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ABSTRACT

Lomax distribution can be considered as the mixture of exponential and gamma distribution. This distribution is
an advantageous lifetime distribution in reliability analysis. The applicability of Lomax distribution is not restricted
only to the reliability field, but it has broad applications in Economics, actuarial modelling, queuing problems,
biological sciences, etc. Initially, Lomax distribution was proposed by Lomax in 1954, and it is also known as
Pareto Type Il distribution. Many statistical methods have been developed for this distribution; for a review of
Lomax Distribution, see [1] and the references. The stress strength model plays an important role in reliability
analysis. The term stress strength was first introduced by [2]. In the context of reliability, R is defined as the
probability that the unit strength is greater than stress, thatis, R = P (X > Y), where Xis the random strength of
the unit, and Y is the instant stress applied to it. Thus, estimation of R is very important in Reliability Analysis.The
estimates of R discussed in the context of Lomax distribution are limited to the study of a single stress strength
model with upper stress. But in real life, there are situations where we have to consider not only the upper stress
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but also the lower stress. Accordingly, in the present paper, the estimation of stress strength model
R =P (Y < X < Z) represents the situation where the strength X should be greater than stress Y and smaller
than stress Z for Lomax distribution, Shrinkage maximum likelihood estimate and Quasi likelihood estimate are
obtained both under complete and right censored data. We have considered the asymptotic confidence interval
(Cl) based on MLE and bootstrap ClI for R. Monte Carlo simulation experiments were performed to compare the
performance of estimates obtained.

Keywords: Lomax distribution; stress strength reliability; maximum likelihood estimator; quasi likelihood estimator;
confidence interval.

2010 Mathematics Subject Classification: 62N05.

1 INTRODUCTION R = P[Y < X < Z], where X is the random strength
and Y and Z are independent random stress variables
follows Lomax Distribution. The stress strength model
of P[Y < X < Z] was studied in many branches of
science such as Psychology, Medicine, Pedagogy,
Engineering etc. The Estimationof R=P[Y < X < Z]
represents the situation where the strength X should be
greater than stress Y and smaller than stress Z. For
eg:- Many devices cannot function at high temperatures;
neither can very low ones. Similarly a person’s blood
pressure should lie within two limits i.e systolic and
diastolic. For instance many electronic components
cannot work at high or low voltage. The estimate and
the asymptotic confidence intervals are obtained for R
under both complete and censored samples.

The stress strength model plays an important role
in reliability analysis. The term stress strength was
first introduced by [2]. In the context of reliability, R
is defined as the probability that the unit strength is
greater than stress, that is R = P[X > Y] where X
is the random strength of the unit and Y is the instant
stress applied to it. Moreover R provides the probability
of system failure. The stress strength model was
discussed in the literature from different point of view.
Inference for generalized Lomax Distribution based on
record statistics was considered by [3]. [4] studied the
inference for the Lomax Distribution stress- strength
model. [5] studied exponentiated Lomax Distribution..
The different stress strength model was considered
by [6], [7], [8], [9]. Estimation of B = P[X > Y] for The Minimum Variance Unbiased (MVU), Maximum
Lomax Distribution with the presence of outliers was | ikalihood and Empirical Estimator of R =
discussed by [10]. [11] studied the Power of Lomax P[Y < X < Z] were discussed by [21]. [22] deal with
Distribution with an application to bladder cancer data. i,a estimation of R when Y, Z and X are exponential
The recent developments in stress strength reliability o0 qom variables. Maximum Likelihood Estimate and
was discussed by [12], [13], [14], [15], [16], [17], [18], ypitormly Minimum Variance Unbiased Estimate of
[19] and [20]. In this paper estimates the stress strength  p \\hen Y, Z and X either uniform or exponential
reliability for a component with a strength independent  54om variable with the unknown location parameter
of opposite lower and upper bound stresses when the a5 considered by [23]. [24] focused on the estimate
stresses and strength have Lomax distribution under ¢ p _ P[Y < X < Z], where Y and Z be a random
different sampling schemes. = Shrinkage maximum  gyeg5es and X be a random strength, having Weibull
likelihood estimate and Quasi likelihood estimate are yistribution in presence of k outliers. [25] focused on
obtained under complete and right censored data. We 14 ostimate of R = P [Y < X < Z],when Y, Z and X

have considered the asymptotic confidence interval (Cl) 5,0 independent and that these stress and strength
based on MLE and bootstrap CI for R. Monte Carlo

: ) | variable follows Kumaraswamy Distribution. [26]
simulation experiments were performed to compare the  gjiscss the estimation of Stress—Strength Reliability
performance of estimates obtained. for P[Y < X < Z] using Dagum Distribution.  [27]

the reliability of one strength- four stresses for Lomax
As a natural extension of the two component stress Distribution was studied.  Shrinkage estimation of
strength model we consider in the present paper the stress strength reliability P[Y < X < Z] for Lomax
Maximum Likelihood Estimation (MLE) and Quasi Distribution based on records was studied by [28].
likelihood estimate of stress strength reliability model
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A shrinkage estimator is a new estimate produced The remaining part of this paper is organized in to
by shrinking a raw estimate. [29], [30] have given seven sections. In section 3, we estimate the shrinkage
shrinkage estimates for population mean. [31] has estimate of R under complete sample scheme. In
found the shrinkage estimate of the parameters of section 4, we estimate the shrinkage estimate of R
exponential distribution.  [32], [33], [34] obtain the based on right censored sample. Section 5 and 6
Shrinkage estimation in the context of exponential discuss the shrinkage estimate of the quasi likelihood
distribution. [35] obtained the shrinkage estimator function based on complete and censored sample. In
of stress strength reliability R = P[X < Y] when X Section 7 we illustrate estimator’s performance by a
and Y are geometric distributions using record simulation study, and finally, in Section 8, conclusions
values. are made.

2 PRELIMINARY

Let X be the life of a device having an exponential distribution with a failure rate A. It ia assumed that there
could be some variation in A value because of small fluctuations in the manufacturing tolerance (see [36]). This
fluctuation is accommodated by assuming that A have a gamma distribution with probability density function

O,Q

a—1_—o) > )
F(a))\ e A >0 (2.1)

f(Na,0) =

Then the density of X is obtained as

f(x) = / e T\l g =2 (1 +2 sz, a,0 >0 (2.2)
0

—(a+1)
I'(a) o E)
which is Lomax Distribution. In other words, equipment is tested in the laboratory or ideal environment following
exponential distribution when worked in the real environment, which is lighter or harsher than the laboratory
environment, follows Lomax Distribution. So it is very important to consider the estimation problem of P (Y < X < Z)
when the underlying distribution follows Lomax Distribution.

Now let X be the strength of the random variable following Lomax distribution with parameters L (a1, \), where a;
is the shape parameter and ) is scale parameter and Y and Z be the stress of the random variable following Lomax
distribution with parameter L (a2, A) and L (as, A) corresponding probability density functions are given below.

