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Abstract: Consumption of high amounts of ethanol is a risk factor for development of cardiovascular
diseases such as arterial hypertension. The hypertensive state induced by ethanol is a complex
multi-factorial event, and oxidative stress is a pathophysiological hallmark of vascular dysfunc-
tion associated with ethanol consumption. Increasing levels of reactive oxygen species (ROS) in
the vasculature trigger important processes underlying vascular injury, including accumulation of
intracellular Ca2+ ions, reduced bioavailability of nitric oxide (NO), activation of mitogen-activated
protein kinases (MAPKs), endothelial dysfunction, and loss of the anticontractile effect of perivascular
adipose tissue (PVAT). The enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
plays a central role in vascular ROS generation in response to ethanol. Activation of the renin–
angiotensin–aldosterone system (RAAS) is an upstream mechanism which contributes to NADPH
oxidase stimulation, overproduction of ROS, and vascular dysfunction. This review discusses the
mechanisms of vascular dysfunction induced by ethanol, detailing the contribution of ROS to these
processes. Data examining the association between neuroendocrine changes and vascular oxidative
stress induced by ethanol are also reviewed and discussed. These issues are of paramount interest to
public health as ethanol contributes to blood pressure elevation in the general population, and it is
linked to cardiovascular conditions and diseases.

Keywords: oxidative stress; NADPH oxidase; ethanol; blood pressure; endothelium

1. Introduction

The causal relation between heavy ethanol consumption and arterial hypertension was
first established in 1915 by French army physician Camille Lian [1]. Although his findings
were largely ignored for decades, Lian’s findings were eventually corroborated by several
epidemiologic studies carried out in the late 1960s and in subsequent years in variable-
size populations [2–6]. Attempts to evaluate a possible mechanism for ethanol-induced
hypertension in humans were hindered by several limitations, including differences in
type and frequency of ethanol consumption and variability in age, ethnicity, gender, body
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mass index, salt use, comorbidities (e.g., obesity, hypertension), and the use of medications.
Studies conducted in the late 1970s and in the early 1980s provided evidence that heavy
ethanol drinkers showed increased circulating levels of noradrenaline and renin, which
suggested that ethanol promoted activation of both the sympathetic nervous system and
the renin–angiotensin–aldosterone system (RAAS) [7–10]. However, these studies did not
establish a causal relation between neuroendocrine changes and the hypertensive state
induced by ethanol consumption. In the absence of a well-defined causality, experimental
models of alcoholism became crucial to the understanding of the mechanisms underlying
ethanol-induced hypertension.

Studies in animals substantiated the initial epidemiological findings in humans, con-
firming that ethanol consumption promoted neuroendocrine changes and led to increased
blood pressures [11,12]. Moreover, those studies established a relationship between ethanol
consumption and vascular dysfunction, suggesting the existence of a myogenic mechanism
that might alter the contractile/relaxant properties of the vasculature, thereby contributing
to the elevation of blood pressure. Current knowledge shows that chronic ethanol intake
leads to functional and structural changes of the vasculature including endothelial dys-
function, inflammation, remodeling, and functional alterations, which are characterized by
hypercontractility and impaired vasorelaxation [13]. Data support the idea that oxidative
stress is a central mechanism whereby ethanol promotes its deleterious effects in the vas-
culature [14]. Distinctive vascular cell types can produce reactive oxygen species (ROS),
and those include endothelial, smooth muscle and adventitial cells. In addition, immune
system cells (e.g., neutrophils and macrophages) may also contribute to ROS generation in
response to ethanol [15]

Described as the major source of ROS in the vasculature, the enzyme nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase plays a central role in the redox imbal-
ance induced by ethanol in the vascular system [14]. This multi-subunit transmembrane
enzyme consists of membrane and cytosolic subunits that relay specific information in-
tracellularly in response to a wide variety of stimuli. In the vasculature, RAAS promotes
activation and overexpression of NADPH oxidase through the action of angiotensin II and
aldosterone, which further increases ROS production, leading to vascular dysfunction [16].
Ethanol increases both the activity and expression of some components of the NADPH
oxidase, favoring overproduction of ROS. The redox imbalance induced by ethanol is
further aggravated by decreased antioxidant responses [14].

This review discusses the mechanisms of vascular dysfunction induced by consump-
tion of high amounts of ethanol, detailing the contribution of ROS to the pathobiology
of ethanol in the vasculature. Data illustrating the association among neuroendocrine
changes, ROS generation, and ethanol-induced vascular dysfunction are also addressed.
A MEDLINE-based search was conducted using the keywords that follow: ethanol, al-
cohol, alcoholism, hypertension, blood pressure, vascular dysfunction, redox imbalance,
reactive oxygen species, endothelial dysfunction, oxidative stress, NADPH oxidase, and
antioxidant. In the next step, the titles, abstracts, and full article texts were screened and
analyzed independently against our inclusion/exclusion criteria. Only articles published
in English were considered. Reasons for the exclusion of articles include unclear ethanol
dose or ingestion period. Amount, duration, and pattern of ethanol consumption influence
the effects of this compound in the cardiovascular system. Here, we focus on the effects of
chronic consumption of high amounts of ethanol.

2. Ethanol Consumption: A Risk Factor for Arterial Hypertension

In the 1970s, the Kaiser-Permanente Multiphasic Health Examination Data, from
a landmark observational study, showed an increase of 11mmHg or more in systolic
blood pressure in individuals consuming more than five drinks per day (one standard
drink contains 14g of ethanol) in comparison to non-drinkers [2]. The study established a
relationship between the amount of ethanol consumed and an increase in blood pressure,
an observation that was subsequently corroborated by other reports [4,6], including the
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second Kaiser-Permanente study, published in 1986 [17]. Analysis of six prospective
studies and twenty-nine cross-sectional studies in North America, Australia, Japan, Europe,
and New Zealand, among other countries, showed that the association between arterial
hypertension and ethanol consumption is independent of gender, age, body mass index,
and smoking status. Prevalence of hypertension in individuals consuming 3–4 drinks/day
is approximately 50% greater than that in non-drinkers, while in individuals that consumed
6–7 drinks/day the prevalence is 100% greater [1]. However, a specific population may itself
be considered an important modifier of the prevalence of arterial hypertension induced by
ethanol consumption. For example, it has been estimated that around 30% of the cases of
arterial hypertension are attributed to ethanol in the United States and England [18], while
in Australia the prevalence of hypertension attributed to ethanol consumption is 7% [19];
in comparison, prevalence was shown to be 24% in France [20].

Establishing a standard threshold for ethanol effects on blood pressure has been dif-
ficult and continues to be controversial. Whilst 1–2 drinks/day have been described to
produce a slight or no effect on blood pressure [2–4,21], consumption of 3–5 drinks/day has
been associated with increases in blood pressure, with more than 5 drinks/day promoting
substantial increases in systolic blood pressure [2]. However, other studies have shown the
threshold to occur at lower drinking levels [2,6]. In addition, regardingthe variations in
the effect threshold, the extent of blood pressure increase due to ethanol consumption is
also controversial. The Kaiser-Permanente Multiphasic Health Examination Data showed
that more than 5 drinks/day promoted an increase of at least 11 mmHg in systolic blood
pressure [2]. Other studies have shown that an acute intake of five drinks leads to increased
values of systolic and diastolic blood pressures by 4–7 mmHg and 4–6 mmHg, respec-
tively [22–24]. For chronic, albeit a comparatively more moderate, consumption of ethanol
of 2–3 drinks/day for four weeks, average increases of 2.3 mmHg and 1.3mmHg have
been reported for systolic and diastolic blood pressures, respectively [25]. A separate study
conducted with chronic drinkers (≈4 drinks/day) for an average period of 21 years has
shown that consumption of the same intake levels of four drinks/day of wine or beer leads
to increases in systolic blood pressure of 2.9 and 1.9 mmHg, respectively [26].

