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Abstract

A possible polar-ring debris disk, the dynamics of which can be described by the outer hierarchical restricted three-
body problem, has been detected in 99 Herculis. An empirical formula for the minimum radius beyond which test
particles in polar orbits can keep stable within 107 binary periods is provided through numerical fitting, applying to
the binary eccentricity [ )e 0, 0.81 Î and the mass ratio of the binary [ ]0.1, 1l Î , where λ=m0/m1 (m0 and m1

represent the masses of the two binary stars). The polar planetary disk has the lowest statistical accretion efficiency
and a moderate impact frequency of collisions among planetesimals (with radii of 1–10 km) compared to those in a
circumbinary coplanar disk and a standard disk around the single host star. The collision timescale in the
circumbinary disk (both polar and coplanar configurations) is longer than 107 yr, exceeding the dissipation
timescale of the gas disk. Stochastic simulations show that successive collisions cannot make planetesimals grow,
which may explain the formation of the debris disk observed in 99 Herculis.

Unified Astronomy Thesaurus concepts: Exoplanet formation (492); Exoplanet dynamics (490); Debris disks
(363); Protoplanetary disks (1300); Planetesimals (1259); Three-body problem (1695)

1. Introduction

Up until 2023 January, approximately 737 planets have been
discovered in binary systems.4 These planets in binary systems
can be classified into three types according to their orbital
configuration: S-type (satellite-type), P-type (planet-type), and
L-type (libration-type; Dvorak 1986). Planets in S-type orbits,
which are also called circumprimary planets, encircle one of the
stellar binary components with the second star considered to be
a perturber. Planets in P-type orbits, also known as
circumbinary planets, encircle both members of the binary. L-
type planets librate around the Lagrangian equilibrium points
L4 or L5, which can stably exist if the total binary mass satisfies
μ< 0.04, where μ=m0/(m0+m1). The currently observed
exoplanets in circumbinary systems include approximately 75
P-type planets, and the others are S-type planets.5

Planetary formation in binary systems is different from that
in single-star systems because of the disturbance from the
movements of the binary stars. The planetary disk will be
truncated during several binary periods (Artymowicz & Lubow
1994), and forced into eccentric and processional motions
(Larwood et al. 1996; Paardekooper et al. 2008; Fragner &
Nelson 2010). The planets can also be forced into noncircular
orbits by disk eccentricity. The inward migration of planets will
be stalled upon entrance to the tidally truncated inner cavity in
hydrodynamical simulations of the formation of P-type planets
in the Kepler 16, 34, and 35 systems (Pelupessy & Zwart 2013;

Pierens & Nelson 2013). 2D locally isothermal hydrodynami-
cal simulations of circumbinary disks with embedded planets
were performed by Penzlin et al. (2021). The results strongly
support the assumption that planets migrate to their present
locations due to planet–disk interaction. During the migration,
circumbinary planets could be captured into mean motion
resonances, which may be associated with their final locations
(Gianuzzi et al. 2023).
Some P-type planets were detected close to the edges of

stable regions, where disturbances are remarkably powerful to
form planets, even considering the most favorable case of
100% efficient dust accretion (Moriwaki & Nakagawa 2004;
Meschiari 2012; Paardekooper et al. 2012; Martin & Triaud
2014). Moreover, the self-gravity of the circumbinary disk can
excite eccentricities and prevent a full alignment of the
planetesimal pericenters, thus resulting in sufficiently large
impact velocities among planetesimals that damage the
impacting planetesimals in the current locations of circumbin-
ary planets (Marzari et al. 2013). The accretion of planetesimals
is possible for a2/a1> 20 in Kepler 16 (Marzari et al. 2012;
Meschiari 2012; Paardekooper et al. 2012), where a1 and a2 are
the semimajor axes of the binary and planetesimals,
respectively. The gravity of an axisymmetric disk strongly
suppresses the eccentricities of planetesimals beyond a2/
a1≈ 10–20, facilitating the easy growth of 1–102 km objects
(Rafikov 2013a). The critical radial distance beyond which
planetesimal accretion is possible increases with rising binary
eccentricity and decreasing mass ratio, based on an examina-
tion of the relative velocities among accreting planetesimals
(Scholl et al. 2007).
In addition to the difficulties of circumbinary planet

formation at observed locations, the stable region around the
binary where planets can survive for long times must be
identified as a fundamental question of celestial mechanics.
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Holman & Wiegert (1999) simulated the empirical criteria for
the largest and the smallest stable orbits of test particles in the
orbital planes of S-type and P-type binaries within 104T1 (T1 is
the binary period) in the range 0.0� e1� 0.7–0.8 and
0.1� μ� 0.5. Many factors could influence the stability of
planets during and after the postoligarchic evolution. Hong &
van Putten (2019) extended the analysis of the chaotic region of
coplanar P-type orbits by Dvorak (1986) to the unrestricted
three-body problem and counterrotating orbits. Mean motion
resonances between P-type planets can interact with the binary
via resonant and secular effects, creating additional instabilities
and driving chaos in multiplanet resonant systems (Sutherland
& Kratter 2019). Thun & Kley (2018) found that massive
planets can significantly alter the disk structure and remain on
nearly circular orbits based on the planet–disk mass ratio, while
low-mass planets are strongly influenced by the disk, with
eccentricities excited to high values. If additional planets
formed in the circumbinary disk, planet–planet scattering,
which takes place near the location of the currently discovered
circumbinary planets, left a single planet with low eccentricity
with 90% possibility (Gong 2016).

Most of circumbinary planets are detected by transiting and
eclipse time variations. Detected circumbinary planets are
usually in the coplanar plane with binary orbits due to the
restrictions of the two observational methods. Interestingly,
several misaligned circumbinary planetary disks have been
detected. The precessional circumbinary-ring model, which is
mildly misaligned with the binary orbital plane by 10°–20°, has
successfully interpreted the observations of KH 15D from 1995
to 2012 (Chiang & Murray-Clay 2004; Winn et al. 2004;
Capelo et al. 2012).