Ot1)\a1

f(x7a17)\):w;x>0,a1>0,)\>0 (2.3)
X
asz
f(y,ag,)\)zﬁ;y>0,az>0,)\>0 (2.4)
Yy
a3
f(z,ozg,)\):%;z>o,a3>0,)\>0 (2.5)
Yy

Under this situation the stress strength reliability

R:P[Y<X<Z]:/OooFy(m)Fz(m)f(m)dm:/OooFy(m)[lsz(x)]f(:c)dx

= aaz 0<R<1
(01 + az) (a1 + a2 + a3)

(2.6)

In the present paper we assumes that the scale parameter X\ which is common for all the three variables is known.
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3 MAXIMUM LIKELIHOOD ESTIMATION OF R BASED ON COMPLETE SAMPLE

Let z = (x1, 22, ..., xn, ) be the random sample of n; observation taken from Lomax distribution L (a1, A) then its
likelihood function is given by

ni

ni
a1 At niynio —(a1+1)
L(zla,\) =] — a7 = ar A [ ] (@i + )~ (3.1)
o1 (@A) i=1

Lety = (y1,¥2,...,¥n,) be the random sample of ns observation taken from Lomax Distribution L (a2, A) then its
likelihood function is given by

n2
=ap? N2 I ] (yy +A) "2ty (3.2)

j=1

L (ylaz,A) =

Let z = (21, 22, ..., zn, ) be the random sample of n3 observation taken from Lomax Distribution L (a3, A) then its
likelihood function is given by

n3

L(zlaz, \) = [ —=5——5 = ag2am22 [T (21 + A) (oD (3.3)
i (kAT kll
The joint likelihood function is given by
ny na
L (z,y, z|a1, o2, as, A) =aft A" H (zi + \) 7D gnz \n2az H (y; + A) (@2 D
= = (3.4)

n3

% agm)\nsas H (Zk +)\)—(0<3+1)

k=1

Taking Logarithm on both side of (3.4) we get

ny na
logL =nilogay + nianlogh — (an + 1) Z log (i + A) + nalogas + naaslogh — (a2 + 1) Z log (y; + \)

i=1 J=1

(3.5)

n3
+ nslogas + nzaslog\ — (as + 1) Z log (z1, + A\)
k=1

Differentiating (3.5) partially with respect to a1, a2 and a3 and equating to zero we get the MLE of a1, a2 and as
as

Qi = m (3.6)
e = g (15 ) 87)
e = S Tog (15 ) @8
Substituting this in (2.6) we obtained the MLE of R as
Rinte = chd 0<R<1 (3.9)

(di + ds) (di + d2 + d3)

From the above expression, it is very difficult to find the exact variance and distribution of R..... So we use the
multivariate delta method (See [37], [38], [39], [40]) to find the approximate estimate of the asymptotic variance of

Rpie Which is given as
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Let the Fisher Information matrix @

—82inL —8%inL —82InL
E Oa% E Oa1Oag E Oa1 Oz
O (o, a0,03) = |E (F2L) B (=20L) p(z20kL (3.10)
2
—82inL —8%inL —82InL
B dagday E (8@36&2) a3
B =22 o 2R]=[n b b (3.11)
Then 0% = V (R) = B'®~'B. In this case
% 0 0
1
@(041,042,043): 0 70% 0
0o 0 ™
@3
So
% 0 0
0t=]0 =2 o
ng 5
0 a3
n3
Also )
OR —Q2 (Oé% — Q203 — a2)
b = I ! . (3.12)
day (01 4+ az)” (o1 + a2 + az)
L (3.13)
Oaz (a1 + a2 + a3)
and OR 2 2
by = 27— —aq o 2a1 + a2 + 2a3) ; (3.14)
Oas (o1 + as)” (a1 + a2 + 3)
Then ’ b2a2  biaZ  blad
Ohmie =V (R)=B @ 'B=—"1 4 272 7873 (3.15)

ni n2 ns

By replacing the parameters with their maximum likelihood estimate we get the estimate 6%.10 of o% ... In this
case the asymptotic distribution of Ryic is N (R, 6%mic)-

Based on this asymptotic distribution a 100 (1 — +) % asymptotic Cl for R is leeiZVm&lee. Where Z,,, denotes
the table value corresponding to v/2 of N(0,1).

3.1 Shrinkage Estimation with Constant Shrinkage Factor

In this case we obtain the shrinkage estimate,
Bon = (B) Bub + (1 - (B)) Bo

with (ﬂ) = 0.01 the constant shrinkage weight factor suggested by [25] this leads the Shrinkage estimates of
a1, g and «3 as

af,, = 0.0las,, + 0.99a10 (3.16)

as,, = 0.0las,, +0.990 (3.17
and

as,, = 0.0las3,, + 0.99a50 (3.18)
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where a7, = 2= a5, = 2! and a3,, = "=, aio, a2 and ajo is taken as the boot strap estimate of a1,

niT noyY ns3z
o and as.

This leads to the constant shrinkage weight factor of R as

R., = A1, A2,y (3.19)

(af,, + az,, +a3,,) (a1, +a3,,)

3.2 The Modified Thompson Type Shrinkage Estimator

Here we use two type of shrinkage estimate first one the modified Thompson type shrinkage weight factor and
Shrinkage weight factor suggested by [30] to find out the shrinkage estimator.
(a) Suggested by [25] here we take the weight factor as

® (R) - (Rub - ;")211?}; (Rub) (0.001) (3.20)

_ “Tw®w  and gar (Rub) is as defined in (3.15). So the modified Thomason
o‘lu,b+°‘2ub+a3u,b)(°‘1uh+a3ub)

type shrinkage estimator will be

where Ry, = (

Ron = ¢ (R) Rup + (1 — (R)) Ro (3.21)

(b) Shrinkage weight factor suggested by [30] here we take the weight factor as
N N 2
) b (Ruv — o)
o) (R) =a.erpy —————— (3.22)
var (Rub>

where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be

Rars = ¢ (RB) Ruv + (1= ¢ (R)) Ro (3.23)

4 MAXIMUM LIKELIHOOD ESTIMATION OF R BASED ON RIGHT CENSORED
SAMPLE

In this section we obtained the maximum likelihood estimate when the data on the stress is only is right censored.
Let us consider a right censored sample z = (a:l,a:g, ...,x(nl_k)) with k& observations censored on right from
Lomax distribution L (a1, M) then its likelihood function is given by

niy—k

ny1—k
k ny— ni—k)a T(ni—k —ark L 1
L(glar, A) = [L= Fy-]" [ £ (@) = afm0arm0en [ 4 2ot 0 T o @)
i=1 i=1 ?

Then using (3.2), (3.3) and (4.1) the joint likelihood function can be written as

—ark
L (2, 2la1, a2, 03, 3) =a{" M AR [y S ]

A
ni—k ng ns (42)

1 naynoo —(a R s T e o
Hma22)\22ll(yj+)\) (2+1)a35)\ssxll(zk+)\) (az+1)
=1 i=1 k=1
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Taking Logarithm on both side of (4.2) we get

ny—k
logL = — a1 k.log [1 + W] + (n1 — k) logar + aq (n1 — k) logh — (a1 + 1) Z log (z; + A)
i=1
na
+ nalogas + naaslogh — (a2 + 1) Z log (y; + A) (4.3)
j=1
ng
+ nslogas + nzaslogh — (as + 1) Z log (zi + A)

k=1

From (4.3) we get the MLE of a1, az and a3 as

@lmlec = L k p (44)
Zz;lfk log (1 + %) + klog (1 + 7(7”)\7“)
N n2
QA2mlec = ™y = (45)
Y2 log (1+ %)
and
~ ns
A3mlec = n Z (46)
iy log (1 + Tk)
So using (4.4), (4.5) and (4.6) the MLE of R can be written as
- 102
Rec = = = = = S ,0<R<1 4.7
! (d1 + di3) (d1 + a2 + dis) “.7)
In this case ,
gt=| 0 2 ¢ (4.8)
ng 5
0 a3
n3
Now using (3.12), (3.13), (3.14) and (4.8) we have
2 2 2 2 2 2
0Zmiee =V (R) = Blo~1p = 19 k203 | D503 (4.9)
ny — k n2 ns

By replacing the parameters with their maximum likelihood estimate we get the estimate 6%,,;.. Of 0% mce- IN

this case he asymptotic distribution of Rumice 18 N(R, 6%,,....).Based on this asymptotic distribution a 100 (1 — ~) %
asymptotic Cl for Ris Ryicc £ Z- /20 Rmlecc-