Another important modifier of the ethanol–risk relationship for arterial hypertension
is gender. It is well established that prevalence of arterial hypertension induced by ethanol
consumption is lower in women than in men [2,17]. As described in the Risk Factor
Prevalence Study [19], no more than 1% of hypertension cases in women were attributed
to ethanol consumption. A systematic review and meta-analysis on the effects of ethanol
consumption on blood pressure has revealed the existence of a J-shaped relationship for
women, showing that consumption of one drink/day is associated with a reduced relative
risk for hypertension, a somewhat protective effect, whereas 2drinks/day significantly
increase the risk [27]. Similar findings have been described in another meta-analysis study
that has also reported a J-shaped relationship for women [28]. More recently, it has been
described that consumption of 1–2 drinks/day leads to increased risk of hypertension
in male chronic drinkers in comparison to abstainers whereas no significant difference is
observed between female chronic drinkers and corresponding abstainers [29].

Collectively, these studies have provided evidence that chronic consumption of high
amounts of ethanol is an important risk factor for arterial hypertension development.
However, available data for humans have not been sufficient to establish a substantial
mechanism for blood pressure elevation as a result of ethanol consumption. The inherent
limitations of epidemiologic studies in humans have been compensated by development
of experimental models, which then corroborate the epidemiologic findings and confirm
the pressor effects of ethanol. Additionally, the experimental studies showed a positive
relationship between increases in blood pressure and the extent of ethanol consumption,
describing the period of exposure to ethanol as an important factor in the development
of arterial hypertension [30,31]. Blood ethanol concentration is another modifier of the
relationship between ethanol consumption and hypertension. Based on experimental find-
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ings, it was proposed that higher levels of blood ethanol account for earlier development of
arterial hypertension [30,32,33].

In 1983, in a pioneer study of the hypertensive effects of ethanol, Sutter et al. de-
scribed a 25% increase in mean blood pressure (from 98 to 122 mmHg) in male Wistar
rats treated with ethanol (20%v) for 12 weeks [11,34]. Subsequently, they showed that the
ethanol-induced hypertensive state was accompanied by augmented levels of circulating
noradrenaline [35], as had been observed in humans. Increased sympathetic activity and
hypertensive states were also described in rats treated with ethanol (20%v) [30]. In ethanol-
fed Sprague Dawley rats, blood pressures were higher at week 6 (from 106 to 147 mmHg),
while an increase from 117 to 149 mmHg in blood pressure was observed in ethanol-fed
Wistar rats only after eight weeks of treatment [30]. It is important to note that such changes
in blood pressure were not the result of an upsurge but they rather had been gradually
observed since the early stages of ethanol consumption. In some studies, for instance, blood
pressure elevation was observed after four weeks of treatment with ethanol [31,36], whilst
others evidenced this same response after only two weeks [33,37,38]. Differences in ethanol
concentration in the blood may help explain the disparity among studies, since higher
levels of blood ethanol were associated with earlier increases in blood pressure [36,39]. The
effects of ethanol on blood pressure in experimental studies are summarized in Table 1.

Table 1. Summary of the effects of ethanol on blood pressure in experimental models.

Species * Dose/Period of Treatment with Ethanol Increase in Blood Pressure

Wistar rats Ethanol 20%v/12 weeks 25% in MAP (from 98 to 122 mmHg) [11]
Wistar rats Ethanol 20%v/12 weeks 27% in SBP (from 117 to 149 mmHg) [30]

SpragueDawley rats Ethanol 20%v/12 weeks 38% in SBP (from 106 to 147 mmHg) [30]
SpragueDawley rats Ethanol 20%v/22 weeks 26% in SBP (from 115 to 145 mmHg) [31]

Wistar rats Ethanol 20%v/13 weeks 21% in MAP (from 98 to 119 mmHg) [33]
Wistar rats Ethanol 20%v/12 weeks 21% in MAP (from 102 to 124 mmHg) [34]
Wistar rats Ethanol 20%v/12 weeks 24% in MAP (from 98 to 122 mmHg) [35]
Wistar rats Ethanol 7.2%v/4 weeks 12% in SBP (from 112 to 125 mmHg) [36]
Wistar rats Ethanol 20%v/4 weeks 19% in MAP (from 98 to 117 mmHg) [37]
Wistar rats Ethanol 20%v/5 weeks 16% in SBP (from 125 to 144 mmHg) [38]
Wistar rats Ethanol 20%v/5 weeks 17% in SBP (from 119 to 140 mmHg) [40]
Fisher rats 4g/kg/12 weeks 52% in MAP (from 92 to 140 mmHg) [41]

Wistar Hannover rats Ethanol 20%v/5 weeks 29% in MAP (from 92 to 119 mmHg) [42]
Wistar rats Ethanol 20%v/9 weeks 25% in MAP (from 97 to 122 mmHg) [43]
Wistar rats Ethanol 20%v/5 weeks 23% in MAP (from 85 to 105 mmHg) [44]
Wistar rats Ethanol 20%v/9 weeks 23% in MAP (from 98 to 121 mmHg) [45]
Wistar rats Ethanol 20%v/5 weeks 13% in SBP (from 124 to 140 mmHg) [46]

Wistar Hannover rats Ethanol 20%v/9 weeks 25% in SBP (from 126 to 158 mmHg) [47]
Fisher rats 4g/kg/12 weeks 42% in MAP (from 98 to 140 mmHg) [48]

C57BL/6 mouse Ethanol 20%v/12 weeks 15% in SBP (from 115 to 132 mmHg) [49]
Fisher rats 4g/kg/12 weeks 54% in MAP (from 90 to 142 mmHg) [50]

WistarKyoto rats Ethanol 10%v/7 weeks 33% in SBP (from 115 to 153 mmHg) [51]
Wistar rats Ethanol 15%v/4 weeks 23% in SBP (from 119 to 147 mmHg) [52]

* In all cases, studies were conducted in male rats/mice; (v/v): volume ratio; MAP: mean arterial pressure;
SBP: systolic blood pressure.

Taking into consideration that elevated blood pressure is a strong predictor of impend-
ing/imminent cardiovascular diseases, hypertension associated with ethanol consumption
may have important long-term clinical consequences. Some mechanisms have been postu-
lated to explain the hypertensive response to chronic ethanol consumption: while human
epidemiologic studies have proposed the involvement of a neuroendocrine mechanism,
experimental studies have suggested the existence of a myogenic mechanism in which
ethanol consumption promotes alterations in the vascular tonus. The latter is based on re-
sults obtained from studies describing that ethanol-induced hypertension occurs in parallel
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to changes in vascular responsiveness [31,36,39]. These mechanisms are discussed in the
following sections.

3. Mechanisms Underlying Ethanol-Induced Hypertension: The Neuroendocrine and
Myogenic Theories
3.1. Neuroendocrine Changes

A clear relationship between ethanol consumption and arterial hypertension had
already been established by epidemiological studies by the end of the 1970s. It became
important then to understand the mechanisms by which ethanol affected blood pressure.
Studies in humans have attempted to address this question by evaluating the participation
of the sympathetic nervous system and RAAS, two important regulators of blood pressure.