Lacour et al. (2016) found that the binary orbital plane of
HD 142527 inclines 70° relative to the outer circumbinary disk,
which was considered as a transition disk. Through 3D
hydrodynamical simulations of HD 142527, Price et al.
(2018) confirmed that all of the main observational features
such as the spirals, shadows, and horseshoe can be explained
by interactions between the disk and the inner binary.
However, there is no consensus on the inclination of the disk,
which was considered to account for the optical asymmetry of
the dust. Different methods find different solutions, which
mainly range from 20° to 28°(Avenhaus et al. 2017; Hunziker
et al. 2021).

The circumbinary debris disk in the 99 Herculis system was
resolved, which may move in the plane perpendicular to the
binary pericenter direction (Kennedy et al. 2012). The
misalignment δi between the young circumbinary protoplane-
tary disk around the GG Tau A binary system in the quadruple
system GG Tau, and the binary orbit is approximately 25°–50°
(Cazzoletti et al. 2017; Aly et al. 2018). Each stellar component
of IRS43 has its own circumstellar disk, and both are
surrounded by a highly inclined circumbinary disk (>60°;
Brinch et al. 2016). An unusual gas-rich circumbinary disk in
the young HD 98800 system is probably in a polar
configuration based on a simulation of the disk dynamics,
and the physical properties of the disk are similar to those
around young single stars (Verrier & Evans 2008; Kennedy
et al. 2019). The disk size (5–5.5 au) makes it one of the
smallest disks known (Ribas et al. 2018). Ziglin (1975)
described the doubly averaged outer-restricted elliptic three-
body problem, considering quadrupole approximation for the
first time. HD 98800, which is a quadruple system, can be well

approximated as a hierarchical triple-star system. High-
inclination particles were found in long-term stable orbits
inclined by 55°–135° to the inner binary. During a study on
disk formation, Verrier & Evans (2009) found that inclination
variations and nodal precession caused by the inner binary for
certain initial longitudes can suppress Kozai cycles that would
otherwise occur due to the outer star in the hierarchical three-
body problem. Farago & Laskar (2010) provided a complete
analytical description of test particles in the secular and
quadrupolar approximations of the outer hierarchical three-
body problem using a vectorial formalism.
Given the stability of the inclined orbits, Pilat-Lohinger et al.

(2003) recorded the escape time for inclined P-type orbits
(0°� i� 50°) in equal-mass binary systems, with the binary
eccentricity ranging from 0 to 0.5 within the integration time
5× 104T1, and distinguished different types of motions using
the fast Lyapunov indicator. Doolin & Blundell (2011) studied
the stability of the inclined orbits of circumbinary test particles
and found the critical radius of stable planets in polar orbits is
smaller than that in coplanar orbits. Considering the mass of the
planet as well as interactions between the planet and binary,
Chen et al. (2019) extend the polar orbit to the generalized
polar orbit by stationary inclinations, where the precession rates
of the binary and planet are the same, and the relative
inclination between the orbital plane of the planet and the
binary are fixed. In contrast to retrograde circulating orbits
being usually the most stable around binaries with small
eccentricities, polar planets around highly eccentric binaries are
the most stable (Chen et al. 2020). N-body simulations were
conducted to scan the Δe, ΔΩ2, and chaos indicators to study
the global stability for different λ of the binary and initial Ω of
the polar orbits by Cuello & Giuppone (2019).
However, an empirical formula for the critical radius of

stable polar orbits has not been obtained, and the possibility of
planet formation in circumbinary polar disks remains unknown.
This paper aims to address these two issues. First, the motions
of test particles in polar orbits are briefly described considering
an analysis of the elliptically restricted three-body problem in
Section 2, which displays a libration mechanism in the
longitude of the ascending node and the inclination relative
to the plane of the binary. Then, an empirical formula of the
stable boundary of circumbinary test particles in polar orbits
with the longest integration time 107T1 is presented in Section
3. The binary eccentricity is in the range of [ )0, 0.8 , and the
mass ratio range of the binary star is [ ]0.1, 1l = . Lastly,
statistical analyses and stochastic simulation of collisions
among planetesimals in polar-ring disks are conducted to
compare with the results of the coplanar circumbinary disk and
standard disk around a single star in Section 4.

2. Circumbinary Polar Motion in the Outer-restricted
Hierarchical Three-body Problem

The complete Hamiltonian of the hierarchical three-body
system can be described in Jacobian coordinates. The
hierarchical three-body secular approximation (Harrington
1968, 1969) can be obtained by adopting Delaunay’s canonical
elements, considering the quadrupole moment, and averaging
the Hamiltonian over short timescales by a von Ziepel
transformation (Kozai 1962; Harrington 1968). In the outer-
restricted three-body problem, the outer body is assumed to be
a massless test particle revolving around the binary pair; thus
the outer body does not affect the inner orbit. Let the longitude

2
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and pericenter of the inner orbit satisfy g1+ h1= π without
losing generality. This condition, combined with the nodal
difference between the two orbits in the invariable plane
reference system meets h1− h2= π, leading to some orbital
elements of the inner binary being eliminated from the general
quadrupole Hamiltonian (Ford et al. 2000; Naoz et al. 2013).
Omitting constant terms, a “simplified Hamiltonian” is
obtained as follows,

( ) ( )H e e i1 5 sin sin , 11
2

1
2 2

2
2

2= - + W

where e1 is the eccentricity of the inner binary orbit, Ω2 is the
longitude of outer orbit ascending node, and i2 is the inclination
of the outer orbit relative to the orbital plane of the binary.

The range of H is [ ]e0, 1 4 1
2+ . The separatrix between

circulation and libration of Ω2 is decided by the following,

( )H e1 . 2c 1
2= -

The ascending node of the test particle librates near 90° or
−90° when e H H1 4 c1

2+ > > . Simultaneously, the inclina-
tion oscillates. The maximum and minimum of inclination
appear when ∣ ∣ 902W = .