4.1 Shrinkage Estimation with Constant Shrinkage Factor

In this case we obtain the shrinkage estimate, with (ﬁ) = 0.01 the constant shrinkage weight factor leads the
Shrinkage estimates of a1, a2 and as as

o1}, = 0.0lar,, +0.99a11 (4.10)

asz.,. = 0.0laz,, + 0.99a51 (4.11)
and

asz.,. = 0.0las,, + 0.990a31 (4.12)
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where ai,, = M=, a5, = "= and a3, = "“=1. ai1, a2 and o3 s taken as the boot strap estimate of
Ol iees O2miec and QA3

This leads to the constant shrinkage weight factor of R as

Pene (4.13)

(Ql;h,c + O‘Q;h,c + O‘&Zh,a) (Oél.;hc + a3;h,c)

A~ OzlA
Rshc — shc

4.2 The Modified Thompson Type Shrinkage Estimator
The modified Thompson type shrinkage weight factor estimates suggested by [25] and [30] are

(@) ¢ (R) - (Rub—liﬁfﬁﬁir(m) (0.001) (4.14)

AT A2y
ATy, +O"-’Aub+°‘3iub)(afubJr"‘%b
shrinkage estimator will be

where R, = and var ( Ru ) is as defined in (4.9). So the modified Thomason type
( )

Rryn = ¢ (R) Ry + (1 - ¢ (E)) Rihe (4.15)

©) ¢ (R) = a.cop {,M} (4.16)

var(}f{ub)
where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be

Ruis = ¢ (B) R+ (1= ¢ (R)) Rone (417)

5 QUASI LIKELIHOOD ESTIMATION OF R BASED ON COMPLETE SAMPLE

In this section, we derived the maximum quasi-likelihood estimates for R. The quasi-likelihood function was
introduced by [41] to be used for estimating the unknown parameters in generalized linear models when only
the mean-variance relationship is specified. Wedderburn defined the quasi- function as

Q (o) = / S dnto(@ (5.1)

where = E (z), V (1) = Var (z) and o (x) is some function of = only. The variance assumption is generalized to
Var (z) = ¢V (u) where the variance function V' (.) is assumed to be known and the parameter ¢ may be unknown.
The quasi-likelihood function has properties similar to those of the log-likelihood function. Let z = (z1, z2, ..., Zn, )
be the random sample of n; observation taken from Lomax distribution L (a1, ) then its Quasi Likelihood function

is given by
Q (x5, 01, A) = nilog (al)\_l) _V<a1)\—1) (5.2)

— ni .
where v =3 7" ;.

The natural exponent of @ (z;, a1, \) as the as taken as the Quasi likelihood function and is given by

Oél—l ni _(‘11—1)” ni
L (z|ai,A\) = ( ;Y ) e A ;a1>0,1/:in (5.3)
i=1

Similar based on the sample y = (y1,¥2; .., yny) @Nd z = (21, 22, ..., 2n3) the Quasi likelihood function of Y and Z
is given by

no o no
L (g\ag,)\) = <a2)\_ 1) e_(zfl)c;ag >0,(= Zyj (5.4)

j=1
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and

_ n3 ag—1 "3
L (zlas,\) = (a?’/\ 1) e_( B )ﬁ;Oég >O7ﬁ:sz (5.5)
k=1

So the joint quasi likelihood function can be written as

_ ni g — _ no ao— _ ns e —
L(z,y,zlai, az,a3,\) = <a1)\ 1) o (), (%) e (F5)¢ <a‘°’71) —(55)8 (56

A

From (5.6) the Quasi Likelihood Estimate of a1, a2, as and R are obtained as

A A
Gigmie = 1 + (%) =1+ ( 4z w) (5.7)
i=1Li
A A
¢ j=1Yi
~ ng)\ ng)\
mle — 1 — =1 n .
e =14 () =14 (2 ©9
and
~ a0
Rme: ~ N = = . 7O<R<1 5.10
amnd (1 + a3) (d1 + d2 + di3) ( )
In this case ,
a2 0
ni .
o1 = 0 (Qanl)z 0 (5.11)
0 0 (ag—1)?

ns

Now using (3.12), (3.13), (3.14) and (5.11) we have

b% (051 — 1)2 + bg (Oéz — 1)2 + b§ (Oé3 — 1)2

ni n2 ns

U%qmle = V(R) = B,¢7lB = (512)
By replacing the parameters with their maximum likelihood estimate we get the estimate Er?aqmle of aﬁqmle. In this
case the asymptotic distribution of Rymi. is N (R, 6hgmic)- Based on this asymptotic distribution a 100 (1 — ) %
asymptotic Cl for Ris Rymie + Z /26 rgmie-

5.1 Shrinkage Estimates

In this case we obtain the different type of shrinkage estimates as,
(a) the constant weight shrinkage estimates with 1) (,B) =0.01 as

~ a1 a2

sh sh
Rana = (), + 2, + a(;;hq) q(alg,m +as,,) (5.13)
aiy,, = 0.0la1,, +0.99a32 (5.14)
az,,, = 0.0laz,, +0.990%2 (5.15)
and
as),, = 0.01a3,, + 0.99032 (5.16)
where ai,, = "=, a5, = "2= and a3,, = "=1. ai2, a2z and a3 is taken as the boot strap estimate of

dlqmle, qumle and &qule-
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(b) Suggested by [25] here we take the weight factor as

P (R) - (Rub - Rib) - fiar (Rub) (0.001) (5.17)

where Ry, = — _OTup %y — and var (]%ub) is as defined in (5.12). So the modified Thomason
(alub+a2ub+a3ub) alub+a3ub)

type shrinkage estimator will be

RThq = ¢) (R> Rub + (1 - ¢7 (R)) Rshq (518)
(c) Shrinkage weight factor suggested by [30] here we take the weight factor as

b (Rub - I%Shq)2

%) (R) = a.exp - (5.19)
var (Rub>
where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be
Rus=¢ (R) Ruy + (1 4 (R)) Rsng (5.20)

6 QUASI LIKELIHOOD ESTIMATION OF R BASED ON RIGHT CENSORED
SAMPLE

As in the case of section 4 in this case also we considered a right censoring procedure. Let z = (z1, z2, ..., Tn, —k)
be the random sample of (n, — k) observation taken from Lomax distribution L (a1, A) then its Quasi function is
given by

Q(xi,al,)\):(nlfk)log<a1>\_1)71/(0{1)\_1) (6.1)

where v = 371 % z,. So the quasi likelihood function in this case is given as

ny—k

— n1 ap—1
L (z|ai, A) = <a1)\ 1) e_( R )U;al >0,v= Z T; (6.2)
i=1

Now using (6.2), (5.4) an (5.5) the joint likelihood function can be written as

ni—k o — o n o — _ na oa—
L(z,y,zlon, 02,03, A) = (aﬁl) 1 67(%%'(&2 1) 267(%)9(&1) ) 6y

A A A

Using (6.3) we get the estimate of a1, a2, az and R are obtained as

. —k)A —k)A
alqmlec =1 + (%) =1 + <(n(lnl—k))z> (64)
i=1 i
N ng)\ TLQ}\
G2gmiece =1+ | —— ) =1+ Y 6.5
2t ( ¢ ) (Zj21 yj) (6.9)
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~ ng)\ ng)\
milec = 1 — =1 ~ns 6.6
s +(5) +( k:> (6.6)
and
- a0z
Rmec: N N = = . 7O<R<1 6.7
am! (a1 + d2 + ds) (a1 + dia) (6.7)
In this case
L 0
ny—
ol=| o l2® g (6.8)
0 0 (a3—1)2

n3

Now using (3.12), (3.13), (3.14) and (6.8) we have

b% (011 — 1)2 + b§ (042 — 1)2 + b§ (Oé3 — 1)2

2 _ _p -lp
Uqulec_V(R)_B¢ B = ’fM—k T2 na

(6.9)
By replacing the parameters with their maximum likelihood estimate we get the estimate 6% ,,micc Of 0Rgmice- In this

case he asymptotic distribution of R,micc is N(R, 6hgmice)- Based on this asymptotic distribution a 100 (1 — ) %
asymptotic Cl for Ris Rymice &+ Z- /26 Rgmiee-

6.1 Shrinkage Estimates

In this case we obtain the shrinkage estimate, with 1 (6) = 0.01 the constant shrinkage weight factor suggested
by [25].