The contribution of the catecholamines noradrenaline and adrenaline to the pressor
effects of ethanol was investigated in humans by measuring the circulating levels of these
hormones, whose corresponding plasma concentrations were found to be higher after
consumption of ethanol [10,53,54]. Based on those findings, it was proposed that the sym-
pathetic nervous system mediates the prohypertensive effects of ethanol. However, other
investigators showed that, despite blood pressure being higher among ethanol drinkers,
no changes were detected in plasma levels of adrenaline or noradrenaline [6,22]. The
reasons for such discrepancies are still uncertain, but they may be due to dose, frequency,
and pattern of ethanol consumption. Experimental studies in animals corroborated the
findings in humans, showing that consumption of ethanol increased both blood pressure
and the circulating levels of the catecholamines [11,37]. However, neither the human stud-
ies nor the animal models managed to establish a causal relation between the activation
of the sympathetic nervous system and the ethanol-induced increase in blood pressure.
More recently, it was shown that ethanol promotes increases in both blood pressure and
in the circulating levels of adrenaline and noradrenaline in male Wistar rats. Nebivolol
(a selective β1-adrenergic receptor antagonist) prevented these responses, implicating a
role of the sympathetic nervous system in the hypertensive state associated with ethanol
consumption [40].

Regarding the participation of RAAS in ethanol-induced hypertension, pioneering
works by many researchers revealed increases in the circulating levels of renin and aldos-
terone in heavy drinkers [7,8,55,56] and experimental studies strengthened the proposal
that ethanol consumption activates RAAS. According to these data, ethanol increases
plasma activity of renin and angiotensin-converting enzyme (ACE) and also increases the
circulating levels of angiotensins I and II and aldosterone [37,41,57]. RAAS plays a critical
role in mediating ethanol-induced hypertension since initial findings suggest that the in-
crease in blood pressure induced by ethanol is mediated by angiotensin II [38]. Moreover,
recent findings show the involvement of aldosterone in the hypertensive state induced
by ethanol consumption [42]. The increase in blood pressure promoted by RAAS results
from its effects in the vasculature and does not seem to be the result of changes in fluid and
electrolyte balance [38,42].

Both the sympathetic nervous system and RAAS play a role in the pressor effects
of ethanol and a relationship between these two systems to promote this response does
exist. However, it is unknown if overactivation of those systems caused by ethanol in-
take are independent and work synergistically or if they communicate to each other in
a positive feedback fashion. Ethanol-induced hypertension is accompanied by increases
in the circulating levels of the catecholamines adrenaline and noradrenaline as well as by
increased plasma levels of renin, angiotensin I, angiotensin II, and ACE activities. These
responses are prevented by nebivolol, showing that β1receptors mediate RAAS activation.
Thus, stimulation of β1-adrenergic receptor in juxtaglomerular cells seems to be the mecha-
nism whereby ethanol indirectly (via catecholamines) triggers the release of renin leading
to RAAS activation [40]. Importantly, AT1 receptor blockade with losartan prevents the
increase in blood pressure induced by ethanol, implicating RAAS in this response [38].
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Experimental and clinical findings also proposed that ethanol-induced neuroendocrine
changes would promote increases in sodium handling, a mechanism that would explain the
hypertensive state associated with ethanol. This hypothesis was stated based on findings
showing that ethanol activated RAAS in humans, a response that occurred in parallel to
increases in plasma levels of sodium [55,56]. Similarly, rats treated with ethanol showed
increased circulating levels of sodium in parallel to RAAS activation [37]. However, a
causal relation between RAAS activation and sodium handling to promote ethanol-induced
hypertension remains unsettled.

Results from clinical and experimental studies led to the conclusion that the two
major systems controlling blood pressure under physiological conditions, the sympathetic
nervous system and RAAS, are implicated in the hypertensive state induced by ethanol
and that there is an interplay between their corresponding responses. We discuss these
findings further in Section 4.

3.2. The Myogenic Theory

Much of the experimental studies that investigated the effects of ethanol consumption
on blood pressure also addressed the impact of the former on vascular responsiveness.
Altogether, data from such reports revealed that ethanol both promotes vascular hypercon-
tractility and impairs vascular relaxation in distinctive vascular territories.

Increased vascular reactivity to adrenoreceptor agonists has been described in the rat
aorta and the carotid and mesenteric arteries [12,43,58–61]. The hypertensive state induced
by ethanol is accompanied by increases in the pressor effects of intravenous phenyle-
phrine (a selective α1-adrenoreceptor agonist) and endothelin-1 [33,44], supporting the
concept that increased vascular responsiveness in vivo may be involved in the elevation
of blood pressure induced by ethanol. Vascular hypercontractility induced by ethanol
in the isolated aorta is endothelium-independent and maintained by two mechanisms:
augmented production and release of thromboxane A2 (TXA2), a smooth muscle-derived
vasoconstrictor prostanoid; and increased extracellular Ca2+ion influx [60]. In the aorta,
increased TXA2 production is mediated by the cyclooxygenase (COX)-2 enzyme [42], but
in resistance arteries, the mechanism whereby ethanol increases vasoconstriction in the
presence of adrenergic agonists differs from that described in the aorta. In the mesen-
teric arterial bed, ethanol consumption induces an endothelium-dependent increase in
phenylephrine-induced contraction. This response is the result of an augmented release
of endothelial-derived vasoconstrictor prostanoids and an impaired modulatory action
of endothelial nitric oxide (NO); the latter is likely associated with downregulation of the
endothelial NO synthase enzyme (eNOS) [45].

The procontractile effect of ethanol is a complex and multi-mechanistic process. In
the carotid artery, downregulation of ETB receptors explains the hypercontractile effect
to endothelin-1induced by ethanol. These receptors counteract the contraction induced
by endothelin-1 by releasing NO [43,62]. In the microcirculation, ethanol consumption
potentiates the vasocontractile effect of endothelin-1 by promoting upregulation of ETA
receptors, which mediate the contractile response induced by the peptide [63]. Overpro-
duction of ROS is another mechanism by which ethanol promotes its vasocontractile effects.
Drugs that display antioxidant effects are capable of preventing the procontractile effects of
ethanol [40,46]. In fact, increased oxidative stress is a central mechanism whereby ethanol
promotes vascular dysfunction, being responsible not only for the contractile effect but also
for the impaired relaxation [14]. A more detailed overview on the contribution of oxidative
stress to the vascular dysfunction induced by ethanol is provided in Section 5.

Impairment of vascular relaxation also accounts for the deleterious effects of ethanol
in the vasculature. In the aorta, ethanol decreased the endothelium-dependent relaxation
induced by acetylcholine [57]. Similar findings were described in resistance arteries in
which the relaxation induced by these vasoactive agents was impaired after consumption of
ethanol [44]. The NO-cyclic guanosine monophosphate (cGMP) pathway plays a prominent
role in the vascular relaxation induced by acetylcholine [64], suggesting that the endothelial
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dysfunction is trigged by decreased NO bioavailability. In fact, the vascular expression of
the enzyme eNOS as well as the levels of NO are reduced in the vasculature of ethanol-
treated rats. These responses have a negative impact in the NO-cGMP pathway and
are described to be mediated by ROS [47]. The participation of oxidative stress in the
endothelial dysfunction induced by ethanol will be further discussed in Section 5.5.

