of the measured minimum of
the radius valley integrated from 1–30 days, plotted in
Figure 14. Our measurements are in good agreement with the
previous studies. We further compare this relationship with
theoretical models in Section 5.1.

4.5. The Occurrence Cliff

We pay special attention to the occurrence cliff–the sharp
decline in occurrence between 3 and 4 R⊕. The feature is one of
the most readily apparent features in the planet distribution.
However, it is the focal point of very few theoretical studies.
Evolutionary models focusing on the radius valley often yield
an occurrence cliff qualitatively similar to that observed by
Kepler, yet the physical processes and tuning parameters
required to yield a steep cliff are not described in detail.

Before correcting for completeness, the cliff appears to run
along a constant radius contour. However, the slope of the
occurrence cliff is not the same at every orbital period: the cliff
extends to larger radii for longer orbital periods; i.e., the slope
of the occurrence cliff becomes flatter with increasing orbital
period. This phenomenon has been noticed as early as Dong &
Zhu (2013), who noticed the “fast rise of the Neptunes” in early
Kepler data.

We inspect this effect in Figure 15 by looking at the radius
distribution. Instead of looking only at occurrence below 100
days, we break the radius distribution into three period bins:
low (10–100 days), mid (100–300 days), and high (300–500
days).6 We measure the slope of the cliff between 2.5 and 6 R⊕
for each bin and find that the occurrence cliff becomes gentler
(with a slope closer to zero) for the longer period bins.

We measure the slope of each period bin with the following
equation7:

( )= = +ÅF m R bNPPS log 9C

where mc is the slope of occurrence cliff, and b is an
intercept point. Similar to the distributions fit to the radius
gap, we fit each iteration of our bootstrap simulation to
measure the slope of each period bin. For our FGK sample,

we measure mean slopes of = - -
+m 0.41C 0.01

0.01, for
P= 10–100 days; = - -

+m 0.21C 0.02
0.02, for P= 100–300 days;

and = - -
+m 0.12C 0.21

0.03, for P= 300–500 days. The right
panel of Figure 15 shows the measured slopes for each
period bin. The slope of the cliff gets progressively flatter for
longer orbital periods. There are no similar measurements in
the literature, so we do not compare here.

4.5.1. Occurrence Cliff as a Function of Stellar Type

Similar to the radius valley, we can also look at how the
occurrence cliff changes over stellar type. As in Section 4.5, we
break the radius distribution into three period bins: low
(10–100 days), mid (100–300 days), and high (300–500 days).
We measure the slope of each period bin for each stellar type
with the same process and linear function as for the FGK
sample. Table 3 reports the measured mean slopes and 68.3%
confidence intervals, as well as the number of planets within
each bin. Figure 16 shows the measured cliff slopes for each
stellar type. Each stellar type follows the same trend of the
shortest period bin having the steepest slope, with the slope
becoming flatter with each progressive period bin. The slopes
become more similar with a longer orbital period for each
stellar type. However, the rate of change of the slope appears to
be more gradual for F stars compared to G and K stars. We
exclude the cliff slope measurements for K occurrence for the
longest period bin because there are only 2 planets that reside
within it.

5. Discussion

Our KDE methodology gives us the ability to measure
structure in multiple dimensions that we cannot measure with
parametric forms. It is flexible for comparisons with previous
studies and incorporates the best-of-our knowledge input
parameters in a uniform manner. There are limitations to this
methodology, though. We cannot extrapolate occurrence rates

Figure 14. Stellar mass-dependence of the radius valley. We do not compute
occurrence as a function of stellar mass but plot box plots of the mass
distribution for each stellar type. The center line of the box plot represents the
median stellar mass, with first and second quartiles being marked by the edges
of the box. The whiskers extend to the minimum and maximum stellar mass
values. The height of the box is the uncertainty in the measured minimum of
the radius valley integrated from 1–30 days. Observed fits to the slope of the
radius valley in the planet radius–stellar mass plane are plotted; our
measurements are in agreement.

6 The longest period bin goes out to 500 days (instead of 400 as all other
occurrence measurements) to cover the largest area possible to compare with
the other period bins. The impacts of the completeness degradation discussed in
Section 3.1 affect smaller radii more strongly than this regime.
7 Note that we are finding the slope of the integrated occurrence here, not the
occurrence rate as in Equation (7).
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to areas of parameter space with low or no planet detections,
such as the habitable zone.

It is rarely possible to reproduce independent experiments
exactly, but we have tested a variety of benchmark measure-
ments across a broad range of parameter space and find
excellent agreement with previous studies. Our measurements
for total occurrence, hot Jupiter occurrence, and the radius
distribution are all within 1σ of previous studies.