A possible polar-ring debris disk was detected in 99 Herculis
by the Herschel Key Program Dust Emission via a Bias-free
Reconnaissance in the Infrared/Submillimeter (DEBRIS). This
program characterized extrasolar analogs to the asteroid and
Kuiper belts of the solar system, which are collectively called
“debris disks” (Pilbratt et al. 2010). 99 Herculis is a binary
system, comprising an F7V primary (0.94 Me) orbited by a
K4V secondary (0.46 Me) with an age of approximately
9.37 Gyr. The semimajor axis of the binary is approximately
16.5 au and its eccentricity is approximately 0.766. The

Herschel Key Program DEBRIS discovered a debris disk
located at 120 au surrounding the binary. This disk is possibly a
polar-ring debris disk, moving in a plane perpendicular to the
binary pericenter direction and having a comparable lifetime
with the star (Kennedy et al. 2012).
The phase space (Ω2, i2) of the simplified Hamiltonian by

Equation (1) is plotted for e1= 0.799 (the binary eccentricity
for 99 Herculis; Kennedy et al. 2012) in Figure 1. When
∣ ∣ 902W = , if the inclination of the orbital plane is larger than
approximately 21°, then the test particle will be deep in the
libration zone with the inclination librating within [ ]21 , 159  .
A theoretical analysis of the outer-restricted hierarchical

problem is provided in this section to describe the circumbinary
polar orbit in the quadrupole approximation briefly. However,
the long-term stability of polar orbits remains unknown. Only
the quadrupole term is considered for the theoretical analysis
based on the expansion of the complete Hamiltonian using the
ratio of the semimajor axis of the inner orbit to that of the outer
one. The orbits may show different movements in the octupole
Hamiltonian. For example, the eccentricity of near-polar orbits
may be significantly excited (Li et al. 2014). Therefore,
numeric calculations are necessary to investigate the stability of
polar orbits with different orbital elements. Next, the stable
region of test particles in polar orbits of the outer-restricted
hierarchical three-body problem will be presented.

3. The Innermost Stable Orbits of Test Particles in Polar
Orbits

Pilat-Lohinger et al. (2003) recorded the escape time of
inclined P-type orbits (0°� i� 50°) in binary systems with
equal masses and eccentricities of 0� e1� 0.5. If the binary

Figure 1. The phase space (Ω2, i2) of the simplified Hamiltonian in Equation (1) for 99 Herculis. The red region is the libration zone where the inclination and
longitude of the outer orbit ascending node librate in a certain range. The green region is the circulation zone where the longitude of the outer orbit ascending node can
circulate in [ ]0 , 360  . The black line is the separatrix between circulation and libration in Equation (2).

3
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eccentricity is larger than 0.35, then the critical inclination for
libration will be smaller than 50° for equal-mass binary
systems. Therefore, the simulations with 0.4� e1� 0.5 in the
article (Pilat-Lohinger et al. 2003) may include circulation and
libration orbits. Their results revealed an absence of stable
orbits with high inclinations over those with low inclinations.
However, the numerical simulations of an equal-mass binary
with 0.4� e1� 0.5 in the paper of Doolin & Blundell (2011)
show that the high inclination of prograde orbits can be
beneficial to stability compared with near-coplanar prograde
orbits. The results of Pilat-Lohinger et al. (2003) and Doolin &
Blundell (2011) seem in conflict, but they are not. The critical

inclination for libration, i arcsinc
H

e1 4 1
2=

+
, is determined at

h2= 90°. Pilat-Lohinger et al. (2003) did not fix the longitude
of ascending node of the planetary orbits specifically according
to the separatrix between circulation and libration. They chose
Ω2 arbitrarily, finding that the critical inclination turning into
the libration zone can be quite larger than ic, as revealed in
Figure 1. The critical inclination turning into libration for the
arbitrary node can be obtained by the following,

( )i
H

e e h
arcsin

1 5 sin
. 3c

1
2

1
2 2

2

=
- +

W

Doolin & Blundell (2011) presented a density plot of the
stability measure across entire parameter spaces with the
longest integration time 5× 104T1. First, peninsulas of
instability in the libration region, which appear symmetrically
on either side of i= π/2 for binary eccentricities of e1� 0.3,
converge upon each other as e1→ 0.6. This result implies that
high binary eccentricities of e1� 0.6 could be more favorable
to the stability of orbits in the libration region compared with
0.3� e1< 0.6. The innermost semimajor axis of stable orbits in
the libration region is smaller than that of stable prograde orbits
in the circulation region. This finding means that the critical
semimajor axis of stable planets in polar orbits is smaller than
that of coplanar prograde orbits, thus raising the possibility of
planet formation in polar planetary disks. An important point to
note is that the innermost stable orbits in the libration region
appear when the inclination of orbit is in the vicinity of 90°,
according to the stability maps in Doolin & Blundell (2011)
and Cuello & Giuppone (2019). Here, we will find the
innermost stable orbits for different binary parameters, namely
the mass ratio of the binary star λ and the binary eccentricity e1.

In order to obtain the innermost stable polar orbits, a large
number of numerical simulations need to be carried out.
Without loss of generality, the semimajor axis of the binary
orbit is set as 1 au, and the binary eccentricity e1 in the range
[ ]0, 0.8 with scanning interval Δe1= 0.05. Simultaneously, the
mass ratio of the binary star [ ]0.1, 1l = , where m0= 1 Me
and m1 varies with an interval 0.05 Me. The semimajor axes of
test particles range from 2 to 6 au, with an interval of 0.01 au.
For a specific semimajor axis, eight inclinations ware chosen

from ⎡
⎣

⎤
⎦

arcsin , 90H

e1 4 1
2 

+
with equal intervals. Eight mean

anomalies are distributed evenly in the range [ ]0 , 360  for
each inclination. The initial longitude of ascending node h2 is
set as 90° in all cases. The orbits are circular initially, and the
arguments of the pericenter are chosen arbitrarily. After 107T1,
the initial semimajor axes of the innermost orbits that remained
stable are regarded as the critical stable boundary.