Downregulation of endothelial ETB receptors is also proposed as a mechanism whereby
ethanol impairs vascular relaxation [62]. Activation of these receptors leads to the produc-
tion of NO, and, consequently, ETB receptors mediate vascular relaxation and counteract
vascular contraction. Relaxation induced by IRL1620 (a selective endothelin ETB recep-
tor agonist), has been shown to be reduced in carotid arteries from ethanol-treated rats,
while, as mentioned before, ethanol favors the contractile effect of endothelin-1 in carotid
arteries [62]. In view of these observations, it is possible to conclude that downregula-
tion of ETB receptors figures as a mechanism impairing vascular relaxation and favoring
vascular contraction.

Of importance, vascular mechanisms may be triggered to compensate for the blood
pressure elevation induced by ethanol. For instance, it is known that the inducible
endothelium-dependent hyperpolarizing factor (iEDHF) pathway is activated as a com-
pensatory response to ethanol-induced hypercontractility. In rats chronically treated with
ethanol, acetylcholine-induced relaxation of mesenteric arteries was significantly greater
compared to control arteries and inhibitors of EDHF reversed this response [65].

Neuroendocrine changes followed by vascular hypercontractility are proposed as a
sequence of events that explains the pathophysiological effects of ethanol in the cardiovas-
cular system. In this scenario, final mediators of RAAS (angiotensin II and aldosterone)
and the sympathetic nervous system (adrenaline and noradrenaline) would promote di-
rect or indirect effects in the vasculature culminating in vascular hypercontractility and
dysfunction. Interplay between these two mechanisms will be detailed in the next section.

4. Interplay of Neuroendocrine and Myogenic Changes in Mediating the Pressor
Effects of Ethanol

RAAS is a major regulator of blood pressure under physiological conditions. Most of
its actions, including sodium retention, aldosterone secretion (by the adrenal glands), and
vasoconstriction, are mediated by angiotensin II, which exerts its biological actions through
G-protein-coupled receptors AT1and AT2. Moreover, aldosterone stimulates sodium–water
retention by acting on the kidney, leading to hypertension. Ethanol-induced hypertension
correlates with elevated plasma angiotensin II levels, endothelial dysfunction, and impaired
vascular relaxation [37,41]. Blockade of AT1 receptors prevents both the hypertensive state
and the vascular hypercontractility induced by ethanol [38], showing the existence of a re-
lationship between ethanol-induced RAAS activation and vascular changes. More recently,
evidence on the participation of aldosterone in ethanol-induced vascular hypercontractility
was provided [42]. Ethanol consumption increases the circulating levels of both angiotensin
II and aldosterone [38,42]. The latter is a steroid hormone synthesized mainly by the adrenal
glands and whose secretion occurs primarily in response to activation of AT1receptors
by angiotensin II [66]. Blockade of AT1 receptors prevents ethanol-induced aldosterone
release, showing that this response is mediated by angiotensin II [38]. The increase in
blood pressure as well as vascular hypercontractility promoted by ethanol is abrogated by
blockade of mineralocorticoid receptors [42], suggesting that aldosterone acts as the final
mediator of RAAS to promote the pressor and procontractile effects of ethanol. Thus, the
positive relationship between RAAS activation and vascular hypercontractility in response
to ethanol consumption might help to explain the hypertensive effect of ethanol.

Production of angiotensin II also occurs locally within the vascular wall. Local RAAS
may generate angiotensin II even when systemic RAAS is suppressed or normal. Under
pathological conditions, vascular RAAS may amplify the effects of systemic RAAS, con-
tributing to vascular oxidative stress and hypertension [67]. Ethanol consumption does not
change the concentrations of angiotensin I or angiotensin II, nor does it alter the expression
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and activity of ACE in the vasculature. In addition, vascular expression of both AT1and
AT2receptors is not affected by ethanol consumption, suggesting that, in spite of activat-
ing the systemic RAAS, ethanol does not activate the vascular angiotensin II-generating
system [38].

Ethanol-induced RAAS activation is proposed to be mediated by the sympathetic ner-
vous system, since the hypertensive and procontractile effects of ethanol occur in parallel
to increases in circulating levels of catecholamines [35,37] (Figure 1). The cardiovascular
effects of ethanol involve a direct action of the sympathetic nervous system through activa-
tion of α- and β-adrenoreceptors [33,40]. Moreover, the sympathetic nervous system may
trigger RAAS activation via β1-adrenergic receptors located in the juxtaglomerular cells,
which synthesize, store, and secrete the enzyme renin. Blockade of β1-adrenergic receptors
prevents an ethanol-promoted increase in the circulating levels of renin, angiotensin I,
angiotensin II, and ACE activities, showing that the sympathetic nervous system modu-
lates RAAS activation in response to the alcohol [40]. The central nervous system plays
an important role in regulating sympathetic outflow and arterial pressure in response
to ethanol consumption. It is proposed that an ethanol-induced increase in sympathetic
outflow involves activation of NMDA receptors in the central nucleus of the amygdala
neurons that projects to the rostral ventrolateral medulla [68].
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Figure 1. Proposal of the mechanisms underlying ethanol-induced hypertension. Neuroendocrine
changes promoted by ethanol trigger overproduction of ROS in the vasculature, leading to vascular
dysfunction. These responses culminate in hypercontractility and hypertension. RAAS: renin–
angiotensin–aldosterone system; ROS: reactive oxygen species.

Procontractile and hypertensive effects of ethanol result from the interplay between
neuroendocrine and vascular changes. Ethanol centrally stimulates the sympathetic ner-
vous system, which is responsible for triggering RAAS activation. The latter is critically
involved in the vascular hypercontractility induced by ethanol consumption (Figure 1).
Neuroendocrine changes promoted by ethanol trigger overproduction of ROS in the vascu-
lature leading to disruption of the NO-cGMP pathway in the endothelium, thus favoring the
accumulation of intracellular Ca2+ ions. These responses culminate in vascular dysfunction
and hypertension.



Antioxidants 2023, 12, 1813 9 of 25

5. Oxidative Stress: The Major Mediator of Vascular Dysfunction Induced by Ethanol

Ethanol alters vascular tonus by disrupting the mechanisms that control and maintain
the balance between contraction and relaxation. A number of possible mechanisms have
been postulated to explain the pathogenesis of ethanol toxicity in the vasculature, which
highlights the importance of identifying the biochemical/molecular basis of the ethanol
effects (Figure 2). Overproduction of ROS is pointed out as a central mechanism whereby
ethanol promotes vascular dysfunction and hypertension through increased generation
of ROS and activation of redox-sensitive pathways, thereby reducing NO bioavailability
and increasing intracellular Ca2+ion levels, actions that mediate the procontractile effects
of ethanol.
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Figure 2. Summary of the molecular mechanisms underlying ethanol-induced vascular dysfunction.
RAAS is an upstream mechanism that leads to NADPH oxidase activation, an enzyme that plays a
central role in vascular ROS generation in response to ethanol consumption. Augmented levels of
ROS trigger important processes underlying vascular injury including intracellular Ca2+ion accumu-
lation, reduced NO bioavailability, MAPK activation, and endothelial dysfunction. VSMC: vascular
smooth muscle cell; RAAS: renin–angiotensin–aldosterone system; ROS: reactive oxygen species;
CYP2E1: cytochrome P450 2E1; COX2: cyclooxygenase 2; TXA2: thromboxane A2; MAPKs: mitogen-
activated protein kinases; NO: nitric oxide; eNOS: endothelial NO synthase; BH4: tetrahydrobiopterin;
BH2: dihydrobiopterin; TP: thromboxane receptor; SOD: superoxide dismutase; GPx: glutathione peroxidase.

