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ABSTRACT

Lomax distribution can be considered as the mixture of exponential and gamma distribution. This distribution is
an advantageous lifetime distribution in reliability analysis. The applicability of Lomax distribution is not restricted
only to the reliability field, but it has broad applications in Economics, actuarial modelling, queuing problems,
biological sciences, etc. Initially, Lomax distribution was proposed by Lomax in 1954, and it is also known as
Pareto Type II distribution. Many statistical methods have been developed for this distribution; for a review of
Lomax Distribution, see [1] and the references. The stress strength model plays an important role in reliability
analysis. The term stress strength was first introduced by [2]. In the context of reliability, R is defined as the
probability that the unit strength is greater than stress, that is, R = P (X > Y ), where X is the random strength of
the unit, and Y is the instant stress applied to it. Thus, estimation of R is very important in Reliability Analysis.The
estimates of R discussed in the context of Lomax distribution are limited to the study of a single stress strength
model with upper stress. But in real life, there are situations where we have to consider not only the upper stress
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but also the lower stress. Accordingly, in the present paper, the estimation of stress strength model
R = P (Y < X < Z) represents the situation where the strength X should be greater than stress Y and smaller
than stress Z for Lomax distribution, Shrinkage maximum likelihood estimate and Quasi likelihood estimate are
obtained both under complete and right censored data. We have considered the asymptotic confidence interval
(CI) based on MLE and bootstrap CI for R. Monte Carlo simulation experiments were performed to compare the
performance of estimates obtained.

Keywords: Lomax distribution; stress strength reliability; maximum likelihood estimator; quasi likelihood estimator;
confidence interval.

2010 Mathematics Subject Classification: 62N05.

1 INTRODUCTION

The stress strength model plays an important role
in reliability analysis. The term stress strength was
first introduced by [2]. In the context of reliability, R
is defined as the probability that the unit strength is
greater than stress, that is R = P [X > Y ] where X
is the random strength of the unit and Y is the instant
stress applied to it. Moreover R provides the probability
of system failure. The stress strength model was
discussed in the literature from different point of view.
Inference for generalized Lomax Distribution based on
record statistics was considered by [3]. [4] studied the
inference for the Lomax Distribution stress- strength
model. [5] studied exponentiated Lomax Distribution..
The different stress strength model was considered
by [6], [7], [8], [9]. Estimation of R = P [X > Y ] for
Lomax Distribution with the presence of outliers was
discussed by [10]. [11] studied the Power of Lomax
Distribution with an application to bladder cancer data.
The recent developments in stress strength reliability
was discussed by [12], [13], [14], [15], [16], [17], [18],
[19] and [20]. In this paper estimates the stress strength
reliability for a component with a strength independent
of opposite lower and upper bound stresses when the
stresses and strength have Lomax distribution under
different sampling schemes. Shrinkage maximum
likelihood estimate and Quasi likelihood estimate are
obtained under complete and right censored data. We
have considered the asymptotic confidence interval (CI)
based on MLE and bootstrap CI for R. Monte Carlo
simulation experiments were performed to compare the
performance of estimates obtained.

As a natural extension of the two component stress
strength model we consider in the present paper the
Maximum Likelihood Estimation (MLE) and Quasi
likelihood estimate of stress strength reliability model

R = P [Y < X < Z], where X is the random strength
and Y and Z are independent random stress variables
follows Lomax Distribution. The stress strength model
of P [Y < X < Z] was studied in many branches of
science such as Psychology, Medicine, Pedagogy,
Engineering etc. The Estimation of R = P [Y < X < Z]
represents the situation where the strengthX should be
greater than stress Y and smaller than stress Z. For
eg:- Many devices cannot function at high temperatures;
neither can very low ones. Similarly a person’s blood
pressure should lie within two limits i.e systolic and
diastolic. For instance many electronic components
cannot work at high or low voltage. The estimate and
the asymptotic confidence intervals are obtained for R
under both complete and censored samples.