The following empirical formulas are computed using a
multivariable linear regression analysis of the minimum stable
semimajor axis ac of test particles within 107T1 with different
binary mass ratio λ and eccentricity,

( )

a

a
e

e

e e

e e

2.6338 4.9422 0.7237

3.6013 1.1215

5.2632 5.3516

5.5769 5.6002 , 4

c

1
1

1
2 2

1 1
2

1
2

1
2 2

l

l
l l
l l

= + +

- -
- +
+ -

for 0.1� λ� 1, 0.0� e1� 0.15, and 0.65� e1� 0.8, with the
coefficient of determination R2≈ 1.0, and,

( )

a

a
e

e

e e

e e

4.4096 6.7118 14.4955

10.9044 16.1753

60.3628 58.2231

54.8823 46.2753 , 5

c

1
1

1
2 2

1 1
2

1
2

1
2 2

l

l
l l
l l

= + +

- -
- +
+ -

for 0.1� λ� 1 and 0.25� e1� 0.6, with the coefficient of
determination R2≈ 0.8664. Several fitted curves were plotted,
and the corresponding raw data are presented in Figure 2.
Apparently, the tendencies of the minimum stable orbits with

λ are different for the several eccentricity intervals shown in
Figure 2. The values of the minimum stable semimajor axes of
test particles moving in polar orbits around the binary with
e1= 0.2 are directly plotted in Figure 2. The results with
e1= 0.2 in addition to the fitting processes of Equations (4) and
(5) did not yield good fitting effects, which can be seen in
Table 1. The determination coefficient, F statistic, P value, and
error variance after multiple regression fitting for different cuts
are shown in the table below. It seems more appropriate to
divide the data simulation into two parts, one part with
eccentricity ranges of [0, 0.15] and [0.65, 0.8], and the other
part with [0.25, 0.6].
For fixed binary eccentricity, a binary with comparable

masses, λ= 1, is favorable to the stability of polar orbits.
These orbits around the binary with mild eccentricities of
e1< 0.2 can stably exist in locations closer to the binary
compared with those around moderate and highly eccentric
binaries. The stable boundary of polar orbits revolving the
binary with high eccentricities of e1> 0.6 change slightly
for different binary mass ratios. The numerical simulation of
the stability of polar orbits revealed that finding planets in
polar orbits at locations close to binary systems with
comparable masses and mild eccentricities e1< 0.2 is more
hopeful.

4. Accretion Efficiencies of Planetesimals in the Polar-ring
Disk of 99 Herculis

It is possible the polar-ring disk in 99 Herculis resolved in
Kennedy et al. (2012) is a debris disk that has undergone a stage
of planet formation. Another possible polar-ring disk, in the
young HD 98800 system, comprises a gas-rich “planet-forming”
disk (Ribas et al. 2018; Kennedy et al. 2019). Zanazzi & Lai
(2018) found that the timescale of the inclination evolution of a
circumbinary disk under the influence of the disk warp profile and
dissipative torque is shorter than the disk lifetime for typical disk
parameters. Their finding implies that disks and planets may exist
with high inclinations relative to the orbital plane of eccentric
binaries. Based on hydrodynamic simulations, a series of articles
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by Martin and Lubow (Martin & Lubow 2017, 2018, 2019)
pointed out that damped oscillations of the tilt angle and
longitude of ascending node of a misaligned low-mass proto-
planetary disk around an eccentric binary lead to a stationary
state where the disk lies perpendicular to the binary orbital
plane. They revealed how the evolution of the disk depends
upon the parameters of the disk (mass, viscosity, temperature,
and size) as well as the parameters of the binary (binary mass
ratio, orbital eccentricity, and inclination). The alignment
timescale of the outer parts of sufficiently large disks may be
longer than their dissipation timescale.

4.1. Initial Values of the Simulations

The formation of planets in a polar planetary disk (namely
the polar case) is examined after determining the stable
boundary of test particles in polar orbits. 99 Herculis was
selected as the numerical model based on the assumption of an
extended and young polar planetary disk. The accretion

efficiency of collisions among 30,000 planetesimals with
randomly chosen physical radii from 1–10 km and density of
3 g cm−3 was investigated. Their orbital semimajor axes are
evenly distributed in the range of 65–130 au. Therein,
65 au≈ 3.94a1 is the numerical stable boundary, which is
consistent with 4.19a1 obtained by Equation (4).
In two other cases, a coplanar disk of the same binary stars

(namely the coplanar case) and a general disk around a single
star (namely the standard case) were simulated for comparison.
The “general disk” is based on the model of “minimum mass
solar nebula,” but with different scaling factors of the solid
surface density and solid enhancement beyond the ice line ( fd
and fice). The host in the standard case is a single star with a
mass of 1.4 Me (the total mass of 99 Herculis).
Considering that the precession range of the orbital

inclination in the polar disk is 10° for the initial inclination
distributed in the range 85°–95°, in order to make the three
planetary disks comparable, the orbital inclination ranges of the
planetesimals in the coplanar disk and the standard disk were
set to 0°–5° and the initial longitude of ascending nodes is
chosen randomly.
In the numerical simulation, the orbits of planetesimals in

planetary disks need to be as close as possible to the state of
natural dynamic evolution, so as to reflect real collision results.
If we start from circular orbits initially, the planetesimals in the
polar disk need about 6× 104 yr (about 103T1, where T1 is the
binary period) to reach a natural state from a fixed initial
longitude of ascending node at 90°, and need 9× 105 yr (about
1.5× 104T1) in the coplanar circumbinary disk from their
initial circular orbits. Computing time costs are expensive for
30,000 planetesimals. So, we make efforts to let the
planetesimals move initially naturally to the greatest extent
on the basis of their dynamical properties.