This leads to the constant shrinkage weight factor of R as I?.ghqc

5 Q10 X201 00
Rshqc = N N N ~ ~ (610)
(Oélshqc + a25hqc + a?’shqc) (alshqc + a3shqc)
with
a1 ,,. = 0.01a1,, +0.99073 (6.11)
a2, = 0.01las,, +0.99023 (6.12)
and
sy, = 0.01a3,, + 0.99a33 (6.13)
where ai,, = "=, a3, = "2= and a3,, = "=1. ais, azs and a3s s taken as the boot strap estimate of
Oélq:nlec’ azq:nlec and a3q;nlec'

Also the modified Thompson type shrinkage weight factor and Shrinkage estimate by [30] are

(b) Suggested by [25] here we take the weight factor as
P (R) =— f%“b ~ Rahae — (0.001) (6.14)
(Rub - Rshqc) + var (Rub>
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ar 22,
. . alAub +a%hub+a3Aub)(afub+a§ub
shrinkage estimator will be

where R, = ] and var (ﬁiub) is as defined in (6.9). So the modified Thomason type

RTh =¢ (R) Rub + (1 — ¢ (R)) Rshqc (6.15)
(c) Shrinkage weight factor suggested by [30] here we take the weight factor as

b (Rub — Rshqc)z

%) (R) =a.exp{ — - (6.16)
var (Rub>
where 0 < a < 1 and b > 0. So the modified Thomason type shrinkage estimator will be
RJ\/IS =@ (1:?«) Rub + (1 — @ (R)) Rshqc (617)

7 SIMULATION STUDY

In this section we obtained the numerical results using simulation data.

Here, we have considered a bootstrap Cl for r by using a parametric percentile bootstrap method ([42]). The
following algorithm is used to generate the parametric bootstrap estimates of R.

Step-1. Simulate a random sample from Uniform (0,1). Using this simulated value compute random sample for
X ~ L(a1,N),Y ~ L(az,A)and Z ~ L (s, \) respectively.

Compute the MLE of a1, as, as say &imie, Gamie, Gamie given in setion-2.

Step-2. Generate an independent parametric bootstrap sample using é&imie, Gamie, Gamie instead of a1, az, as.
Then using these values, calculate R,.;. in the case of complete sample. Similar way generates an independent
parametric bootstrap sample with a censoring of 30% and 50%. using &imiecc, G2mieces Gamiec iNStead of au, s,
as. Then using these values, calculate Rontee.

Step -3. Calculate the maximum likelihood estimate of dimie, Gamie, Gsmie and Rumie obtained in step-2 say & 1mie,
& 2mie, & 3mie and R’ 1mile- IN censored sample the maX|mum likelihood estimate of &1mice, Gomice, 3miee and
R'mlec Obtalned n Step 2 Say Oé 1mlecs Oé 2mlec) a 3mlec and R mlec-

Step-4. Repeat the step-2 and step-3 N times to obtained the parametric bootstrap estimates R ML1, R ML2, ey R vin
of R.

Step-5. Let H (z) = P (RML < x) be the cumulative distribution function of Rasr.. Define Rpoor () = H™" (z)
for a given x. The approximate 100 (1 — v) % Cl of R is given by

(RBoot (v/2) ,-FgBoot (1- 7/2))-

In the absence of real data finally, we study the performance of the estimates obtained in the above section using
Monte Carlo Simulated data sets. All the computations are done by using R Program.

Generate the sample of sizes n1 = n2, n3 = (10, 10), (10, 25), (10, 50), (25, 10), (25, 25), (25, 50), (50, 10), (50, 25), (50, 50)

from Lomax Distribution with parameter values 0.5,2,3.5 for a1, a2 and as. The bias, mean square error, confidence
interval and relative efficiency are calculated and are given in the following table.
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Table1: Bias, MSE and Relative Efficiency of the estimates of Reliability functions under complete sample.

ni-Nz N3 oy =0 o3 RMLE Rsh RTh RMs
Bias 00278  0.02201 0.0276 0.02552
10 10 MSE 00046  0.00139 0.0045 0.00311
RE 69.78261  2.17391 32.3913
Bias 00355  0.0067 0.0354 0.0199
25 10 05 0.5 MSE 00032  0.00011 0.0012 0.0001
RE 96.5625 62.5 96.875
Bias 00127  0.00842 0.0156 0.0229
50 10 MSE 00013  0.0005 0.00125 0.00107
RE 6153846  3.84615 17.6923
Bias 0.006 000186  0.00595 0.00371
10 25 MSE 00004 000018  0.000348 0.00028
RE 55 13 30
Bias  0.0077  0.00598 0.0067 0.0087
25 25 MSE 00003 000011  0.00023 0.00027
RE 63.33333  23.33333 10
05 2 Bias  0.0025  0.0022 0.00249 0.00181
MSE  0.00013  0.0001 0.00012 0.00011
50 25 RE 23.07692  7.69230 15.38461
Bias 00063  0.00618  0.00631 0.00228
10 50 MSE  0.0002 0.00014  0.00019 0.00012
RE 30 5 40
Bias 00108 000562  0.01079 0.04648
25 50 05 3.5 MSE 00004 0.00012  0.00038 0.00024
RE 70 5 40
Bias 00081 000408  0.00813 0.00432
50 50 MSE  0.0005  0.0001 0.00046 0.000108
RE 80 8 78.4
Bias 00208  0.01786 0.0201 0.01714
10 10 MSE 00088  0.00654 0.0086 0.00719
RE 2568182 227272 18.29545
2 0.5 Bias  0.0418  0.09197  0.04124 0.0123
25 10 MSE 00043  0.0024 0.00424 0.00204
RE 4418605  1.39534 52.55813
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Bias 0.0013 0.00154 0.00177 0.00119
50 10 MSE 0.0048 0.00395 0.0046 0.00372
RE 17.70833 4.16666 225
Bias 0.0064 0.00288 0.00602 0.00117
10 25 MSE 0.002 0.00163 0.00193 0.00125
RE 18.5 3.5 37.5
Bias 0.0147 0.0191 0.0146 0.01129
25 25 MSE 0.0021 0.001 0.0011 0.001
RE 52.38095  47.61904 52.3809
Bias 0.059 0.02413 0.02413 0.02283
50 25 2 2 MSE 0.0184  0.00105 0.01489 0.0108
RE 94.29348 19.07608 41.30434
Bias 0.0189 0.01958 0.0184 0.01204
10 50 MSE 0.0022 0.00106 0.00214 0.00146
RE 51.81818 2.72727 33.63636
Bias 0.0628 0.04496 0.02156 0.01164
25 50 2 3.5 MSE 0.00089  0.00017 0.0006 0.00025
RE 80.89888  32.58426 71.91011
Bias 0.0008 0.00046 0.00074 0.00067
50 50 MSE 0.00067 0.0001 0.00052 0.00037
RE 85.07463 22.3880 44.77611
Bias 0.0634 0.08927 0.06215 0.01124
10 10 MSE 0.00985  0.00121 0.00201 0.00144
RE 87.71574  79.59390 85.380710
Bias 0.0033 0.0055 0.0034 0.00645
25 10 3.5 0.5 MSE 0.00178 0.0011 0.00122 0.0012
RE 38.20225 31.4606 32.58426
Bias 0.0105 0.01538 0.01061 0.01269
50 10 MSE 0.0022 0.00198 0.002 0.00197
RE 10 9.0909 10.45454
Bias 0.05422 0.045 0.04406 0.03653
10 25 MSE 0.00708 0.0026 0.00356 0.00277
RE 63.27684 49.7175 60.87570
Bias 0.0101 0.00509 0.01171 0.00998
25 25 3.5 2 MSE 0.00564 0.0022 0.00445 0.00243
RE 60.99291 21.09929 56.9148
Bias 0.0213 0.01085 0.021 0.0119
50 25 MSE 0.0025 0.00179 0.0024 0.002
RE 28.4 4 20
10 50 Bias 0.0123 0.01168 0.01266 0.01238
MSE 0.0027 0.00153 0.00262 0.0018
RE 43.33333 2.9629 33.3333
35 35 Bias 0.08267 0.07287 0.07861 0.0742
25 50 MSE  0.008 000173 00072 0.00394
RE 78.375 10 50.75
Bias 0.0903 0.01578 0.08922 0.04195
50 50 MSE 0.008  0.00165  0.00607 0.00229
RE 79.375 24.125 71.375
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Fig. 1. Relative efficiency improvement Over MLE with complete sample
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Table2:Bias, MSE and Relative Efficiency of the estimates of Reliability functions under
censored sample(30% censoring).