The Minimum Variance Unbiased (MV U), Maximum
Likelihood and Empirical Estimator of R =
P [Y < X < Z] were discussed by [21]. [22] deal with
the estimation of R when Y , Z and X are exponential
random variables. Maximum Likelihood Estimate and
Uniformly Minimum Variance Unbiased Estimate of
R when Y , Z and X either uniform or exponential
random variable with the unknown location parameter
was considered by [23]. [24] focused on the estimate
of R = P [Y < X < Z], where Y and Z be a random
stresses, and X be a random strength, having Weibull
distribution in presence of k outliers. [25] focused on
the estimate of R = P [Y < X < Z],when Y , Z and X
are independent and that these stress and strength
variable follows Kumaraswamy Distribution. [26]
discuss the estimation of Stress–Strength Reliability
for P [Y < X < Z] using Dagum Distribution. [27]
the reliability of one strength- four stresses for Lomax
Distribution was studied. Shrinkage estimation of
stress strength reliability P [Y < X < Z] for Lomax
Distribution based on records was studied by [28].
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A shrinkage estimator is a new estimate produced
by shrinking a raw estimate. [29], [30] have given
shrinkage estimates for population mean. [31] has
found the shrinkage estimate of the parameters of
exponential distribution. [32], [33], [34] obtain the
Shrinkage estimation in the context of exponential
distribution. [35] obtained the shrinkage estimator
of stress strength reliability R = P [X < Y ] when X
and Y are geometric distributions using record
values.

The remaining part of this paper is organized in to
seven sections. In section 3, we estimate the shrinkage
estimate of R under complete sample scheme. In
section 4, we estimate the shrinkage estimate of R
based on right censored sample. Section 5 and 6
discuss the shrinkage estimate of the quasi likelihood
function based on complete and censored sample. In
Section 7 we illustrate estimator’s performance by a
simulation study, and finally, in Section 8, conclusions
are made.

2 PRELIMINARY

Let X be the life of a device having an exponential distribution with a failure rate λ. It ia assumed that there
could be some variation in λ value because of small fluctuations in the manufacturing tolerance (see [36]). This
fluctuation is accommodated by assuming that λ have a gamma distribution with probability density function

f (λ|α, σ) =
σα

Γ (α)
λα−1e−σλ, λ ≥ 0 (2.1)

Then the density of X is obtained as

f (x) =

∫ ∞
0

λe−λx
σα

Γ (α)
λα−1e−σλdλ =

α

σ

(
1 +

x

σ

)−(α+1)

;x, α, σ > 0 (2.2)

which is Lomax Distribution. In other words, equipment is tested in the laboratory or ideal environment following
exponential distribution when worked in the real environment, which is lighter or harsher than the laboratory
environment, follows Lomax Distribution. So it is very important to consider the estimation problem of P (Y < X < Z)
when the underlying distribution follows Lomax Distribution.

Now let X be the strength of the random variable following Lomax distribution with parameters L (α1, λ), where α1

is the shape parameter and λ is scale parameter and Y and Z be the stress of the random variable following Lomax
distribution with parameter L (α2, λ) and L (α3, λ) corresponding probability density functions are given below.

f (x, α1, λ) =
α1λ

α1

(x+ λ)α1+1 ;x > 0, α1 > 0, λ > 0 (2.3)

f (y, α2, λ) =
α2λ

α2

(y + λ)α2+1 ; y > 0, α2 > 0, λ > 0 (2.4)

f (z, α3, λ) =
α3λ

α3

(y + λ)α3+1 ; z > 0, α3 > 0, λ > 0 (2.5)

Under this situation the stress strength reliability

R = P [Y < X < Z] =

∫ ∞
0

Fy (x)F z (x) f (x) dx =

∫ ∞
0

Fy (x) [1− Fz (x)] f (x) dx

=
α1α2

(α1 + α3) (α1 + α2 + α3)
; 0 < R < 1

(2.6)

In the present paper we assumes that the scale parameter λ which is common for all the three variables is known.
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3 MAXIMUM LIKELIHOOD ESTIMATION OF R BASED ON COMPLETE SAMPLE

Let x = (x1, x2, ..., xn1) be the random sample of n1 observation taken from Lomax distribution L (α1, λ) then its
likelihood function is given by

L (x|α1, λ) =

n1∏
i=1

α1λ
α1

(xi + λ)α1+1 = αn1
1 λn1α1

n1∏
i=1

(xi + λ)−(α1+1) (3.1)

Let y = (y1, y2, ..., yn2) be the random sample of n2 observation taken from Lomax Distribution L (α2, λ) then its
likelihood function is given by

L
(
y|α2, λ

)
=

n2∏
j=1

α2λ
α2

(yj + λ)α2+1 = αn2
2 λn2α2

n2∏
j=1

(yj + λ)−(α2+1) (3.2)