We find the most tension with regards to small radius and/or
long period planets, such as the turn over of the super-Earth
population or the slope of their period distribution. This is to be
expected: there are few planet detections in these regions, and
both completeness and reliability are at their lowest. These
planets require very careful treatment to resolve disagreement.

5.1. What Causes the Shift in the Radius Valley?

When looking at the small planet radius distribution
separated by stellar type, there is a distinct shift in the
minimum of the radius valley to smaller radii for cooler stars.
This shift could be caused by formation or evolutionary
processes.

The first possible explanation is that hotter stars can strip the
volatile envelopes of larger cores. According to atmospheric
mass loss models, the bottom edge of the valley corresponds to

bare rocky cores, and the top edge corresponds to cores with
∼4% H–He atmospheres (Owen & Wu 2017). If the X-ray and
ultraviolet (XUV) flux from the star is strong enough, larger
cores are completely stripped, pushing the lower edge of the
valley to higher radii. There is a slight dependence of integrated
lifetime XUV with stellar mass (McDonald et al. 2019), so
hotter stars could indeed photoevaporate planets more easily
than cooler stars.
Core-powered mass loss also causes planets to lose their

primordial envelopes, primarily through luminosity from the
cooling rocky cores Ginzburg et al. (2018). A mechanism
solely caused by the planet, independent of the stellar host
environment, could not explain the shift in the radius valley
that we see. However, core-powered mass loss has
a dependence on the bolometric flux from the host star

Figure 15. Left: radius distribution for planets between 2.5 and 6 R⊕ separated into three different period bins, low (10–100 days, orange); mid (100–300 days, pink);
high (300–500 days, purple). The occurrence of short-period planets is steeper than the occurrence of planets at long orbital period. Right: distribution of occurrence
cliff slopes for three different period bins, measured for 1000 Monte Carlo runs. The shortest period bin, 10–100 days (orange), has the steepest slope of

= = - +m 0.406C 0.012
0.012; the middle period bin, 100–300 days (pink), has a slope of = - -

+m 0.210C 0.017
0.018; and the longest period bin, 300–500 days (purple), has the

flattest slope at = - -
+m 0.121 2C 0.21

0.026 .

Table 3
Occurrence Cliff Slope Fits

10–100 days 100–300 days 300–500 days

FGK - -
+0.406 0.01

0.01 (447) - -
+0.210 0.02

0.02 (75) - -
+0.121 0.02

0.03 (16)
F - -

+0.304 0.02
0.02 (122) - -

+0.238 0.04
0.04 (24) - -

+0.194 0.04
0.05 (5)

G - -
+0.411 0.02

0.02 (218) - -
+0.177 0.02

0.02 (32) - -
+0.093 0.03

0.04 (9)
K - -

+0.559 0.03
0.03 (107) - -

+0.268 0.04
0.05 (19) na (2)

Note. Measured cliff slopes for each period bin and stellar type. The
parenthetical numbers beside each slope measurement are the number of
planets inside that bin.

Figure 16. Slope of the occurrence cliff for each stellar type. For each stellar
type, the slope of the occurrence cliff becomes flatter for longer orbital period.
The K- (red) and G-star (teal) occurrence have similar changes in cliff slope;
the F-star (yellow) occurrence is more similar from low to high orbital period.
We exclude the last bin for K stars because it contains only 2 planet detections.
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(via equilibrium temperature, which sets cooling and mass-loss
rates), and thus cannot be ruled out.

In order to disentangle these mechanisms, we need to look at
the distribution of planets as a function of planet radius,
insolation flux, and stellar mass simultaneously. Some recent
work (e.g., Rogers & Owen 2021; Berger et al. 2023) has
begun to study this, but we will defer studying it in occurrence
space to a future paper.

There could also be a formation cause for the shift in the
valley. Lee et al. (2022) theorized that with more realistic disk
physics, the radius valley can be created without any
atmospheric mass loss processes by gas accretion alone. There
is a maximal isothermal envelope mass each planet is able to
accrete according to how massive the planet core is and its disk
location. Small cores, 2–3M⊕, are unable to accrete any
atmosphere and remain bare, while massive cores >10 M⊕
undergo runaway accretion before being halted by disk
dispersal. The isothermal-to-cooling transition carves out a
gap at ∼1.2 R⊕ in the radius distribution, replicating the
observed radius valley.