Nnqy=Ny n; a; =0, a3 RMLE Rsh RTh RMs
10 Bias 0.017598 0.01263 0.01531 0.01381
10 MSE 0.009602 0.00161 0.00526 0.00423
RE 83.23278 45.22013 55.94699
Bias 0.07503 0.00153 0.00456 0.00193
25 10 0.5 0.5 MSE 0.00616  0.00014 0.000395 0.00025
RE 97.72727 93.58766 95.94156
Bias 0.0206 0.012184 0.03241 0.015582
10 MSE 0.00343 0.00116  0.00227 0.00151
50 RE 66.18076 33.81924 55.97668
Bias 0.03282 0.01567 0.0233 0.0166
10 25 MSE 0.00183 9.0011 0.00174 0.00142
RE 39.89071 4.918033 22.40437
Bias 0.01048 0.01124 0.0735 0.01604
25 25 0.5 2 MSE 0.00299 0.00101 0.00214 0.00135
RE 66.22074 28.42809 54.8495
Bias 0.02394 0.01809 0.03106 0.02208
50 25 MSE 0.00162 0.0002 0.00057  0.00041
RE 87.65432 64.81481 74.69136
Bias 0.03163 0.00115 0.00796 0.00254
10 50 MSE 0.002131 0.000128 0.00048 0.00027
RE 93.99343 77.47536 87.32989
Bias 0.03551 0.01392 0.0175% 0.01697
25 50 0.5 3.5 MSE 0.00195 0.00056 0.00065 0.0006
RE 71.28205 66.66667 69.23077
Bias 0.10674 0.001256 0.001851 0.001285
50 50 MSE 0.03475 0.00012 0.000179 0.000%t63
RE 99.65468 99.48489 99.53094
Bias 0.06811 0.01574  0.07567 0.0651
10 10 MSE 0.00532 0.00109 0.00133 0.00123
RE 79.51128 75 76.8797
Bias 0.01283 0.01185 0.01261 0.013374
25 10 2 0.5 MSE 0.00632 0.00271 0.0053 0.00513
RE 57.12025 16.13924 18.82911
Bias 0.13262 0.018195 0.08456 0.0529
50 10 MSE 0.01805 0.001138 0.014294 0.01393
RE 93.69529 20.80886 22.82548
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Bias 0.09171 0.011242 0.09075 0.04584
10 25 MSE 0.00855 0.00232 0.00837 0.00436
RE 72.8655 2.105263 49.00585
Bias 0.04352 0.0112 0.04312  0.04088
25 25 2 2 MSE 0.00418 0.00239 0.00406 0.00312
RE 42.82297 2.870813 25.35885
Bias 0.0632 0.01934 0.05783  0.02259
50 25 MSE 0.00505 0.00113  0.00441  0.00383
RE 77.62376 12.67327 24.15842
Bias 0.05729 0.01227 0.05679 0.02656
10 50 MSE 0.00461 0.00101 0.00452  0.00121
RE 78.09111 1.952278 73.75271
Bias 0.06276  0.01347 0.0613 0.01415
25 50 2 3.5 MSE 0.01063 0.001009 0.00127  0.00121
RE 90.508 88.05268 88.61712
Bias 0.025 0.013057 0.02405 0.017793
50 50 MSE 0.0047 0.0006 0.00127 0.00116
RE 87.23404 72.97872 75.31915
Bias 0.07553  0.01281 0.02035  0.02081
10 10 MSE 0.0237 0.00196  0.00442  0.00431
RE 91.72996 81.35021 81.81435
Bias 0.02163  0.06671 0.0858 0.06477
25 10 3.5 05 MSE 0.00747  0.00251 0.00693 0.0055
RE 66.39893 7.228916 26.37216
Bias 0.04528 0.01283 0.015907 0.01491
50 10 MSE 0.01668 0.00237 0.00538 0.00475
RE 85.79137 67.7458 71.52278
Bias 0.051 0.02156  0.02411  0.02368
10 25 MSE 0.00547 0.00212  0.00331  0.00329
RE 61.24314 39.48812 39.85375
Bias 0.08241 0.07537 0.05772 0.06982
25 25 3.5 2 MSE 0.00554 0.00172 0.00489 0.00218
RE 68.95307 11.73285 60.64982
Bias 0.03324  0.01372 0.0244 0.02392
50 25 MSE 0.01282 0.00215 0.00735 0.00636
RE 83.22933 42.66771 50.39002
Bias 0.0361 0.02413 0.0333  0.024654
10 50 MSE 0.0095 0.00402 0.00508 0.00471
85 e RE 57.68421 46.52632 50.42105
25 50 Bias 0.06619 0.01952 0.02157 0.02107
MSE 0.01878 0.00127 0.0131 0.01
RE 93.23749 30.24494 46.75186
Bias 0.05692 0.0376 0.05133 0.0428
50 50 MSE 0.01199 0.00125 0.00906 0.007737
RE 89.57465 24.43703 35.47123
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Table3: Bias, MSE and Relative Efficiency of the estimates of Reliability functions under
censored sample(50% censoring).