Let z = (z1, z2, ..., zn3) be the random sample of n3 observation taken from Lomax Distribution L (α3, λ) then its
likelihood function is given by

L (z|α3, λ) =

n3∏
k=1

α3λ
α3

(zk + λ)α3+1 = αn3
3 λn3α3

n3∏
k=1

(zk + λ)−(α3+1) (3.3)

The joint likelihood function is given by

L
(
x, y, z|α1, α2, α3, λ

)
=αn1

1 λn1α1

n1∏
i=1

(xi + λ)−(α1+1) αn2
2 λn2α2

n2∏
j=1

(yj + λ)−(α2+1)

× αn3
3 λn3α3

n3∏
k=1

(zk + λ)−(α3+1)

(3.4)

Taking Logarithm on both side of (3.4) we get

logL =n1logα1 + n1α1logλ− (α1 + 1)

n1∑
i=1

log (xi + λ) + n2logα2 + n2α2logλ− (α2 + 1)

n2∑
j=1

log (yj + λ)

+ n3logα3 + n3α3logλ− (α3 + 1)

n3∑
k=1

log (zk + λ)

(3.5)

Differentiating (3.5) partially with respect to α1, α2 and α3 and equating to zero we get the MLE of α1, α2 and α3

as
ˆα1mle =

n1∑n1
i=1 log

(
1 + xi

λ

) (3.6)

ˆα2mle =
n2∑n2

j=1 log
(
1 +

yj
λ

) (3.7)

ˆα3mle =
n3∑n3

k=1 log
(
1 + zk

λ

) (3.8)

Substituting this in (2.6) we obtained the MLE of R as

R̂mle =
α̂1α̂2

(α̂1 + α̂3) (α̂1 + α̂2 + α̂3)
; 0 < R < 1 (3.9)

From the above expression, it is very difficult to find the exact variance and distribution of R̂mle. So we use the
multivariate delta method (See [37], [38], [39], [40]) to find the approximate estimate of the asymptotic variance of
R̂mle which is given as
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Let the Fisher Information matrix Ø

Ø (α1, α2, α3) =


E
(
−∂2lnL
∂α2

1

)
E
(
−∂2lnL
∂α1∂α2

)
E
(
−∂2lnL
∂α1∂α3

)
E
(
−∂2lnL
∂α2∂α1

)
E
(
−∂2lnL
∂α2

2

)
E
(
−∂2lnL
∂α2∂α3

)
E
(
−∂2lnL
∂α3∂α1

)
E
(
−∂2lnL
∂α3∂α2

)
E
(
−∂2lnL
∂α2

3

)
 (3.10)

B
′

=
[
∂R
∂α1

∂R
∂α2

∂R
∂α3

]
=
[
b1 b2 b3

]
(3.11)

Then σ2
R = V (R) = B

′
Ø−1B. In this case

Ø (α1, α2, α3) =


n1

α2
1

0 0

0 n2

α2
2

0

0 0 n3

α2
3


So

Ø−1 =


α2
1
n1

0 0

0
α2
2
n2

0

0 0
α2
3
n3


Also

b1 =
∂R

∂α1
=

−α2

(
α2
1 − α2α3 − α2

2

)
(α1 + α3)2 (α1 + α2 + α3)2

(3.12)

b2 =
∂R

∂α2
=

α1

(α1 + α2 + α3)2
(3.13)

and
b3 =

∂R

∂α3
=
−α1α2(2α1 + α2 + 2α3)

(α1 + α3)2 (α1 + α2 + α3)2
(3.14)

Then

σ2
Rmle = V (R) = B

′
Ø−1B =

b21α
2
1

n1
+
b22α

2
2

n2
+
b23α

2
3

n3
(3.15)

By replacing the parameters with their maximum likelihood estimate we get the estimate σ̂2
Rmle of σ2

Rmle. In this
case the asymptotic distribution of R̂mle is N

(
R, σ̂2

Rmle

)
.

Based on this asymptotic distribution a 100 (1− γ) % asymptotic CI for R is R̂mle±Zγ/2σ̂Rmle. Where Zγ/2 denotes
the table value corresponding to γ/2 of N(0,1).