Figure 2. Several fitted curves of Equations (4) and (5), as well as the respective raw data of the minimum stable radii of test particles in polar orbits around binaries
with different eccentricities and mass ratios within 107T1.

Table 1
The Parameters from the Multiple Regression Fitting for Different Cuts of the

Binary Eccentricity

e1 R2 F Statistic P Value
Error

Variance

[0, 0.8] 0.72 547.13 0 0.20

[0, 0.15] and
[0.65, 0.8]

0.97 2917.30 0 0.015

[0.25, 0.6] 0.90 879.56 0 0.052

[0.2, 0.6] 0.76 350.71 3.37 × 10–269 0.13

[0.3, 0.6] 0.87 560.09 4.34 × 10–296 0.057
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In the polar protoplanetary disk, the initial inclination i is
chosen in the range 85°–95° randomly. From the phase space
and analytical theory of Li et al. (2014), the inclination
oscillates in the following range,

⎡

⎣
⎢

⎤

⎦
⎥ ( )H

e

H

e
arcsin

1 4
, arcsin

1 4
. 6

1
2

1
2

p
+

-
+

So, we can obtain the range of initial longitude of ascending
nodes of planetesimals [ ],c cpW - W for initial inclination i,
which is chosen in the range 85°–95° randomly, where,

⎜ ⎟
⎛
⎝

⎞
⎠

( )

( )

e i

i
e e iarcsin

1 4 sin

sin
1 5 for 85 .

7

c

c
c

1
2 2

2 1
2

1
2

W

=
+

+ - = 

In an eccentric coplanar binary disk, considering the secular
perturbations of the binary, the initial eccentricities of
planetesimals are chosen in the range [0, epump] arbitrarily
(Moriwaki & Nakagawa 2004), where,
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The eccentricities of the planetesimals are chosen from 0–0.05
randomly in the general disk around the single star.

The inflated radii of planetesimals were adopted as
( )dr r GM d2

3
2

1
2 n=
-

(where dν= 1 m s−1 and M is the total
mass of the binary) to trace close encounters between
planetesimals easily (Xie & Zhou 2009), which can ensure an
accuracy of the colliding velocity ∼1 m s−1.

The inflated radius is artificially set to control the collision
speed accuracy. In pure Kepler motion of the two-body
problem, the velocity of the celestial body moving around the

host satisfies ( )v GM

r

1 2
= . The differential of the formula can

be obtained, ( )dr r GM d2
3
2

1
2 n=
-

, which means that the
velocity difference between two particles in Kepler motion at
adjacent distance dr is dν. Therefore, the error between the
relative velocity recorded here and the relative velocity of the
collision can be guaranteed by limiting the distance, dr,
between two adjacent planetesimals before the collision. This
error is proportional to the distance; that is to say, the relative
velocity recorded when the distance between planetesimals is
smaller will be closer to the relative velocity at the time of
collision. In our code, we judge whether the two planetesimals
are within the critical distance, dr. On the one hand, the
collision requires the two planetesimals to be in close contact.
On the other hand, we can control the error range between the
relative speed calculated within the critical distance and the
realistic collision speed.

During our simulations, gas drag need not be considered
because we found gas damping has little effect on the orbits of
the planetesimals and collision results in our studies. On the
one hand, for the outer part of the disk around 99 Her, which is
located far away from the binary, the local gas density is too
small to dampen the planetesimals. The gas damping force is
proportional to the gas density and the relative velocity
between the gas and the planetesimal. According to the general
model of gas disk (Sano et al. 2000; Umebayashi et al. 2013),
at midplane, the gas drag force at 66 au is 2.8× 10−5 times
than that at 1 au in the “minimum mass solar nebula.” On the

other hand, for the inner part of the disk, the dynamics of the
planetesimals are strongly excited by the binary, leading to the
damping effect of the gas disk working inefficiently. Rafikov
(2013a) found that gas drag does not resolve the fragmentation
barrier issue in Kepler circumbinary systems because the fast
relative precession of the planetesimal and binary orbits results
in inefficient planetesimal apsidal alignment. Rafikov (2013b)
also demonstrated that gas drag regulates the eccentricity
behavior only for bodies with radii less than 1 km, which is
below the adopted planetesimal size (1–10 km) in our article.

4.2. Outcomes of Collisions

During the realistic collisions among planetesimals,
perturbations due to the gravitational force between the two
planetesimals entering into the range of close encounters will
gradually increase, which cannot be ignored. In our numerical
simulations, gravitational interactions among planetesimals are
neglected to save computation costs. We can use the physical
parameters and the states of motion between the colliding
planetesimals during entering into a close encounter to obtain
the outcomes after collision approximately. The outcomes of
collisions depend on the target mass Mtarg , the projectile mass
Mp , the target radius Rtarg , the projectile radius Rp , the impact
velocity Vi, as well as the impact factor b, which is defined as
b sin q= , where θ is the acute angle between the line of impact
velocity and the barycenter line. The impact velocity vector Vi



is the relative velocity between the target and the projectile.
During our process to calculate the outcome of the collision
between two bodies, we set the heavier one as Mtarg and the
lighter one Mp. Figure 3 summarized the regimes and the
calculations of the mass of the largest remnant after each
collision briefly. The detailed process and scaling laws used to
calculate maps of collision outcomes can be found in Leinhardt
& Stewart (2011) and Stewart & Leinhardt (2012).
We have tried three methods to deal with the results of

collisions. In the first way, we assumed that the two
planetesimals move in a straight line at a constant speed
within the critical distance. A collision occurs when the
distance between the planetesimals is less than the sum of the
physical radii of the planetesimals. The statistical results show

Figure 3. The outcomes of collisions mainly include seven regimes, which are
determined by the impact velocity Vi as well as the impact factor b. The
corresponding mass of the largest remnant can be calculated by the four
equations M M M ,lr1 p targ= + ( ( ) )M Q Q M0.5 1 0.5 ,lr2 R RD tot= - ¢ - +*