Nni=N; N3 o1 =0 o3 RMLE Rsh RTh RMs
Bias 001305 001263 001531  0.01381
10 10 MSE  0.00739 0.00161 0.00526 0.00423
RE 78.2138 28.82273 42.76049
Bias  0.06644 0.00153 0.00456 0.00193
25 10 0.5 0.5 MSE  0.00532 0.00014 0.000395 0.00025
RE 97.36842 9257519 95.30075
Bias  0.04486 0.012184 0.03241 0.015582
50 10 MSE 000351 0.00116 0.00227 0.00151
RE 66.95157 35.32764 56.98006
Bias 0.0221 001567 00233 _ 0.0166
10 25 MSE  0.003112 0.0011  0.00174 0.00142
RE 64.65296 44.0874 54.37018
Bias 001827 0.01124 0.0735  0.01604
25 25 0.5 2 MSE 0.0036  0.00101 0.00214  0.00135
RE 71.94444 4055556  62.5
Bias 0.0962  0.01809 0.03106 0.02208
>0 25 MSE  0.00084 0.0002  0.00057 0.00041
RE 76.19048 32.14286 51.19048
Bias 001371 000115 0.00796  0.00254
10 50 MSE  0.00207 0.000128 0.00048  0.00027
RE 93.81643 76.81159 86.95652
Bias 001196 0.01392 0.01751 0.01697
25 50 0.5 3.5 MSE  0.00075 0.00056 0.00065  0.0006
RE 25.33333 13.33333 20
Bias  0.15391 0.001256 0.001851 0.001285
50 50 MSE  0.08619 0.00012 0.000179 0.000163
RE 99.86077 99.79232 99.81088
Bias _ 0.06503 0.01574 0.07567  0.0651
10 10 MSE  0.01937 0.00109 0.00133  0.00123
5 05 RE 94.37274 93.13371 93.64997
Bias 005112 0.01185 0.01261 0.013374
25 10 MSE  0.00656 0.00271  0.0053  0.00513
RE 58.68902 19.20732 21.79878
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Bias 0.14913 0.018195 0.08456 0.0529
>0 10 MSE 0.02435 0.001138 0.014294 0.01393
RE 95.32649 41.29774 A42.79261
Bias 0.07639 0.011242 0.09075  0.04584
10 25 MSE 0.00907 0.00232 0.00837 0.00436
RE 74.42117 7.717751 51.92944
Bias 0.03659 0.0112 0.04312  0.04088
25 25 2 2 MSE 0.00857 0.00239 0.00406 0.00312
RE 72.11202 52.62544 63.59393
Bias 0.09204 0.01934 0.05783  0.02259
50 25 MSE 0.02367 0.00113 0.00441 0.00383
RE 95.22602 81.36882 83.81918
Bias 0.11388 0.01227 0.05679  0.02656
10 50 MSE 0.01354 0.00101 0.00452  0.00121
RE 92.54062 66.61743 91.06352
Bias 0.04191  0.01347 0.0613 0.01415
25 50 2 3.5 MSE 0.00786 0.001009 0.00127 0.00121
RE 87.16285 83.84224 84.6056
Bias 0.02663 0.013057 0.02405 0.017793
50 50 MSE 0.00162 0.0006 0.00127 0.00116
RE 62.906296 21.60494 28.39506
Bias 0.03797 0.01281  0.02035  0.02081
10 10 MSE 0.00788 0.00196 0.00442  0.00431
RE 75.1269 43.90863 45.30457
Bias 0.04847  0.06671 0.0858 0.06477
25 10 3.5 0.5 MSE 0.00715 0.00251  0.00693 0.0055
RE 64.8951 3.076923 23.07692
Bias 0.02569 0.01283 0.015907 0.01491
50 10 MSE 0.00615 0.00237 0.00538 0.00475
RE 61.46341 12.52033 22.76423
Bias 0.08 0.02156  0.02411 _ 0.02368
10 25 MSE 0.00769 0.00212 0.00331 0.00329
35 > RE 72.43173 56.95709 57.21717
Bias 0.07553 0.07537 0.05772 0.06982
25 25 MSE 0.00542 0.00172 0.00489 0.00218
RE 68.26568 9.778598 59.7786
Bias 0.09709 0.01372 0.0244 0.023902
50 25
MSE 0.03503 0.00215 0.00735 0.00636
RE 93.8624 79.01798 81.84413
10 50 3.5 3.5 Bias 0.02498 0.02413 0.0333 0.024654
MSE 0.00604 0.00402 0.00508 0.00471
RE 33.44371 15.89404 22.01987
Bias 0.06869 0.01952 0.02157 0.02107
25 50 MSE 0.01911 0.00127 0.0131 0.01
RE 93.35426 31.4495 47.67138
Bias 0.07968 0.0376 0.05133 0.0428
50 50 MSE 0.01994 0.00125 0.00906 0.007737
RE 93.73119 54 56369 61.1986
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Table4:Bias, MSE and Relative Efficiency of the estimates of Reliability functions under
complete sample using Quasi Likelihood Estimation

Nnq=Ny n; a; =0 s RMLE Rsh RTh RMs
Bias _ 0.018288  0.01006 _ 0.06929 0.021592

10 10 MSE  0.001748  0.00104  0.00147  0.00113
0.5 05 RE 40.04576  15.44622 34.89703

Bias 001599  0.01021  0.01492 0.011712

25 " MSE  0.0018 0.001 0.00107  0.00102
RE 44.44444  40.55556 43.33333

Bias  0.0861 0.03263  0.0834  0.0536

50 10 MSE 00022  0.00102  0.00133  0.00119
RE 5363636  39.54545 45.90909

Bias _ 0.0588  0.01147 _ 0.05024  0.04383

10 25 MSE  0.0046%  0.00141  0.00308 0.00102
RE 69.41431  33.18872 77.87419

Bias 008438  0.04895  0.08139  0.079

25 25 0.5 2 MSE  0.00776  0.00303  0.0043  0.00399
RE 60.95360  44.58763 48.58247

Bias  0.0595 001476  0.05801 0.05526

50 25 MSE 00042  0.00232  0.00392 0.00356
RE 4476190  6.6666  15.2381

Bias 0.0812 0.0201 0.0381  0.0311

10 50 MSE  0.0061¢  0.00154  0.00231  0.0021
RE 74.7954173 62.19313 65.63011

Bias  0.03186  0.02046  0.02533  0.02066

25 50 05 3.5 MSE  0.00226  0.00051  0.00114  0.00094
RE 77.43362  49.55752 58.40708

Bias 002969  0.01624  0.02283 0.01866

50 S0 MSE  0.00112 0.0001 0.00016  0.00014
RE 91.07142 8571429  87.5

Bias 00813 0.01682  0.08111 002348

10 10 MSE  0.001107  0.00014  0.00109  0.00046
RE 87.35320  1.53568 58.44625

2 0.5 Bias 008198  0.01061  0.017925 0.01079

25 10 MSE  0.00771  0.00126  0.004517 0.00222
RE 83.65758  41.41375 71.20623
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50 10 Bias 0.08511 0.0125 0.05476 0.013106
MSE 0.00735 0.00393 0.00529 0.0041
RE 46.53061  28.02721 44.21769
Bias 0.04585 0.02381 0.036282  0.02883
10 25 MSE 0.00463 0.00114 0.00259  0.00174
RE 75.37796  44.06048 62.41901
Bias 0.0488 0.02274 0.04821  0.04693
25 25 2 2 MSE 0.00422 0.00135 0.00365  0.00267
RE 68.0094787 13.50711 36.72986
Bias 0.0543 0.02012 0.02341  0.02204
50 25 MSE 0.00424 0.00127 0.00268  0.00178
RE 70.04716  36.79245 58.01887
Bias 0.07654 0.01218 0.02656  0.01496
10 50 MSE 0.0015 0.00049 0.0011 0.0005
RE 67.33333  26.66667 66.66667
Bias 0.09305 0.01339 0.0889 0.07917
25 50 2 3.5 MSE 0.00738 0.00142 0.00725 0.00683
RE 80.75880 1.76151  7.45257
Bias 0.09349 0.07497 0.08526 0.0813
50 50 MSE 0.00815 0.00264 0.00758  0.00619
RE 67.60736 6.99386 24.04908
10 10 Bias 0.09425 0.04107 0.06125  0.04187
MSE 0.00872 0.00332 0.00392 0.0034
RE 61.9266 55.04587 61.00917
25 Lo Bias 0.06694 0.01247 0.06641  0.02858
=S s MSE 0.00474 0.00176 0.00456  0.00183
RE 62.86913 3.79746 61.39241
50 10 Bias 0.05612 0.0122 0.05507 0.01545
MSE 0.00373 0.00256 0.00368  0.00278
RE 31.367292  1.34048 25.46917
Bias 0.05431 0.03443 0.04227 _ 0.03449
19 25 MSE 0.00767 0.00569 0.00621  0.00576
a5 > RE 25.81486 19.0352 24.90222
Bias 0.013958 0.01142 0.01320 0.01151
25 25 MSE 0.002163 0.0009 0.00167 0.00105
RE 58.39112 22.79242 51.45631
50 s Bias 0.08737 0.01456 0.03314  0.01478
MSE 0.004929 0.00167 0.00319  0.00169
RE 66.11888  35.28099 65.71313
Bias 0.06102 0.02032 0.02465  0.02313
10 50 MSE 0.00871 0.00216 0.00835  0.00273
RE 75.20091 4.13318 68.65672
Bias 0.0543 0.01212 0.01614  0.01239
25 50 3.5 3.5 MSE 0.00387 0.00159 0.00236  0.00163
RE 58.91472 39.01809 57.88114
Bias 0.0717 0.02231 0.06716 0.0268
50 50 MSE 0.00308 0.0003 0.00212  0.00058
RE 90.2597403 31.16883 81.16883
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Table5: Bias, MSE and Relative Efficiency of the estimates of Reliability functions under
censored sample (30% censoring) using Quasi Likelihood Estimation.