3.1 Shrinkage Estimation with Constant Shrinkage Factor
In this case we obtain the shrinkage estimate,

β̂sh = ψ
(
β̂
)
β̂ub +

(
1− ψ

(
β̂
))

β̂0

with ψ
(
β̂
)

= 0.01 the constant shrinkage weight factor suggested by [25] this leads the Shrinkage estimates of
α1, α2 and α3 as

ˆα1sh = 0.01 ˆα1ub + 0.99α̂10 (3.16)

ˆα2sh = 0.01 ˆα2ub + 0.99α̂20 (3.17)

and
ˆα3sh = 0.01 ˆα3ub + 0.99α̂30 (3.18)
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where ˆα1ub = n1−1
n1x

, ˆα2ub = n2−1
n2y

and ˆα3ub = n3−1
n3z

. α̂10, α̂20 and α̂30 is taken as the boot strap estimate of α1,
α2 and α3.

This leads to the constant shrinkage weight factor of R as

R̂sh =
ˆα1sh ˆα2sh

( ˆα1sh + ˆα2sh + ˆα3sh) ( ˆα1sh + ˆα3sh)
(3.19)

3.2 The Modified Thompson Type Shrinkage Estimator

Here we use two type of shrinkage estimate first one the modified Thompson type shrinkage weight factor and
Shrinkage weight factor suggested by [30] to find out the shrinkage estimator.
(a) Suggested by [25] here we take the weight factor as

φ
(
R̂
)

=
R̂ub − R̂0(

R̂ub − R̂0

)2
+ var

(
R̂ub

) (0.001) (3.20)

where R̂ub =
ˆα1ub

ˆα2ub

( ˆα1ub
+ ˆα2ub

+ ˆα3ub)( ˆα1ub
+ ˆα3ub)

and var
(
R̂ub

)
is as defined in (3.15). So the modified Thomason

type shrinkage estimator will be
R̂Th = φ

(
R̂
)
R̂ub +

(
1− φ

(
R̂
))

R̂0 (3.21)

(b) Shrinkage weight factor suggested by [30] here we take the weight factor as

ϕ
(
R̂
)

= a.exp

−
b
(
R̂ub − R̂0

)2
var

(
R̂ub

)
 (3.22)

where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be

R̂MS = ϕ
(
R̂
)
R̂ub +

(
1− ϕ

(
R̂
))

R̂0 (3.23)

4 MAXIMUM LIKELIHOOD ESTIMATION OF R BASED ON RIGHT CENSORED
SAMPLE

In this section we obtained the maximum likelihood estimate when the data on the stress is only is right censored.
Let us consider a right censored sample x =

(
x1, x2, ..., x(n1−k)

)
with k observations censored on right from

Lomax distribution L (α1, λ) then its likelihood function is given by

L (x|α1, λ) =
[
1− F(n1−k)

]k n1−k∏
i=1

f (xi) = α
(n1−k)
1 λ(n1−k)α1

[
1 +

x(n1−k)

λ

]−α1k
n1−k∏
i=1

1

(xi + λ)α1+1 (4.1)

Then using (3.2), (3.3) and (4.1) the joint likelihood function can be written as

L
(
x, y, z|α1, α2, α3, λ

)
=α

(n1−k)
1 λ(n1−k)α1

[
1 +

x(n1−k)

λ

]−α1k

n1−k∏
i=1

1

(xi + λ)α1+1α
n2
2 λn2α2

n2∏
j=1

(yj + λ)−(α2+1) αn3
3 λn3α3 ×

n3∏
k=1

(zk + λ)−(α3+1)
(4.2)
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Taking Logarithm on both side of (4.2) we get

logL =− α1k.log
[
1 +

x(n1−k)

λ

]
+ (n1 − k) logα1 + α1 (n1 − k) logλ− (α1 + 1)

n1−k∑
i=1

log (xi + λ)

+ n2logα2 + n2α2logλ− (α2 + 1)

n2∑
j=1

log (yj + λ)

+ n3logα3 + n3α3logλ− (α3 + 1)

n3∑
k=1

log (zk + λ)

(4.3)

From (4.3) we get the MLE of α1, α2 and α3 as

α̂1mlec =
n1 − k∑n1−k

i=1 log
(
1 + xi

λ

)
+ klog

(
1 +

x(n1−k)
λ

) (4.4)

α̂2mlec =
n2∑n2

j=1 log
(
1 +

yj
λ

) (4.5)

and

α̂3mlec =
n3∑n3

k=1 log
(
1 + zk

λ

) (4.6)