This phenomenon should replicate the trend we see with a
shifted radius valley with both stellar temperature and mass.
We take the average stellar mass within each stellar type for our
sample and plot it against our measured minimum of the radius
valley from 1–30 days, seen in Figure 17. We can compare this
to the power laws that Lee et al. (2022) established for bottom-
heavy (blue) and top-heavy (orange) core-mass distributions, as
seen in Figure 12 from Lee et al. (2022). This theoretical fit for
the gap agrees with those found in Petigura et al. (2022),
Berger et al. (2020a). As with the comparison with the
observational fits in Figure 14, our measurements show good
agreement with the models. However, a steeper slope like the
core-powered mass-loss model (Gupta & Schlichting 2020,
green) is preferred.

5.2. Change in the Slope of the Occurrence Cliff

The same thing that shifts the location of the radius valley
can shape the occurrence cliff, as it is often an outcome of
models that replicate the radius valley. The change in cliff slope
across this wide span in period could be tied to different
physical processes. If we assume the main drivers of the radius
valley–photoevaporation and core-powered mass loss–primar-
ily work within 100 days, the difference in slopes for the low-
and mid-period bins (10–100 days versus 100–300 days) can
be attributed to the drop-off in efficacy in those physical
processes. As a planet becomes less irradiated and cooler at
longer orbital period, it can potentially retain more of its
envelope and sit at a larger radius. As a population, a wider
range of radii causes the cliff slope to be gentler.
If the drivers of the radius valley mainly act within 100 days,

they cannot explain the continued trend in gentler cliff slopes
we see beyond 300 days. Instead, this more closely matches the
prediction from Kite et al. (2019), where they theorized that the
cause of the occurrence cliff is the “fugacity crisis,” where the
radii of sub-Neptune-sized planets are limited by the
sequestration of hydrogen in the planetʼs magma ocean. This
mechanism is less efficient, on average, for cooler planet
temperatures. The implication is that the planets at longer
orbital periods tend to maintain larger radii, thereby reducing
the slope of the occurrence cliff.
The changing slope of the cliff could also trace a changing

core-mass distribution for small planets. As the orbital period
(and therefore semimajor axis) increases, the availability of
materials in the disk increases, which could lead to increased
planet core sizes.

6. Summary and Conclusion

In this paper, we do the following:

1. We present a KDE methodology for measuring Kepler
occurrence rates. We incorporate various measurement
uncertainties, Gaia DR2 stellar radii, and reliability
measurements into the calculations.

2. We validate the method with a toy model and quantify the
level of structure we can measure, KDE edge effects, and
a low-completeness boundary where we are unable to
measure occurrence below.

3. We measure the period and radius distribution of the
Kepler FGK sample and compare to previous studies. We
find a total FGK occurrence of 1.52± 0.08 NPPS
between 1–400 days and 0.5–16 R⊕.

4. We fit the period distribution to a parametric distribution
from Howard et al. (2012) and find that our fit agrees with
previous measurements.

5. We measure the shape of the small planet radius
distribution. We find the minimum of the radius valley
to be -

+1.78 0.16
0.14 R⊕.

6. We fit the period distribution to a parametric distribution
from Howard et al. (2012) and find that our fit agrees with
previous measurements.

7. We measure the occurrence dependent on stellar type and
confirm that the occurrence increases toward cooler stars.
We find the total occurrences (P= 1–400 days;
R= 0.5–16 R⊕) of 1.05± 0.09 NPPS for F stars,
1.26± 0.09 NPPS for G stars, and 1.61± 0.13 NPPS
for K stars.

Figure 17. Dependence of the radius valley as a function of stellar mass. We do
not measure occurrence as a function of stellar mass; here, we investigate this
dependence by plotting a box plot to represent the distribution of stellar masses
for each stellar type. The center line for each box plot represents the median
stellar mass value. The left and right edges of the box show one quartile above
and below the median, while the whiskers show the minimum and maximum
mass values. The width of the box is the uncertainty in the radius valley
minimum measurement integrated from 1–30 days. We show power-law fits to
the radius valley from Lee et al. (2022): the bottom-heavy core mass model
( *µ R Mgap

0.22 0.05) in blue and the top-heavy core mass model
( *µ R Mgap

0.15 0.03) in orange, as well as the power law derived from core-
powered mass-loss models ( *µR Mgap

0.33 Gupta & Schlichting 2020). Our
results are most consistent with the steeper slope of the core-powered mass-loss
model.
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8. We find that the minimum of the radius valley moves to
smaller radii for cooler stars, from -

+1.92 0.18
0.26 R⊕ for F

stars, to -
+1.80 0.05

0.16 R⊕ for G stars, to -
+1.62 0.04

0.02 R⊕ for K
stars.

9. We measure the slope of the occurrence cliff and find it to
be less steep at longer orbital period. There is also a
dependence on stellar type; the total change between
short and long orbital period bins for cliff slope becomes
larger for cooler stars.