nl=n2 n3 a1 =02 as RMLE Rsh RTh RMs

Bias 0.0195 0.01433 0.07033 0.018275

10 10 MSE 0.00173 0.00114  0.00169  0.00158
RE 34.10405 2.312139 8.67052
Bias 0.01829  0.0102 0.020104 0.013016
25 10 0.5 0.5 MSE 0.00152  0.00062 0.0009  0.000843
RE 58.94737 40.78947 4453947

Bias 0.01437  0.02045 0.027 0.02047

50 10 MSE 0.00553 0.00101 0.0038 0.00109
RE 81.73599 31.28391 80.28933

Bias 0.04865 0.06245 0.08585 0.0826
10 25 MSE 0.00588 0.00143 0.00356 0.001639
RE 75.68027 39.45578 72.12585

Bias 0.0487 0.01149  0.08356 0.058

25 25 0.5 2 MSE 0.00498 0.00145 0.00477  0.00395
RE 70.88353 4.216867 20.68273

Bias 0.0556 0.012039 0.05738 0.01471

50 25 MSE 0.00562 0.00158 0.0038 0.00231
RE 71.88612 32.38434 58.8968

Bias 0.02005  0.0208 0.0473 0.0323

10 50 MSE 0.00488 0.00053 0.00123 0.00113
RE 89.13934 74.79508 76.84426

Bias 0.0202  0.02477 0.027 0.02047

25 50 0.5 3.5 MSE 0.00512 0.00109 0.00414  0.00225
RE 78.71094 19.14063 56.05469

Bias 0.02993 0.01632 0.03127  0.02954

50 50 MSE 0.00415 0.00111  0.00125 0.00123
RE 73.25301 69.87952 70.36145

Bias 0.08695 0.01198 0.04748 0.02108

10 10 MSE 0.0215 0.00101  0.00184  0.00121
RE 95.30233 91.44186 94.37209
2 0 Bias 0.1136 0.01061 0.017821 0.012828

25 10 MSE 0.01396 0.00114  0.00222 0.0017
RE 91.83381 84.09742 87.82235

59



Neethu and Anjana; Curr. J. Appl. Sci. Technol., vol. 42, no. 42, pp. 36-66, 2023; Article no.CJAST.107238

Bias 0.08572 0.012935 0.073037 0.0529
50 10 MSE 0.0075 0.00399 0.00731 0.00627
RE 46.8 2.533333 16.4
Bias 0.02349 0.02238 0.03123 0.02348
10 25 MSE 0.00645 0.00357 0.00468 0.00449
RE 44.65116 27.44186 30.3876
Bias 0.04927 0.02269 0.04845 0.03935
25 25 2 2 MSE 0.00378 0.00135 0.00253 0.00221
RE 64.28571 33.06878 41.53439
Bias 0.05484 0.02204 0.0233 0.02209
50 25 MSE 0.00423 0.00113 0.002204 0.00147
RE 73.28605 47.89598 65.24823
Bias 0.00849 0.01106 0.02499 0.0114
10 50 MSE 0.00273 0.00145 0.00163 0.00156
RE 46.88645 40.29304 42.85714
Bias 0.07724 0.0339 0.06533 0.0652
25 50 2 3.5 MSE 0.0062 0.00372 0.00522 0.00475
RE 40 15.80645 23.3871
Bias 0.07525 0.03108 0.08647 0.08459
50 50 MSE 0.00811 0.00158 0.00754 0.0065
RE 80.51788 7.02836 19.85203
Bias 0.03866 0.012706 0.050516 0.04036
10 10 MSE 0.00498 0.00127 0.00331 0.00209
RE 74.49799 33.53414 58.03213
Bias 0.07141 0.024 0.09245 0.02858
25 10 3.5 0.5 MSE 0.00637 0.00316 0.0055 0.00456
RE 50.39246 13.65777 28.41444
Bias 0.04824 0.015309 0.04924 0.03101
50 10 MSE 0.00326 0.00215 0.00281 0.00229
RE 34.04908 13.80368 29.7546
Bias 0.03869 0.0234 0.03425 0.02626
10 25 MSE 0.00779 0.00558 0.00722 0.00648
RE 28.3697 7.317073 16.81643
85 2 Bias 0.00101 0.02974 0.06911 0.06182
25 25 MSE 0.0052 0.00128 0.00382 0.00154
RE 75.38462 26.53846 70.38462
Bias 0.01464 0.01377 0.03351 0.0175
50 25 MSE 0.00384 0.00129 0.00216 0.00155
RE 66.40625 43.75 59.63542
Bias 0.02135 0.01184 0.01074 0.01899
10 50 MSE 0.0022 0.00078 0.00197 0.00126
RE 64.54545 10.45455 42.72727
35 35 Bias 0.0115 0.01212 0.02891 0.01276
25 50 MSE 0.00228 0.00117 0.00154 0.00123
RE 48.68421 32.45614 46.05263
Bias 0.00351 0.01009 0.0216 0.017073
50 50 MSE 0.00346 0.000212 0.000578 0.00028
RE 93.87283 83.2948 91.90751
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Table6 : Bias, MSE and Relative Efficiency of the estimates of Reliability functions under
censored sample (50% censoring) using Quasi Likelihood Estimation.