So using (4.4), (4.5) and (4.6) the MLE of R can be written as

R̂mlec =
α̂1α̂2

(α̂1 + α̂3) (α̂1 + α̂2 + α̂3)
; 0 < R < 1 (4.7)

In this case

∅−1 =


α2
1

n1−k
0 0

0
α2
2
n2

0

0 0
α2
3
n3

 (4.8)

Now using (3.12), (3.13), (3.14) and (4.8) we have

σ2
Rmlec = V (R) = B1∅−1B =

b21α
2
1

n1 − k
+
b22α

2
2

n2
+
b23α

2
3

n3
(4.9)

By replacing the parameters with their maximum likelihood estimate we get the estimate σ̂2
Rmlec of σ2

Rmlec. In
this case he asymptotic distribution of R̂mlec is N(R, σ̂2

Rmlec).Based on this asymptotic distribution a 100 (1− γ) %
asymptotic CI for R is R̂mlec ± Zγ/2σ̂Rmlec.

4.1 Shrinkage Estimation with Constant Shrinkage Factor

In this case we obtain the shrinkage estimate, with ψ
(
β̂
)

= 0.01 the constant shrinkage weight factor leads the
Shrinkage estimates of α1, α2 and α3 as

ˆα1shc = 0.01 ˆα1ub + 0.99α̂11 (4.10)

ˆα2shc = 0.01 ˆα2ub + 0.99α̂21 (4.11)

and
ˆα3shc = 0.01 ˆα3ub + 0.99α̂31 (4.12)
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where ˆα1ub = n1−1
n1x

, ˆα2ub = n2−1
n2y

and ˆα3ub = n3−1
n3z

. α̂11, α̂21 and α̂31 is taken as the boot strap estimate of
ˆα1mlec , ˆα2mlec and ˆα3mlec .

This leads to the constant shrinkage weight factor of R as

R̂shc =
ˆα1shc ˆα2shc

( ˆα1shc + ˆα2shc + ˆα3shc) ( ˆα1shc + ˆα3shc)
(4.13)

4.2 The Modified Thompson Type Shrinkage Estimator
The modified Thompson type shrinkage weight factor estimates suggested by [25] and [30] are

(a) φ
(
R̂
)

= R̂ub−R̂shc
(R̂ub−R̂shc)

2
+var(R̂ub)

(0.001) (4.14)

where R̂ub =
ˆα1ub

ˆα2ub

( ˆα1ub
+ ˆα2ub

+ ˆα3ub)( ˆα1ub
+ ˆα3ub)

and var
(
R̂ub

)
is as defined in (4.9). So the modified Thomason type

shrinkage estimator will be
R̂Th = φ

(
R̂
)
R̂ub +

(
1− φ

(
R̂
))

R̂shc (4.15)

(b) ϕ
(
R̂
)

= a.exp

{
− b(R̂ub−R̂shc)

2

var(R̂ub)

}
(4.16)

where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be

R̂MS = ϕ
(
R̂
)
R̂ub +

(
1− ϕ

(
R̂
))

R̂shc (4.17)

5 QUASI LIKELIHOOD ESTIMATION OF R BASED ON COMPLETE SAMPLE

In this section, we derived the maximum quasi-likelihood estimates for R. The quasi-likelihood function was
introduced by [41] to be used for estimating the unknown parameters in generalized linear models when only
the mean-variance relationship is specified. Wedderburn defined the quasi- function as

Q (x, µ) =

∫
µ

x− µ
V (µ)

dµ+ o (x) (5.1)

where µ = E (x), V (µ) = V ar (x) and o (x) is some function of x only. The variance assumption is generalized to
V ar (x) = φV (µ) where the variance function V (.) is assumed to be known and the parameter φmay be unknown.
The quasi-likelihood function has properties similar to those of the log-likelihood function. Let x = (x1, x2, ..., xn1)
be the random sample of n1 observation taken from Lomax distribution L (α1, λ) then its Quasi Likelihood function
is given by

Q (xi, α1, λ) = n1log

(
α1 − 1

λ

)
− ν

(
α1 − 1

λ

)
(5.2)

where ν =
∑n1
i=1 xi.