5.1. NADPH Oxidase Is a Major Mediator of ROS Generation in Response to Ethanol

ROS stands for radical oxygen species produced either as intermediates or as a final
reaction product. The vasculature produces superoxide anions (O2

•−) and hydrogen
peroxide (H2O2). These two compounds have important functions in the maintenance of
vascular integrity and control of vascular tone by interacting with redox-sensitive target
proteins under physiological conditions and activating redox-signaling pathways [69].

Oxidative stress is often described as a disturbance in the equilibrium established be-
tween ROS production and antioxidant defenses, which results in an increased bioavailabil-
ity of ROS. Oxidative stress triggers pathophysiological processes including inflammation
(by promoting platelet aggregation and monocyte migration), tissue hypertrophy, cellular
proliferation, fibrosis, hypercontractility, and endothelial dysfunction, processes that are
all involved in vascular dysfunction [70]. Thus, vascular dysfunction promoted by redox
imbalance not only induces direct oxidative damage to macromolecules but also triggers
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redox signaling pathways in the vasculature that leads to changes in gene transcription
and in oxidative modifications of proteins [71].

A number of enzymatic systems may generate O2
•− using oxygen as substrate, includ-

ing xanthine oxidase, lipoxygenase, COX, uncoupled NO synthase (NOS), cytochrome P450
reductase, and some enzymes of the mitochondrial electron transport chain [72]. In these
cases, ROS are generated as secondary products of the main chemical reactions catalyzed by
those enzymes; however, for the enzyme NADPH oxidase, ROS consist of the main reaction
product, with this enzyme being the major source of ROS in the vasculature, utilizing
either NADPH or NADH as electron donors to promote the reduction of molecular oxygen
into O2

•− [73]. The so-called “NOX family” is composed of seven isoforms of NADPH
oxidase, which differ in their catalytic subunit (NOX1–5, DUOX1, DUOX2) and regulation.
Whilst NOX1–4 are regulated by cytosolic proteins, NOX5 and DUOX1 and DUOX2 are
activated by Ca2+ ions, which bind to specific domains located in these proteins [74]. In
human vascular cells, the isoforms NOX1, NOX2, NOX4, and NOX5 are expressed and
functionally active. NADPH oxidase-derived ROS play a role in both physiological and
pathophysiological processes in the vasculature [73].

Overproduction of ROS by ethanol is crucial to its vascular pathophysiology. Similar to
physiological conditions, O2

•− and H2O2are also central to the deleterious effects of ethanol
in the vasculature, as well as in a variety of tissues, with enzymes of the NOX family playing
a key role in the process [75–78]. Ethanol consumption has been described to promote
increases in vascular NADPH oxidase activity, ROS generation, and lipoperoxidation. These
responses are concomitant to changes in vascular tonus, which include hypercontractility
and impaired vasorelaxation [41]. The augmented activity of NADPH oxidase promoted
by ethanol may be associated with increased expression and phosphorylation of p47phox,
a cytosolic protein that regulates the activation of NOX2 [48,79,80]. The effects of ethanol
on NADPH oxidase also include increases in the expression of the catalytic subunits
NOX1 and NOX2. This effect may help explain the augmented production of ROS in
the vasculature promoted by ethanol consumption. In fact, NADPH oxidase is involved
in other actions of ethanol including lipoperoxidation, vascular hypercontractility, and
impaired vasorelaxation [46,47,81].

In the microcirculation, ethanol impairs vascular relaxation and increases NADPH
oxidase activity, expression of NOX2, and translocation of p47phox, which is a crucial step
for NOX2 activation [80]. Blockade of NADPH oxidase prevents the deleterious effects of
ethanol in the microcirculation and attenuates the resulting increase in blood pressure, sug-
gesting that the hypertensive state associated with ethanol consumption involves formation
of ROS [47,49,80]. It is noteworthy that antioxidants are capable of preventing ethanol-
induced overexpression of NOX1 and NOX2, implicating ROS in this response [40,46,80].
In this scenario, NADPH oxidase-derived ROS favor a positive feedback loop that amplifies
the starting signal. Thus, the causal relationship between ethanol, ROS, and hypertension
most likely occurs at the vascular level, where ethanol promotes activation/overexpression
of NADPH oxidase, subsequently generating ROS, which are then implicated in vascular
hypercontractility and impaired vasorelaxation. Altogether, these responses contribute to
increases in vascular resistance and blood pressure.

NADPH oxidase activation is a multi-mediated and complex process since this enzyme
responds to a wide range of stimuli. In the vasculature, mediators that control vascular
tonus, such as endothelin-1, aldosterone, and angiotensin II, may promote NADPH activa-
tion [73]. The physiological actions of angiotensin II in the vasculature are predominantly
mediated by AT1 receptors, which are also implicated in the pathophysiological actions of
this peptide. Angiotensin II regulates the onset and progression of cardiovascular diseases
by increasing NADPH oxidase activity and leading to upregulation of vascular NOX1 and
NOX2, which are important in redox-mediated hypertension in various cardiovascular
diseases [82]. The actions of angiotensin II on NADPH oxidase favor overproduction of
O2
•−, which, in turn, influence downstream signaling pathways. Angiotensin II figures

as an important mediator of NADPH oxidase activation in response to ethanol. The ac-
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tions of angiotensin II occur via AT1 receptors and include increased activity of NADPH
oxidase and overproduction of ROS, responses that are directly implicated in the vascular
hypercontractility and hypertension induced by ethanol [38].

There is also evidence showing the involvement of aldosterone in NADPH oxidase
activation in response to ethanol. Aldosterone induces upregulation and increases in
NADPH oxidase activity in the vasculature through activation of mineralocorticoid recep-
tors [83,84]. The latter are implicated in the upregulation of NOX1 and in the increase in
NADPH oxidase activity promoted by ethanol consumption in the vasculature. Activation
of mineralocorticoid receptors leads to overproduction of ROS; the latter then mediate
upregulation of COX2 and overproduction of the vasocontractile prostanoid TXA2, which
ultimately induces vascular contraction [42].

NADPH oxidase is the major source of ROS in the vasculature and, consequently,
this enzyme is implicated in the pathophysiology of multiple cardiovascular diseases [69].
Increased expression and activity of this oxidase is accepted as a central mechanism of the
vascular effects promoted by ethanol [14]. NADPH oxidase-derived ROS are considered
key factors in the development of endothelial dysfunction and hypercontractility induced
by ethanol. Additionally, ethanol may lead to overproduction of ROS by activating targets
other than NADPH oxidase. Other sources of ROS production in response to ethanol
consumption are discussed in the next section.

5.2. Other Sources of Ethanol-Induced ROS Generation in the Vasculature

Ethanol-induced ROS generation may also occur through uncoupled eNOS and xan-
thine oxidase. In addition, ethanol metabolism is also associated with ROS production.
However, the contribution of these sources to the deleterious effects of ethanol in the
vasculature is not well determined.