( )M Q Q M ,lr3
0.1

1.8 R RD tot= ¢ h
h * and M M .lr4 targ= Other variants appearing in

these equations and in this figure can be found in Leinhardt & Stewart (2011)
and Stewart & Leinhardt (2012).
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that almost no collisions have occurred, because this processing
method ignores gravitational interactions between the planete-
simals. In the second way, all of the collisions are regarded as
head-on collisions and the diversity of actual collision results is
ignored. The third way considers the collision parameters, and
the calculation of the collision results is based on the
coordinates and velocities of the planetesimals after they enter
into the critical distance. This processing method will increase
the proportion of hit-and-run collisions, which keeps the two
planetesimals undamaged. However, we can eliminate the
artificially enlarged effect of the hit-and-run regime by
sufficient collisions. Considering that the growth of planetesi-
mals requires multiple collisions, we made stochastic
simulations to find out the final mass of the largest remnant
for a specific planetesimal after successive collisions. As long
as the cumulative number of collisions is sufficient, the
artificially enlarged hit-and-run effect will be eliminated, and
will not affect the final mass of the largest remnant. This is also
the reason why we made statistical simulations in our article.

4.3. Efficiency of Accretion

The efficiency of accretion ξ is defined as follows,

( )M M

M
, 9lr t

p
x =

-

where Mt is the mass of the target and Mp is the mass of
projectile. Mlr is the largest mass of the remnant part after a
collision between two planetesimals. The detailed calculations
of Mlr can be obtained in Section 4.2. Clearly, ξ= 1 means that
the two planetesimals have merged together, thus demonstrat-
ing perfect accretion. 0< ξ< 1 means collisions lead to partial
accretion, and ξ< 0 implies target erosion.

The ratios of different efficiencies of accretion in the three
disks are shown in Figure 4 and Table 2. There is one thing
worth noticing: the peaks appearing in the vicinity of ξ= 0
include the overestimated part of hit-and-runs. Hit-and-runs can
allow the planetesimals to be almost the same as before the
collision, leading to ξ≈ 0. The perfect accretion (ξ= 1) in the
polar-ring case is 0%, while those in the coplanar and standard

case are approximately 0.1261% and 0.04117%, respectively.
Figure 4 shows that the accretion efficiencies among
planetesimals that can cause accretion, including part and
perfect accretion in the polar protoplanetary disk, are lower
than either the coplanar binary disk or the single-star disk.
Meanwhile, the erosion collision (ξ< 0) occurrence in polar-
ring cases reveals slightly higher frequencies (50.81%) than
those of the two other cases (49.15% and 44.17%). Because of
the expensive computer costs, we only simulated one group for
each case, so there are no error bars. If enough numerical
simulations are conducted, the efficiencies of the accretion in
the polar and coplanar circumbinary disks may be very close,
presumably within the error bars. In general, collisions among
the planetesimals in the polar protoplanetary disk are not
favorable for accretion compared with the single-star disk.
According to the statistical data of the collision results, we

can basically deduce that there is a high probability that
planetesimals cannot grow through collisions. In view of the
following two reasons, we continued to carry out stochastic
simulations: on the one hand, the proportion of hit-and-run
results was overestimated in the process of collision result
processing, and it was necessary to eliminate its influence
through enough collisions; on the other hand, stochastic
simulations can give the maximum mass remaining quantita-
tively after a series of collisions.
Before stochastic simulations of successive collisions based

on the ratios of efficiencies of accretion can be carried out, the
collisional timescale require research, which determines the
number of collisions that may occur within the age of 99
Herculis.

Figure 4. The collision outcomes among planetesimals in the polar protoplanetary disk of 99 Herculis system, the coplanar disk of the same binary stars (coplanar
case), and the general disk around single stars with the mass of 99 Herculis system (standard case) for comparison. The coplanar case has the same initial conditions as
the polar case except for the inclination, which is randomly chosen from 0°–5°. The standard case has the same initial conditions as the coplanar case except the host is
a single star with mass 1.4 Me, the total mass of 99 Herculis.

Table 2
A Brief Look at the Accretion Efficiency

ξ < 0
0 < =
ξ < 0.5

0.5 = <
ξ < 1 ξ = 1

Collision
Number

Polar case 50.81% 49.08% 0.1011% 0% 7915

Coplanar case 49.15% 50.29% 0.4372% 0.1261% 11,894

Standard case 44.17% 55.70% 0.08233% 0.04117% 2429
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4.4. Collisional Timescale

During the integration time of 10
5
yr, the numbers of

collisions in the polar, coplanar, and standard cases are 7915,
11,894, and 2429, respectively, as shown in Table 2.
Collisions among planetesimals occur most frequently in the
coplanar case due to the strong dynamical disturbances from
the binary. The number of collisions in the polar case is
moderate for mild gravitational disturbances from the binary
in the perpendicular plane, which affect the inclination more
than the eccentricity. The average numbers of collisions in the
polar and coplanar circumbinary disks are, respectively, three
and five times as many as those in the standard disk
surrounding the single star.