The natural exponent of Q (xi, α1, λ) as the as taken as the Quasi likelihood function and is given by

L (x|α1, λ) =

(
α1 − 1

λ

)n1

e
−
(
α1−1
λ

)
ν
;α1 > 0, ν =

n1∑
i=1

xi (5.3)

Similar based on the sample y = (y1, y2, ..., yn2) and z = (z1, z2, ..., zn3) the Quasi likelihood function of Y and Z
is given by

L
(
y|α2, λ

)
=

(
α2 − 1

λ

)n2

e
−
(
α2−1
λ

)
ζ
;α2 > 0, ζ =

n2∑
j=1

yj (5.4)
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and

L (z|α3, λ) =

(
α3 − 1

λ

)n3

e
−
(
α3−1
λ

)
β
;α3 > 0, β =

n3∑
k=1

zk (5.5)

So the joint quasi likelihood function can be written as

L
(
x, y, z|α1, α2, α3, λ

)
=

(
α1 − 1

λ

)n1

e
−
(
α1−1
λ

)
ν
.

(
α2 − 1

λ

)n2

e
−
(
α2−1
λ

)
ζ

(
α3 − 1

λ

)n3

e
−
(
α3−1
λ

)
β (5.6)

From (5.6) the Quasi Likelihood Estimate of α1, α2, α3 and R are obtained as

α̂1qmle = 1 +

(
n1λ

ν

)
= 1 +

(
n1λ∑n1
i=1 xi

)
(5.7)

α̂2qmle = 1 +

(
n2λ

ζ

)
= 1 +

(
n2λ∑n2
j=1 yj

)
(5.8)

α̂3qmle = 1 +

(
n3λ

β

)
= 1 +

(
n3λ∑n3
k=1 zk

)
(5.9)

and
R̂qmle =

α̂1α̂2

(α̂1 + α̂3) (α̂1 + α̂2 + α̂3)
; 0 < R < 1 (5.10)

In this case

∅−1 =


(α1−1)2

n1
0 0

0 (α2−1)2

n1
0

0 0 (α3−1)2

n3

 (5.11)

Now using (3.12), (3.13), (3.14) and (5.11) we have

σ2
Rqmle = V (R) = B

′
φ−1B =

b21 (α1 − 1)2

n1
+
b22 (α2 − 1)2

n2
+
b23 (α3 − 1)2

n3
(5.12)

By replacing the parameters with their maximum likelihood estimate we get the estimate σ̂2
Rqmle of σ2

Rqmle. In this
case the asymptotic distribution of R̂qmle is N(R, σ̂2

Rqmle). Based on this asymptotic distribution a 100 (1− γ) %

asymptotic CI for R is R̂qmle ± Zγ/2σ̂Rqmle.

5.1 Shrinkage Estimates
In this case we obtain the different type of shrinkage estimates as,
(a) the constant weight shrinkage estimates with ψ

(
β̂
)

= 0.01 as

R̂shq =
ˆα1shq ˆα2shq(

ˆα1shq + ˆα2shq + ˆα3shq

) (
ˆα1shq + ˆα3shq

) (5.13)

ˆα1shq = 0.01 ˆα1ub + 0.99α̂12 (5.14)

ˆα2shq = 0.01 ˆα2ub + 0.99α̂22 (5.15)

and
ˆα3shq = 0.01 ˆα3ub + 0.99α̂32 (5.16)

where ˆα1ub = n1−1
n1x

, ˆα2ub = n2−1
n2y

and ˆα3ub = n3−1
n3z

. α̂12, α̂22 and α̂32 is taken as the boot strap estimate of
α̂1qmle, α̂2qmle and α̂3qmle.
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(b) Suggested by [25] here we take the weight factor as

φ
(
R̂
)

=
R̂ub − R̂0(

R̂ub − R̂shq
)2

+ var
(
R̂ub

) (0.001) (5.17)

where R̂ub =
ˆα1ub

ˆα2ub

( ˆα1ub
+ ˆα2ub

+ ˆα3ub)( ˆα1ub
+ ˆα3ub)

and var
(
R̂ub

)
is as defined in (5.12). So the modified Thomason

type shrinkage estimator will be

R̂Thq = φ
(
R̂
)
R̂ub +

(
1− φ

(
R̂
))

R̂shq (5.18)

(c) Shrinkage weight factor suggested by [30] here we take the weight factor as

ϕ
(
R̂
)

= a.exp

−
b
(
R̂ub − R̂shq

)2
var

(
R̂ub

)
 (5.19)

where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be

R̂MS = ϕ
(
R̂
)
R̂ub +

(
1− ϕ

(
R̂
))