The enzyme eNOS is a constitutive isoform of NOS present in the vasculature, where
it promotes the generation of NO and L-citrulline using the amino acid L-arginine as
substrate. The synthesis of NO occurs when eNOS is in its dimeric form, with L-arginine
and the cofactor tetrahydrobiopterin (BH4) being crucial to its dimerization and activity.
In its uncoupled form, eNOS may produce both O2

•− and NO, contributing to vascular
dysfunction [85]. The reaction of these two molecules generates peroxynitrite (ONOO−), a
very reactive free radical that oxidizes BH4, leading to eNOS uncoupling and subsequent
generation of O2

•−. Moreover, O2
•− is capable of oxidizing BH4, a process that also fa-

vors eNOS uncoupling [85]. A few studies assessed the role of uncoupled eNOS in ROS
generation in response to ethanol. In this regard, ethanol consumption augments hepatic
and renal concentrations of ONOO−.In the vasculature, ethanol consumption induced in-
creased staining for nitro tyrosine, suggesting the production of high levels of ONOO− [40].
Ethanol consumption promotes BH4deficiency, which occurs in parallel to an impaired
eNOS-dependent vasodilatation [86,87]. An in-vivo study showed that, in the microcir-
culation, ethanol consumption compromises endothelium-dependent vasorelaxation and
this response is reversed by administration of BH4, suggesting a role for uncoupled eNOS
in this response [88]. This is indirect evidence that suggests a possible contribution of
uncoupled eNOS to ROS generation induced by ethanol.

Xanthine oxidase contributes to O2
•− generation in conditions such as hypertension

and coronary arterial disease [89]. By promoting the reduction of xanthine or hypoxanthine
to uric acid, xanthine oxidase also reduces one or two electrons of molecular oxygen
leading to the generation of O2

•− or H2O2 as intermediaries [90]. During the reduction of
xanthine or hypoxanthine, one atom of hydrogen is transferred from these substrates to
NAD generating NADH. Ethanol may influence xanthine oxidase activity by promoting
an imbalance of the NAD/NADH ratio during its oxidation [91]. In the liver, ethanol was
described to promote an increase in lipid peroxidation that was mediated by xanthine
oxidase [92]. Despite playing a role in the hepatic effects of ethanol, the participation of
xanthine oxidase in the vascular effects of ethanol remains elusive.
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The central route whereby ethanol is metabolized in the liver takes place in the cytosol
where the enzyme alcohol dehydrogenase converts ethanol into acetaldehyde, which is
then oxidized to acetate in the mitochondria by the enzyme acetaldehyde dehydrogenase.
The conversion of ethanol into acetaldehyde may also occur in the peroxisome and micro-
some by the enzymes catalase and cytochrome P450 2E1 (CYP2E1), respectively. Ethanol
metabolism by the CYP2E1 pathway produces ROS. This response may be amplified when
ethanol is chronically consumed since in this case it induces the expression of CYP2E1.In
addition, ethanol is metabolized by alcohol dehydrogenase and CYP2E1 in extrahepatic
tissues, the sympathetic nervous system, and RAAS [93]. ROS derived from ethanol
metabolism react with macromolecules (e.g., nucleophilic proteins, phospholipids, and
nucleic acids) and also activate intracellular pathways that leads to tissue inflammation
and apoptosis.

Both alcohol dehydrogenase and CYP2E1 are functionally active in the vasculature [94].
Ethanol promotes direct actions in the vasculature where it induces both catalytic activity
and expression of ethanol-metabolizing enzymes. These responses occur in parallel with
overproduction of ROS. The increase in oxidative stress induced by ethanol leads to acti-
vation of the myosin light chain (MLC) kinase, subsequent phosphorylation of MLC and
tight-junction proteins, decreased blood-brain barrier integrity, and increased monocyte
migration across blood-brain barrier [94,95]. Thus, vascular metabolism of ethanol leads to
generation of ROS that will, in turn, affect vascular integrity. In addition, inhibition of the
ethanol-metabolizing enzymes dehydrogenase and CYP2E1 reduces the direct vasomotor
effects exerted by ethanol, showing that ethanol metabolism in the vasculature influences
vascular tonus.

5.3. Impairment of Antioxidant Systems May Contribute to Ethanol-Induced ROS Accumulation

Cellular levels of ROS are regulated by enzymatic and non-enzymatic antioxidant
systems. While the enzymes superoxide dismutase (SOD), catalase, and glutathione peroxi-
dase constitute the most important enzymatic systems, ascorbate, tocopherols, glutathione,
bilirubin, and uric acid are pointed out as the major non-enzymatic antioxidants [96]. En-
zymes of the enzymatic antioxidant system are expressed on blood vessels, where they
play an important role in the control of redox balance.

There are three isoforms of SOD: the cytoplasmic Cu/Zn-SOD or SOD1, the mito-
chondrial Mn-SOD or SOD2, and the extracellular Cu/Zn-SOD or SOD3; all of which
are expressed in the vasculature. These enzymes promote the dismutation of O2

•− in
H2O2 and oxygen in distinctive intracellular compartments [97]. Since O2

•− is a highly
unstable and reactive molecule, enzymes of the SOD family are considered as the first line
of defense against free radicals. The reaction of these antioxidant enzymes with O2

•− main-
tains the physiological levels of O2

•−, preventing cellular damage. Ethanol can diminish
SOD activity. For example, heavy drinkers (≥6 drinks/day) show decreased plasma SOD
activity when compared to abstainers [98]. Similar findings are described in an animal
model of ethanol consumption [40]. Experimental findings showed that ethanol decreased
total SOD activity in the vasculature [99]. Activity of both Cu/Zn-SOD and Mn-SOD
were depressed in the vasculature of ethanol-treated rats, a response that was related to
decreased NO bioavailability and endothelial dysfunction. The exact mechanism whereby
ethanol diminishes SOD activity is unknown, but this response is proposed to be mediated
by ONOO− [41]. In the microcirculation, ethanol consumption reduces SOD activity and
SOD1 expression, these effects being attributed to ROS [80].

H2O2 is a stable and membrane-permeable ROS which is involved in the activation
of distinctive redox signaling pathways. H2O2displays mild oxidant properties and for
this reason it is inert to most biomolecules. In fact, H2O2contributes to the physiological
regulation of the vascular tone by promoting activation of potassium channels and increas-
ing the generation of NO production [100]. However, H2O2promotes alterations of amino
acid residues (e.g., cysteinyl residues) located in active or allosteric sites of some proteins,
leading to modifications of their activity and function. Phosphatases, transcription factors,



Antioxidants 2023, 12, 1813 13 of 25

ion channels, antioxidant enzymes, structural proteins, and protein kinases are examples of
proteins that may be modified by H2O2 [101].

Among those proteins, a group of protein kinases named mitogen-activated protein
kinases (MAPKs) is of special interest. MAPKs belong to four families of proteins (the
extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, jun N-terminal kinase (JNK),
and the extracellular signal-regulated kinase 5 (ERK5)) that are key components of signaling
pathways. While proteins of the ERK cascade play a role in proliferation, differentiation,
growth, and cell survival, JNK and p38MAPK are involved in apoptosis/inflammation and
inflammatory responses, respectively [101]. Since all MAPKs are targets of H2O2, cellular
consequences derived from their redox regulation by H2O2are ample.

The concentration of H2O2is regulated by intracellular and extracellular enzymes,
such as catalase, which converts H2O2into H2O and O2. Since catalase is a key enzyme in
the metabolism of H2O2, decreases in its expression and/or activity may result in increased
H2O2bioavailability [102]. Ethanol consumption decreases vascular catalase activity, but
the consequences of this response are unknown [41,99]. Diminished catalase activity may
favor an increase in H2O2concentration in vascular cells, leading to redox regulation of
signaling pathways. In fact, studies in isolated arteries showed that ethanol consumption
is linked to MAPK activation in the vasculature. Inhibitors of p38MAPK and ERK1/2
attenuate ethanol-induced contraction and increase in intracellular Ca2+ ions, showing
the involvement of these proteins in the vasocontractile response to ethanol [103,104].
In vitro studies in isolated arteries showed that ethanol consumption increases vascular
p38MAPK and SAPK/JNK phosphorylation as well as expression of SAPK/JNK, responses
that occur in parallel to increased NADPH oxidase-derived ROS and vascular hypercon-
tractility [38,46,47,79]. Thus, MAPKs contribute to the vascular pathobiology of ethanol,
but the involvement of H2O2in their activation needs further clarification.