[ PP P n3 a; =02 a3 RMLE Rsh RTh RMs

Bias 0.02334 0.01433 0.07033 0.018275

10 10 MSE  0.00174 0.00114 0.00169  0.00158
RE 34.48276 2.873563 9.195402

Bias  0.01782 0.0102 0.020104 0.013016

25 10 0.5 0.5 MSE  0.00146 0.000624 0.0009  0.000843
RE 57.26027 38.35616 42.26027

Bias  0.01368 0.02045  0.027  0.02047

50 10 MSE  0.00435 0.00101  0.0038  0.00109
RE 76.78161 12.64368 74.94253

Bias  0.05312 0.06245 0.08585  0.0826

10 25 MSE  0.00536 0.00143 0.00356 0.001639
RE 73.3209 33.58209 69.42164

Bias  0.04922 0.01149 0.08356  0.058

25 25 0.5 2 MSE  0.00594 0.00145 0.00477  0.00395
RE 75.58923 19.69697 33.50168

Bias  0.05607 0.012039 0.05738  0.01471

50 25 MSE  0.00665 0.00158  0.0038  0.00231
RE 76.2406 42.85714 65.26316

Bias  0.02511 0.0208  0.0473 _ 0.0323

10 50 MSE  0.0075 0.00053 0.00123 0.00113
RE 9293333 836  84.93333

Bias  0.02041 0.02477  0.027  0.02047

25 50 0.5 3.5 MSE  0.0049 0.00109 0.00414  0.00225
RE 77.7551 155102 54.08163

Bias  0.03031 0.01632 0.03127  0.02954

50 50 MSE  0.00517 0.00111  0.00125  0.00123
RE 78.52998 75.82205 76.2089

Bias  0.08987 0.01198 0.04748 0.02108

10 10 MSE  0.00506 0.00101 0.00184  0.00121
RE 80.03953 63.63636 76.08696

2 05 Bias  0.12218 0.01061 0.017821 0.012828

25 10 MSE  0.01583 0.00114 0.00222  0.0017
RE 9279848 85.97599  89.2609
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Bias 0.09082 0.012935 0.073037 0.0529
50 10 MSE 0.00846 0.00399  0.00731 0.00627
RE 52.83688 13.59338 25.88652
Bias 0.01579 0.02238 0.03123 _ 0.02348
10 25 MSE 0.00487 0.00357 0.00468  0.00449
RE 26.69405 3.901437 7.802875
Bias 0.04691 0.02269 0.04845  0.03935
25 25 2 2 MSE 0.0035 0.00135 0.00253  0.00221
RE 61.42857 27.71429 36.85714
Bias 0.05359 0.02204 0.0233 0.02209
50 25 MSE 0.00393 0.00113 0.002204 0.00147
RE 71.24682 43.91858 62.59542
Bias 0.00303 0.01106  0.02499 0.0114
10 50 MSE 0.00227 0.00145 0.00163 0.00156
RE 36.12335 28.19383 31.27753
Bias 0.07594  0.0339 0.06533 0.0652
25 50 2 3.5 MSE 0.00588 0.00372 0.00522  0.00475
RE 36.73469 11.22449 19.21769
Bias 0.07217 0.03108 0.08647  0.08459
50 50 MSE 0.00854 0.00158  0.00754 0.0065
RE 81.49883 11.7096 23.88759
Bias 0.04945 0.012706 0.050516  0.04036
10 10 MSE 0.01001 0.00127  0.00331 0.00209
RE 87.31269 66.93307 79.12088
Bias 0.06274 0.024 0.09245  0.02858
25 10 3.5 0.5 MSE 0.00584 0.00316 0.0055 0.00456
RE 45.89041 5.821918 21.91781
Bias 0.04651 0.015309 0.04924  0.03101
50 10 MSE 0.00319 0.00215  0.00281 0.00229
RE 32.60188 11.91223 28.21317
Bias 0.0267 0.0234 0.03425  0.02626
10 25 MSE 0.00812 0.00558 0.00722  0.00648
RE 31.28079 11.08374 20.19704
85 2 Bias 0.088 0.02974  0.06911 0.06182
25 25 MSE 0.0051 0.00128 0.00382 0.00154
RE 74.90196 25.09804 69.80392
Bias 0.01529 0.01377 0.03351 0.0175
50 25 MSE 0.00384 0.00129 0.00216 0.00155
RE 66.40625 43.75 59.63542
Bias 0.01637 0.01184 0.01074 0.01899
10 50 MSE 0.00212 0.00078 0.00197 0.00126
RE 63.20755 7.075472 40.56604
Bias 0.01661 0.01212 0.02891 0.01276
25 50 3.5 3.5 MSE 0.00197 0.00117 0.00154 0.00123
RE 40.60914 21.82741 37.56345
Bias 0.00172 0.01009 0.0216 0.017073
50 50 MSE 0.00093 0.000212 0.000578 0.00028
RE 77.2043 37.84946 69.89247
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Table 7: Confidence Interval for R

n aq Cl based on Maximum Likelihood Cl based on Quasi Likelihood
1=
nz ne ; o Complete Sample Censored Sample Complete Sample Censored Sample
2
10 05 0.5 (0.28855,0.31636) (0.15350,0.16600) (0.09297,0.22206) (0.10668,0.21231)
10 25 0.5 2 (0.07304,0.07904) (0.03121,0.03312) (0.01313,0.13004)) (0.00627,0.13539)
50 05 35 (0.23386,0.25177) (0.01306,0.02264) (0.00535,0.05423)) (0.01295,0.07302)
10 05 0.5 (0.21772,0.25318) (0.11332,0.16304) (0.08964,0.22769) (0.10724,0.21307)
25 25 0.5 2 (0.05207,0.05980) (0.01741,0.03321) (0.01625,0.13186) (0.01450,0.13917)
50 0.5 3.5 (0.04857,0.05936) (0.01305,0.02863) (0.00787,0.05611) (0.00689,0.06164))
10 05 0.5 (0.21337,0.22904) (0.04533,0.16615) (0.15286,0.17211) (0.09498,0.22524)
50 25 0.5 2 (0.05090,0.05340) (0.01130,0.03327) (0.01110,0.13303) (0.01115,0.13520)
50 0.5 3.5 (0.05319,0.06132) (0.14523,0.30152) (0.01692,0.07439) (0.01359,0.05937)
10 2 0.5 (0.17594,0.55593) (0.29699,0.33841) (0.28300,0.34679) (0.23508,0.35615)
10 25 2 2 (0.08069,0.25904) (0.07523,0.16638) (0.15948.0.20268) (0.05799.0.29771)
50 2 3.5 (0.01291,0.19987) (0.04228,0.09435) (0.09419,0.11192) (0.03385,0.18506)
10 2 0.5 (0.25560,0.49728) (0.34512,0.37807) (0.24960,0.35355) (0.27487,0.30795)
25 25 2 2 (0.11002,0.23800) (0.16217,0.21468) (0.16406,0.21748) (0.10514.0.26754)
50 2 3.5 (0.05560,0.15998) (0.08384,0.17286) (0.08859,0.16556) (0.12482,0.14317)
10 2 0.5 (0.22044,0.49194) (0.27315,0.34092) (0.27066,0.35533) (0.29460,0.33182)
50 25 2 2 (0.18821,0.58189) (0.10555,0.16458) (0.16412,0.22350) (0.10510,0.19858)
50 2 3.5 (0.04538,0.14877) (0.09538,0.12355) (0.09280.0.16555) (0.12089,0.12784)
10 35 0.5 (0.20326,0.54997) (0.28368,0.51137) (0.32861,0.44617) (0.20993,0.55621)
10 25 3.5 2 (0.16684,0.28309) (0.14396,0.32620) (0.11589,0.41648) (0.08899,0.43220)
50 35 3.5 (0.13660,0.15472) (0.04230,0.32455) (0.07480,0.28166) (0.10906,0.23500)
10 3.5 0.5 (0.34019,0.47313) (0.28030,0.60112) (0.37280,0.37860) (0.35622,0.36916)
25 25 35 2 (0.14997,0.34598) (0.16010,0.25589) (0.20404,0.29204) (0.21082,0.27793)
50 35 35 (0.24106,0.30581) (0.05483,0.36377) (0.09132,0.22961) (0.33681,0.44883)
10 35 0.5 (0.31777,0.48834) (0.26758,0.52560) (0.36103,0.39950) (0.35193,0.44120)
50 25 3.5 2 (0.01268,0.11261) (0.31249,0.83280) (0.17222,0.33750) (0.15575,0.31094)
50 35 35 (0.25716,0.33736) (0.01154,0.26594) (0.13524,0.20525) (0.12838,0.18257)

8 CONCLUSION

Rymie is less than that of Rymee.

+ Relative efficiency improvement over MLE is
higher in the case of censored sample
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