R̂shq (5.20)

6 QUASI LIKELIHOOD ESTIMATION OF R BASED ON RIGHT CENSORED
SAMPLE

As in the case of section 4 in this case also we considered a right censoring procedure. Let x = (x1, x2, ..., xn1−k)
be the random sample of (n1 − k) observation taken from Lomax distribution L (α1, λ) then its Quasi function is
given by

Q (xi, α1, λ) = (n1 − k) log

(
α1 − 1

λ

)
− ν

(
α1 − 1

λ

)
(6.1)

where ν =
∑n1−k
i=1 xi. So the quasi likelihood function in this case is given as

L (x|α1, λ) =

(
α1 − 1

λ

)n1

e
−
(
α1−1
λ

)
ν
;α1 > 0, ν =

n1−k∑
i=1

xi (6.2)

Now using (6.2), (5.4) an (5.5) the joint likelihood function can be written as

L
(
x, y, z|α1, α2, α3, λ

)
=

(
α1 − 1

λ

)n1−k

e
−
(
α1−1
λ

)
ν
.

(
α2 − 1

λ

)n2

e
−
(
α2−1
λ

)
ζ
.

(
α3 − 1

λ

)n3

e
−
(
α3−1
λ

)
β (6.3)

Using (6.3) we get the estimate of α1, α2, α3 and R are obtained as

α̂1qmlec = 1 +

(
(n1 − k)λ

ν

)
= 1 +

(
(n1 − k)λ∑(n1−k)
i=1 xi

)
(6.4)

α̂2qmlec = 1 +

(
n2λ

ζ

)
= 1 +

(
n2λ∑n2
j=1 yj

)
(6.5)

45



Neethu and Anjana; Curr. J. Appl. Sci. Technol., vol. 42, no. 42, pp. 36-66, 2023; Article no.CJAST.107238

α̂3qmlec = 1 +

(
n3λ

β

)
= 1 +

(
n3λ∑n3
k=1 zk

)
(6.6)

and
R̂qmlec =

α̂1α̂2

(α̂1 + α̂2 + α̂3) (α̂1 + α̂3)
; 0 < R < 1 (6.7)

In this case

∅−1 =


(α1−1)2

n1−k
0 0

0 (α2−1)2

n1
0

0 0 (α3−1)2

n3

 (6.8)

Now using (3.12), (3.13), (3.14) and (6.8) we have

σ2
Rqmlec = V (R) = B

′
φ−1B =

b21 (α1 − 1)2

n1 − k
+
b22 (α2 − 1)2

n2
+
b23 (α3 − 1)2

n3
(6.9)

By replacing the parameters with their maximum likelihood estimate we get the estimate σ̂2
Rqmlec of σ2

Rqmlec. In this
case he asymptotic distribution of R̂qmlec is N(R, σ̂2

Rqmlec). Based on this asymptotic distribution a 100 (1− γ) %

asymptotic CI for R is R̂qmlec ± Zγ/2σ̂Rqmlec.

6.1 Shrinkage Estimates

In this case we obtain the shrinkage estimate, with ψ
(
β̂
)

= 0.01 the constant shrinkage weight factor suggested
by [25].

This leads to the constant shrinkage weight factor of R as R̂shqc

R̂shqc =
ˆα1shqc ˆα2shqc(

ˆα1shqc + ˆα2shqc + ˆα3shqc

) (
ˆα1shqc + ˆα3shqc

) (6.10)

with

ˆα1shqc = 0.01 ˆα1ub + 0.99α̂13 (6.11)

ˆα2shqc = 0.01 ˆα2ub + 0.99α̂23 (6.12)

and

ˆα3shqc = 0.01 ˆα3ub + 0.99α̂33 (6.13)

where ˆα1ub = n1−1
n1x

, ˆα2ub = n2−1
n2y

and ˆα3ub = n3−1
n3z

. α̂13, α̂23 and α̂33 is taken as the boot strap estimate of
ˆα1qmlec , ˆα2qmlec and ˆα3qmlec .