In single-star systems such as our solar system, the objects of
the Kuiper Belt are distributed at 30–50 au from the Sun. The
chance of collision among planetesimals will be remote
considering the long period of such objects and the shortage
of disturbances. Generally, the collisional timescale of
planetesimals with typical radius Rp at semimajor axis a in
the standard disk around a single star with mass MA can be
obtained by,

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
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3
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where, for the “minimum mass solar nebula,” fd= 1 and
fice= 4.2 beyond the ice line, which lies at about 2.7 au for
solar-type stars. According to Xie et al. (2009), the collisional
timescales of planetesimals in a coplanar circumbinary disk T C

col

and in a polar circumbinary disk T P
col can be estimated by,

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )

T T
n

n

T T
n

n

,

. 11

C S
C

S

P S
P

S

col col
imp

imp

1

col col
imp

imp

1

= ´

= ´

-

-

The impact rates n S
imp, n C

imp, and n P
imp can be read out from our

numerical simulations of the three disks containing the same
total numbers and physical radius distribution of planetesimals.
Although the impact rates of circumbinary planetesimals are

several times larger than in the standard disk, as shown in
Figure 5, the collisional timescale Tcol

P of planetesimals in the
polar circumbinary disk, and Tcol

C in the coplanar circumbinary
disk with a moderate fd = 10 are longer than 107 yr, which is
beyond the observed dissipation timescale (<6Myr) of gas
disks (Haisch et al. 2001; Wyatt 2008). Ribas et al. (2015)
confirmed that the dissipation timescale of a gas disk is directly
related to the stellar mass. The gas disks around high-mass stars
(>2 Me) dissipate up to two times earlier than low-mass ones.
That means gas giants hardly form in such distant locations
through core accretion as the collisional timescales are too long
to absorb enough gas. Next, stochastic simulations were
conducted to find out whether solid cores of protoplanets
can form.

4.5. Stochastic Simulations

However, Batygin & Brown (2016) show that a possible
distant giant planet with more than 10 Earth masses in the solar

Figure 5. The collisional timescale of planetesimals in a polar circumbinary disk, Tcol
P , and in a coplanar circumbinary disk, Tcol

C , obtained by Equation (11) combined
with Equation (10). The scaling factor of a solid surface density is set at a moderate value of fd = 10.

8

The Astronomical Journal, 166:52 (11pp), 2023 August Wang et al.



system can explain the clustering phenomenon of distant
Kuiper Belt objects in the argument of perihelion and physical
space. Kenyon & Bromley (2015) showed that super-Earth-
mass planets can form at 125–250 au around solar-type stars
from swarms of 1 cm–10 m planetesimals within 1–3 Gyr in the
annuli with a mass of approximately 15 M⊕ considering
collisional damping. However, this simulation did not include
the gas drag, which is important for the vertical distribution and
radial motion of dust and large bodies. The gas drag eventually
becomes negligible once bodies of planetesimal size have
formed.

After obtaining the probability distribution law which has
been shown in Figure 4, we can obtain the probability density
function. So that the efficiency of accretion of a random
collision, ξ, can be obtained by the probability proportional to
size sampling. The postcollision result can be calculated by the
corresponding ξ. The mass of the largest remnant part Mlr after
this collision, as one of the colliding planetesimals, participates
in the next collision. After N random samplings, the final mass
of the largest remnant after N consecutive random collisions
can be obtained.

The reasons for conducting stochastic simulations are given
below. On the one hand, we can eliminate the overestimated
hit-and-run part through enough collisions. On the other hand,
the distribution of the final growth mass of planetesimals can be
obtained quantitatively. How many collisions are enough? First
of all, we can obtain the number of collisions Nc by the
collisional timescale within the age of 99 Herculis, which is
about 9.37 Gyr. We conduct sampling for 100Nc in order to
eliminate the overestimated hit-and-run part. The starting target
planetesimal and the subsequent projectile ones have a physical
radius of 10 km. There, we suppose there are sufficient
planetesimals in protoplanetary disks. The detailed operations
are as follows.

1. The discrete distribution function of the accretion
efficiency, ( )F pnn

x = åx x< , can be obtained using the
data in Figure 4, for the distribution law below.

p p p
... ...
... ...

n

n

1 2

1 2

x x x

2. Generate a random number ε from a uniform (0, 1)
distribution.

3. For an ε, there must have an interval (ξn−1, ξn), making F
(ξn−1)< ε< F(ξn) with probability pn.

4. For an ε, an accretion efficiency ( ) 2n n1x x x= +- will
be chosen. The mass of the largest remnant part after a
collision will be calculated by Equation (9). The remnant
continues to participate in the next collision.

5. If ξ<−Mp/Mt leads to Mlr< 0, which is an unphysical
result, we need to regenerate a random number ε.

6. Sampling with probability proportional to 100Nc, then the
final mass of planetesimal after enough collisions will be
obtained.

We carry out 10,000 runs of probability proportional to the
size sampling for the collisions occurring in each kind of
protoplanetary disk. The distribution of the final largest mass
of the remnant part Mlr/Mti is listed in Table 3, where Mti is
the initial mass of the planetesimal before the collision. It is
clear that the planetesimal can hardly grow bigger. In most
cases, the final mass after 100Nc successive collisions is

around the original mass at the beginning of the collisions.
However, such a process may be a possible mechanism to
produce dust continuously, making the debris disk observed in
99 Herculis. An older debris disk (>100 Myr) requires the
replenishment of dust through mutual collisions among a
population of greater-than-kilometer-sized planetesimals.
Some of the youngest (about 10 Myr old) debris disks may
be the remnants of protoplanetary disks (Wyatt & Dent 2002).
99 Herculis is a main-sequence star with an age of 6–10 Gyr.
So, the debris disk observed asks for a dust-generation process
whether it is a long-lived debris disk surviving for gigayear
timescales or a transient ring generated from a recent
collision. Our stochastic simulations show that the collisions
of planetesimals in the polar protoplanetary disk of 99
Herculis will not make planetesimals grow, but produce dust
steadily.
Since the molecular gas is collocated with the dust in the