Our methodology enables us to map the occurrence structure
to physical models of planet formation and evolution theory
because we can measure any type of underlying structure in
planet occurrence. Throughout Section 4, we pointed to
measurements that could be directly tied to theories. The next
step is to use this framework to compare these measurements
with populations derived from models of planet formation and
evolution.

The features we look at in this paper, namely the radius
valley and occurrence cliff, will be more informative in
insolation rather than orbital period, to mitigate the effects of
varying stellar biases. We reserve this work for a future paper.

Utilizing multidimensional occurrence measurements will
allow us to constrain input parameters for planet formation and
evolution. In the future, we will use population synthesis
models in a Bayesian framework to evolve planets through
physical models and measure their occurrence to see if they
match our actual measurements. This will enable us not only to
constrain free parameters in the theoretical models but also to
compare theoretical models to each other.
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Appendix A
Vetting Completeness

Following Bryson et al. (2020a), we grid period-expected
MES space and treat the fraction of recovered PCs in each cell
as a binomial rate. We fit the rate ρ with a product of a
nonrotated simplified logisitic function in period p times a
rotated logistic in p and expected MES m. This gives us 6
parameters to fit with our Bayseian inference: θ= [x0, y0, kx, ky,

f, A]; where

( )

( )

( ) · ( ) ·
( ) ( )

f f
r

=
-
-

=
-
-

= - - -
= - ´ +

x
p p

p p

y
m m

m m
y y x

A Y x x k Y y y k

;

;

0.5 cos 0.5 sin ;

, , , 1 0.5, , , 1 .x y

min

max min

min

max min

rot

0 rot 0

Our MCMC computation used 100 walkers and ran for
10,000 steps. We ensured convergence by checking that the
number of steps were greater than 50× the estimate of the
integrated autocorrelation time. The maximum parameter
was τ= 92.
For our FGK stellar sample, the MCMC median posteriors

and 84th and 16th percentiles are as follows:
= -

+x 1.0400 0.031
0.035, = -

+y 0.1530 0.007
0.006,

= -
+k 5.055x 0.489

0.501, = -
+k 18.877y 1.283

1.320,
f = -

+4.019 0.875
0.911, and = -

+A 0.964 .0.005
0.005

Our separate F, G, and K inferences are all within 1σ
uncertainties for the FGK fits, so we do not report them here.

Appendix B
Reliability

B.1. False Alarm Effectiveness

We follow the same process as vetting completeness,
following Bryson et al. (2020a), to characterize the false alarm
effectiveness, instead fitting the binomial rate ρ with a simple
rotated logistic function for ϴ= [x0, kx, f, A]:

( )

( )

( ) · ( ) ·
( )

f f
r

=
-
-

=
-
-

= - - -
= +

x
p p

p p

y
m m

m m
x x y

A Y x x k

;

;

0.5 cos 0.5 sin ;
0.5, , , 1 .y

min

max min

min

max min

rot

rot 0

Our MCMC computation used 100 walkers and ran for
10,000 steps. We ensured convergence by checking that the
number of steps were greater than 50× the estimate of the
integrated autocorrelation time. The maximum parameter was
τ= 197. For our FGK stellar sample, the MCMC median
posteriors and 84th and 16th percentiles are as follows:

= -
+x 1.0790 0.025

0.034, = -
+ -k 51.6292x 15.666

4.585 ,
= -

+A 0.996 0.001
0.001, and f = -

+91.151 .0.529
0.694

Our separate F, G, and K inferences are all within 1σ
uncertainties for the FGK fits, so we do not report them here.

B.2. Observed False-positive Rate

We follow the same process as the false alarm effectiveness,
following Bryson et al. (2020a), to characterize the observed
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false-positive rate, instead fitting the binomial rate ρ with a
simple rotated logistic function for ϴ= [x0, kx, f, A]:

( )

( )

( ) · ( ) ·
( )

f f
r

=
-
-

=
-
-

= - - -
= +

x
p p

p p

y
m m

m m
x x y

A Y x x k

;

;

0.5 cos 0.5 sin ;
0.5, , , 1 .y

min

max min

min

max min

rot

rot 0

Our MCMC computation used 100 walkers and ran for
10,000 steps. We ensured convergence by checking that the
number of steps were greater than 50× the estimate of the
integrated autocorrelation time. The maximum parameter
was τ= 154.

For our FGK stellar sample, the MCMC median posteriors
and 84th and 16th percentiles are as follows:

= -
+x 0.6390 0.019

0.019, = -
+k 9.320x 0.377

0.411,
= -

+A 0.991 0.005
0.004, and f = - -

+157.457 .2.012
2.039

Our separate F, G, and K inferences are all within 1σ
uncertainties for the FGK fits, so we do not report them here.
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