Also the modified Thompson type shrinkage weight factor and Shrinkage estimate by [30] are

(b) Suggested by [25] here we take the weight factor as

φ
(
R̂
)

=
R̂ub − R̂shqc(

R̂ub − R̂shqc
)2

+ var
(
R̂ub

) (0.001) (6.14)

46



Neethu and Anjana; Curr. J. Appl. Sci. Technol., vol. 42, no. 42, pp. 36-66, 2023; Article no.CJAST.107238

where R̂ub =
ˆα1ub

ˆα2ub

( ˆα1ub
+ ˆα2ub

+ ˆα3ub)( ˆα1ub
+ ˆα3ub)

and var
(
R̂ub

)
is as defined in (6.9). So the modified Thomason type

shrinkage estimator will be

R̂Th = φ
(
R̂
)
R̂ub +

(
1− φ

(
R̂
))

R̂shqc (6.15)

(c) Shrinkage weight factor suggested by [30] here we take the weight factor as

ϕ
(
R̂
)

= a.exp

−
b
(
R̂ub − R̂shqc

)2
var

(
R̂ub

)
 (6.16)

where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be

R̂MS = ϕ
(
R̂
)
R̂ub +

(
1− ϕ

(
R̂
))

R̂shqc (6.17)

7 SIMULATION STUDY

In this section we obtained the numerical results using simulation data.

Here, we have considered a bootstrap CI for r by using a parametric percentile bootstrap method ([42]). The
following algorithm is used to generate the parametric bootstrap estimates of R.

Step-1. Simulate a random sample from Uniform (0,1). Using this simulated value compute random sample for
X ∼ L (α1, λ), Y ∼ L (α2, λ) and Z ∼ L (α3, λ) respectively.

Compute the MLE of α1, α2, α3 say α̂1mle, α̂2mle, α̂3mle given in setion-2.

Step-2. Generate an independent parametric bootstrap sample using α̂1mle, α̂2mle, α̂3mle instead of α1, α2, α3.
Then using these values, calculate R̂mle in the case of complete sample. Similar way generates an independent
parametric bootstrap sample with a censoring of 30% and 50%. using α̂1mlec, α̂2mlec, α̂3mlec instead of α1, α2,
α3. Then using these values, calculate R̂mlec.

Step-3. Calculate the maximum likelihood estimate of α̂1mle, α̂2mle, α̂3mle and R̂mle obtained in step-2 say α̂′1mle,
α̂′2mle, α̂′3mle and R̂′1mle. In censored sample , the maximum likelihood estimate of α̂1mlec, α̂2mlec, α̂3mlec and
R̂mlec obtained in step-2 say α̂′1mlec, α̂′2mlec, α̂′3mlec and R̂′mlec.

Step-4. Repeat the step-2 and step-3N times to obtained the parametric bootstrap estimates R̂′ML1, R̂
′
ML2, ..., R̂

′
MLN

of R.

Step-5. Let H (x) = P
(
R̂ML ≤ x

)
be the cumulative distribution function of R̂ML. Define R̂Boot (x) = H−1 (x)

for a given x. The approximate 100 (1− γ) % CI of R is given by(
R̂Boot (γ/2) , R̂Boot (1− γ/2)

)
.

In the absence of real data finally, we study the performance of the estimates obtained in the above section using
Monte Carlo Simulated data sets. All the computations are done by using R Program.

Generate the sample of sizes n1 = n2, n3 = (10, 10), (10, 25), (10, 50), (25, 10), (25, 25), (25, 50), (50, 10), (50, 25), (50, 50)
from Lomax Distribution with parameter values 0.5,2,3.5 for α1, α2 and α3. The bias, mean square error, confidence
interval and relative efficiency are calculated and are given in the following table.
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Fig. 1. Relative efficiency improvement Over MLE with complete sample
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Fig. 2. Relative efficiency improvement Over MLE with censored sample
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Fig. 3. Relative efficiency improvement Over MLE with complete sample using quasi Liklihood Estimation
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Fig. 4. Relative efficiency improvement Over MLE with censored sample using quasi Liklihood Estimation
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8 CONCLUSION

From the numerical study conducted so for we can
conclude that

• When sample size increases bias and mean
square error decreases.

• The relative efficiency improvement over MLE of
the R̂sh greater than that of R̂Th and R̂Ms. So
R̂sh is performs better than R̂Th and R̂Ms.

• In Maximum Likelihood Estimation when sample
sizes is large the width of confidence interval of
R̂mle is less than that of R̂mlec.

• In Quasi Likelihood Estimation when sample
sizes is large the width of confidence interval

R̂qmle is less than that of R̂qmlec.

• Relative efficiency improvement over MLE is
higher in the case of censored sample
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