debris disk, a new semianalytical equivalent of the numerical
model was proposed by Kral et al. (2016, 2017), which
assumes CO is produced from volatile-rich solid bodies. P-type
exoplanets in circumbinary coplanar orbits have been detected
by Kepler (Martin & Triaud 2014). A majority of these planets
are located at the boundary of stable zones over long timescales
(Holman & Wiegert 1999). The stability limit is due to
overlapping first- and second-order mean motion resonances
with the binary, and is mainly influenced by the overlaps of
three-body mean motion resonances in massive multiplanet
systems (Wang et al. 2019). However, the formation of planets
in the circumbinary coplanar disk is possible for a2> 20a1
(Marzari et al. 2012; Meschiari 2012; Paardekooper et al.
2012), or a≈ 10–20a1, considering the gravity of an
axisymmetric disk which can strongly suppress the eccentri-
cities of planetesimals beyond and facilitate the easy growth of
planetesimals (Rafikov 2013a). Moreover, the critical radial
distance beyond which planetesimal accretion is possible
increases with the rising binary eccentricity (Scholl et al.
2007). Thus, planets can hardly form around 65–130 au
(3.94–7.88a1) in the circumbinary coplanar protoplanetary disk
with a1= 16.5 au and e1= 0.76 of 99 Herculis. By
comparison, the accretion efficiency of planetesimals in the
circumbinary polar protoplanetary disk is lower than that in the
coplanar one according to our simulation. So, we can infer the
formation of planets in the inner region or around the location
where the current debris disk exist is difficult in the system of
99 Herculis.

Table 3
The Distribution of the Final Largest Mass of the Remnant PartMlr/Mti Among
10,000 Runs of Stochastic Simulations with 100Nc Successive Collisions

Mlr/Mti Probability

<0.97 19.93%
Polar case [0.97, 1.05) 79.44%

[1.05, 2] 0.63%

<0.97 13.74%
Coplanar case [0.97, 1.05) 84.47%

[1.05, 2] 1.79%

<0.97 11.61%
Standard case [0.97, 1.05) 87.89%

[1.05, 2] 0.5%
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5. Discussion and Conclusions

5.1. Discussion

The innermost stable orbits simulated by Cuello & Giuppone
(2019) and Chen et al. (2020) are located closer to the star
(about 2.5a1) for their integration times of 105T1 and
5 × 104T1, while the integration time is 107T1 in our article.
Cuello & Giuppone (2019) studied the evolution of misaligned
circumbinary disks through hydrodynamical simulations.
Viscous torques exerted by the binary make retrograde
configurations easier to become polar than prograde circum-
binary disks.

Childs & Martin (2021) show that about five circumbinary
planets form in polar and coplanar orbits in the vicinity of
5.4a1. However, they simulate the late stage of the formation of
planets with purely gravitational interactions for Moon-sized
planetesimals and Mars-sized embryos. That means every
impact can be regarded as a perfectly inelastic collision, which
leads to perfect accretion. The physical size of planetesimals in
our simulations are distributed in 1–10 km. Various outcomes
of collision including perfect accretion, partial accretion, hit-
and-runs, graze-and-merges, catastrophic disruptions, and
supercatastrophic disruptions have been considered.

A possible third component, which is about 2.4 times as faint
as 99 Herculis B, was reported three times (Kennedy et al.
2012). According to the three positions in sky coordinates, the
possible stable orbits may be in Kozai cycles. The third
component might be involved in the formation of the polar disk
of 99 Herculis, which is interesting to study further. Lepp et al.
(2023) find out that polar circumtriple orbits only exist within a
critical radius, outside which circulating orbits precess about
the binary angular momentum vector. Through the smoothed
particle hydrodynamics simulations of Ceppi et al. (2023), the
wide range of disk inclinations in hierarchical systems with
more than two stars may result from the secular oscillation of
their orbital parameters. Chen et al. (2022) investigated the
orbital dynamics of circumbinary planetary systems with two
planets in polar orbits around the binary star. Under binary-
planet and planet–planet gravitational interactions, the tilt
angles of planets oscillate complicatedly.

The study of planetary formation in this paper is conducted
under the framework of the core accretion model. Some giant
planets such as the four giants in the HR 8799 system are
detected far away from the central star through the method of
imaging. If gravity instabilities give rise to collapses in the
solid component of the disk material, then giant planets can
form in the outer regions of the protoplanetary disk. Planets
formed beyond 100 au in solar-like gas disks through disk
fragmentation can migrate inward, and produce giant
protoplanets at a distance of a few tens of astronomical units
from the protostar via high-resolution numerical hydrody-
namics simulations (Vorobyov & Elbakyan 2018).

Because typical collisional timescale in the polar disk is at
least one order of magnitude longer than the dissipation
timescale of the gas disk, it is practically impossible for gas
giants to form via the core accretion model. In this model, the
formation of planets mainly depends on the collisions among
the planetesimals at the early stage. However, we could not
exclude the possibilities of other models such as gravitational
instability, pebble, or dust accretion producing planets or planet
embryos.

5.2. Conclusions

The motion of planetesimals in polar orbits within the
libration region of the outer-restricted three-body problem is
simulated in this paper to study the stability of circumbinary
polar orbits and planetary formation in the circumbinary polar
disk of 99 Herculis. First, the empirical formulas of the stable
critical semimajor axes of the polar orbits applied to
0.1� λ� 1, 0.0� e1� 0.15, and 0.65� e1� 0.8 in
Equation (4), as well as 0.1� λ� 1 and 0.3� e1� 0.6 in
Equation (5), are presented. Second, the collision outcomes,
colliding timescales, and stochastic simulations of successive
collisions among the planetesimals in the polar protoplanetary
disk of the 99 Herculis system are statistically analyzed. The
statistical results show that the collisions of planetesimals (with
physical radii of 1–10 km and density 3 g cm−3) in the polar
disk are the most unhelpful to the accretion and size increase of
planetesimals compared with the coplanar case and the
standard case. The typical collisional timescale in the polar
disk is at least one order of magnitude higher than the
dissipation timescale of the gas disk. Furthermore, collisions of
planetesimals in the polar protoplanetary disk of 99 Herculis
will not make planetesimals grow, but produce dust steadily,
which may explain the formation of the detected debris disk
around 120 au. Third, considering the various outcomes of
collisions among the planetesimals (1–10 km), the performance
of planetesimal growth via collisions in reference groups,
including the coplanar case and standard case, are similar. The
main differences between the three cases lie in the impact rate
and the collision timescales.
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