The effects of ethanol on catalase activity are dependent on the amount and frequency
of consumption and amount of ethanol consumed. Some reports have shown that ethanol
may increase catalase activity in the vasculature, leading to a decreased bioavailability of
H2O2 [49,80,81]. The increase in catalase activity in response to ethanol was also described
in other tissues as a compensatory mechanism to protect against the deleterious effects
displayed by H2O2 [80,105]. At this point, it is important to reiterate that the vascular
effects of H2O2are concentration-dependent. At low concentrations, H2O2exerts vasorelax-
ation, while high concentrations of H2O2are associated with vasoconstriction [100]. Thus,
ethanol-induced increases in catalase activity in the vasculature may favor H2O2-mediated
vascular relaxation. In the vasculature, an ethanol-induced increase in catalase activity
leads to a decrease in H2O2concentration [49,80], but the possible contribution of H2O2 to
vasorelaxation in such conditions remains to be determined. Conversely, ethanol-induced
decreases in catalase activity may favor the vasocontractile action of H2O2.

Glutathione peroxidase promotes the reduction of H2O2to H2O and catalyzes the
conversion of lipid hydroperoxides to their corresponding alcohols. Eight isoforms of
glutathione peroxidase are currently described (glutathione peroxidases1–8). These en-
zymes vary in cellular location and substrate specificity. They work with SOD and catalase,
forming an enzymatic antioxidant system that promotes ROS reduction, limiting their
cellular toxicity. In order to reduce H2O2 and alkyl hydroperoxides, all members of the
glutathione peroxidase family use glutathione (GSH) as substrate, a reducing agent that
is converted to glutathione disulfide (GSSG), its oxidized form during the reduction pro-
cess [106]. Clinical and experimental studies revealed that ethanol consumption promotes
reduction in the activity of glutathione peroxidase in serum [50,98,107]. In the vascula-
ture, ethanol induces decreases in glutathione peroxidase activity, GSH levels, and of the
GSH/GSSG ratio [41,81,99]. The possible contribution of these responses to the deleterious
effects of ethanol in the vasculature is unknown. As described for catalase, a decrease in
glutathione peroxidase activity may favor an increase inH2O2, which acts as a signaling
second messenger in the vasculature triggering multiple signaling pathways involved in
vascular dysfunction.



Antioxidants 2023, 12, 1813 14 of 25

Increased levels of ROS may be the result of an imbalance between their generation and
elimination by antioxidant systems. Ethanol promotes a negative regulation of antioxidant
enzymes and this response may contribute to vascular increases in ROS levels induced
by ethanol.

5.4. Ethanol-Induced Oxidative Stress Leads to Ca2+Ion Accumulation in the Vasculature

Ca2+ions are essential for smooth muscle contraction. Increases in intracellular Ca2+ion
concentration during excitation may occur due to Ca2+ion release from intracellular stores
(sarcoplasmic reticulum or mitochondria) or extracellular Ca2+ion influx through voltage-
or ligand-gated ion channels located in the cell membrane. The increase in intracellular
Ca2+ions in smooth muscle cells is one mechanism by which ethanol consumption promotes
vascular hypercontractility. In-vivo and in-vitro studies provided evidence that ethanol
augments vascular concentration of Ca2+ions by promoting increases in Ca2+ion uptake
in smooth muscle cells [51,108]. Of importance, ethanol-induced intracellular Ca2+ion
accumulation is associated with vascular hypercontractility [60,109].

Redox-sensitive signaling pathways mediate the contraction and increase in intracel-
lular Ca2+ions induced by ethanol in vascular smooth muscle cells. In vitro, antioxidants
attenuate both the elevation in intracellular Ca2+ions and the vasocontractile effect induced
by ethanol, implicating ROS in such responses [110,111]. Ethanol effects on Ca2+ion ac-
cumulation are mediated by H2O2and O2

•−, which trigger production of COX-derived
vasoconstrictor prostanoids (prostaglandin F2α and TXA2) that ultimately increases intra-
cellular Ca2+ion concentration in vascular smooth muscle cells and their contraction [112]
(Figure 2).

In vivo, ethanol consumption promoted elevations in vascular Ca2+ion influx and
this response occurred in parallel to hypertension [51,52,113]. In vitro, the increase in
Ca2+ion influx mediated by ethanol occurs through voltage-sensitive channels and is linked
to the procontractile effect exerted by ethanol [114]. As in studies in vitro, ROS are also
implicated in the ability of ethanol to promote accumulation of Ca2+ionsin vivo. The
vascular hypercontractility associated with ethanol consumption is mediated by TXA2, a
vasoconstrictor prostanoid that stimulates Ca2+ion influx through the cell membrane [60].
In isolated vessels, it was shown that the increase in TXA2production is mediated by
the proinflammatory enzyme COX2, whose vascular expression is induced by ethanol.
ROS are implicated in the upregulation of COX2, overproduction of TXA2,and vascular
hypercontractility as their production is regulated by aldosterone [42]. Thus, the RAAS,
through the action of aldosterone, triggers vascular hypercontractility with ethanol. By
activating mineralocorticoid receptors, aldosterone induces ROS generation, which will in
turn induce upregulation of COX2 and overproduction of TXA2. The latter will ultimately
stimulate extracellular Ca2+ion influx leading to vascular contraction (Figure 2).

A role for ROS in Ca2+ion mobilization and vasoconstriction induced by ethanol is
well established. Overproduction of ROS, Ca2+ion influx, and vascular contraction are
interrelated and might contribute to ethanol-induced hypertension.

5.5. Role of ROS in Endothelial Dysfunction Induced by Ethanol

The vascular endothelium produces NO, a relaxing factor that plays a key role in the
control of vascular tone. NO is a free radical generated from the amino acid L-arginine
by the action of the three isoforms of the enzyme NOS. While neuronal NOS (nNOS or
NOS1) and endothelial NOS (eNOS/NOS3) are the isoforms constitutively expressed in
the vasculature, the inducible NOS (iNOS/NOS2) isoform is expressed in response to
inflammatory stimuli. In the vascular endothelium, eNOS is the main isoform responsible
for NO production. Once synthesized in the endothelium, NO diffuses to vascular smooth
muscle cells where it stimulates the soluble isoform of guanylyl cyclase (sGC), an enzyme
that catalyzes the synthesis of cGMP from guanosine 5′-triphosphate (GTP). cGMP activates
protein kinase G (PKG) that, acting by multiple mechanisms, will induce smooth muscle
relaxation [115].
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Endothelial dysfunction is a systemic pathological state of the endothelium charac-
terized by a decrease in NO bioavailability and activation of the NO-cGMP pathway. In
general, reduced NO bioavailability may be the result of a decreased production of NO by
endothelial eNOS or, more frequently, an increased breakdown by O2

•−, which reacts with
NO leading to the generation of ONOO−. Endothelial dysfunction is triggered by differ-
ent cardiovascular risk factors such as hypertension, obesity, and diabetes [116]. Ethanol
consumption induces overproduction of ROS in the vasculature and for this reason is
considered a risk factor for endothelial dysfunction.

Endothelial dysfunction is assessed in vitro by evaluating endothelium-dependent
vasorelaxation induced by vasoactive substances (e.g., acetylcholine) that stimulate en-
dothelial release of NO. This pharmacological approach has been widely used to evaluate
the impacts of ethanol consumption in endothelial function. In vitro studies using isolated
arteries showed that ethanol consumption decreases the endothelium-dependent relaxation
induced by acetylcholine, a response that is mediated by endothelial-derived NO [117]. The
impairment in endothelium-dependent vasorelaxation promoted by ethanol is related to a
decreased production of NO by eNOS [118,119]. In fact, ethanol consumption reduces eNOS
expression and this response occurs in parallel to a decrease in acetylcholine-induced relax-
ation [45]. In cultured endothelial cells and isolated blood vessels, antioxidants prevented
the downregulation of eNOS as well as the decrease in NO bioavailability and impairment
in acetylcholine-dependent relaxation, implicating ROS in such responses [47,87,120]. Thus,
ROS mediate endothelial dysfunction in response to ethanol by downregulating eNOS and
by inducing NO inactivation. NADPH oxidase is implicated in the production of endothe-
lial ROS that will further promote endothelial dysfunction induced by ethanol. Inhibition
of this enzyme restored the impairment of endothelium-dependent relaxation induced
by ethanol consumption. Endothelial dysfunction mediated by NADPH oxidase-derived
ROS is linked to both impaired vascular relaxation and hypertension induced by ethanol
consumption. As discussed in Section 5.1, ethanol-induced activation and expression of
NADPH oxidase in the vasculature are mediated by the RAAS [38,42].

Ethanol consumption also compromises the synthesis of NO by interfering with BH4, a
cofactor that is necessary for eNOS during the synthesis of NO. In vitro findings in isolated
arterioles showed that by decreasing BH4, ethanol consumption impairs endothelium-
dependent dilatation [87]. Reduced metabolism of BH4leads to eNOS uncoupling resulting
in an increased generation of O2

•− and a reduced production of NO [121]. In vivo find-
ings showed that ethanol consumption promotes a decrease in arteriolar flow-induced
vasodilation. The microvascular dysfunction is restored by BH4administration, showing
that reduction of the eNOS cofactor has a negative impact on NO production. In addition,
it may be concluded that uncoupled eNOS may contribute to the impaired vasorelaxation
of the microcirculation induced by ethanol [122]. Ethanol-induced decreased availability
or utilization of BH4favors O2

•− generation resulting in an imbalance between O2
•− and

NO, thereby contributing to endothelial dysfunction, presumably by NO inactivation [87]
(Figure 2).

Ethanol metabolism in the vasculature may play a role in the endothelial dysfunction
induced by ethanol consumption. ADH and CYP2E1 are ethanol-metabolizing enzymes
that are constitutively expressed and functionally active in the vasculature. CYP2E1 pro-
motes the conversion of ethanol into acetaldehyde, but this process leads to the generation
of O2

•− [94]. The latter reacts with NO, decreasing its bioavailability, a response that
can account for the impaired endothelium-dependent relaxation promoted by ethanol
consumption [79,112].

Endothelial dysfunction induced by ethanol may be aggravated by overexpression
of iNOS, the inducible isoform of NOS [81,114]. This enzyme induces a substantial and
sustained release of NO that readily reacts with O2

•−, forming ONOO−, an oxidizing
molecule that is linked to endothelial dysfunction. In the microcirculation, induction
of iNOS expression by ethanol is associated with a decrease in NO bioavailability and
impaired endothelium-dependent relaxation. These responses occurred in parallel to
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overproduction of O2
•− and were prevented by the antioxidant apocynin, showing that

ethanol-induced iNOS upregulation is mediated by ROS [80].
Under physiological conditions, endothelium-derived NO counteracts vascular con-

traction. In this sense, endothelial dysfunction not only compromises vascular relaxation
but also favors vascular contraction. Decreased endothelial modulation of the vascular
contraction was described after ethanol consumption. In all cases, this response was a con-
sequence of reduced NO bioavailability and occurred in parallel to impaired endothelium-
dependent vascular relaxation [12,45,62].

Endothelial function may also be assessed in vivo using the non-invasive method
of brachial artery flow-mediated dilation (FMD) [123]. This method is widely used to
determine endothelium- and NO-mediated vasodilatation in vivo in experimental and
clinical studies. Lower values of brachial artery FMD are linked to a higher risk of future
cardiovascular events. Individuals with a history of chronic alcoholism (≥6 drinks/day
for ≥2 years) or with a history of repeated binge drinking show decreased brachial artery
FMD when compared to non-drinkers [124–127]. Reduced endothelial function induced by
heavy ethanol consumption may predispose individuals to future cardiovascular diseases,
including hypertension [122].

A decrease in NO bioavailability is a central mechanism whereby ethanol promotes
endothelial dysfunction (Figure 2). This response results from prejudiced activation or
downregulation of eNOS, responses that are mediated by ROS. In addition, O2

•− generated
by NADPH oxidase, uncoupled eNOS, or ethanol metabolism reacts with NO, reducing its
bioavailability and resulting in impaired vasorelaxation. Endothelial dysfunction impairs
vasorelaxation and represents an important mechanism underlying the effects of ethanol
on blood pressure.

5.6. Perivascular Adipose Tissue (PVAT) and Its Role in Ethanol-Induced ROS Production

PVAT is a complex tissue composed predominantly of adipocytes, but other cell types
including mesenchymal stem cells and immune cells are also found in PVAT. It surrounds
most blood vessels and displays phenotypic heterogeneity depending on the vascular
territory. While PVAT surrounding the thoracic aorta has a brown adipose tissue-like
phenotype, PVAT that surrounds the abdominal aorta and coronary arteries is a mixture
of white and brown adipose-like tissues. Conversely, mesenteric, femoral, and carotid
arteries are surrounded by PVAT that is predominantly composed of white adipose-like
tissue [128,129].

PVAT displays an anticontractile effect by releasing a wide range of vasoactive sub-
stances, such as NO, H2S, H2O2, prostacyclin, palmitic acid methyl ester, and angiotensins1–7.
The contribution of each one of these substances to the regulation of vascular tone is de-
pendent on PVAT composition (brown-like or white-like adipocytes) and, for this reason,
varies according to the vascular bed. The anticontractile phenotype of PVAT is seen under
physiological conditions, but it may shift to a procontractile one under certain pathophysi-
ological circumstances, such as hypertension and obesity [130]. The procontractile effects
of PVAT are mediated by decreased production/release of anticontractile substances and
increased generation of procontractile factors, such as O2

•−, angiotensin II, noradrenaline,
prostaglandins, and chemerin [129].

There are a few reports describing the impact exerted by ethanol exposure in PVAT.
Current data show that the effects of ethanol in PVAT vary according to the vascular
territory and pattern of ethanol consumption. PVAT counteracts the procontractile effect
induced by a single dose of ethanol. In this scenario, the vascular protective effect of PVAT
is the result of a decreased activity of catalase that favors an increase in H2O2 concentration.
In this case, the anticontractile effect displayed by PVAT-derived H2O2is partially mediated
by NO [131].

In periaortic PVAT, long-term ethanol consumption increases the production of ROS
via NADPH oxidase activation. As a consequence, there is a reduction in NO bioavailability
in PVAT. Despite inducing molecular changes, ethanol does not favor a procontractile
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phenotype of periaortic PVAT or induce loss of its anticontractile effect [15]. However,
chronic ethanol consumption favors a procontractile phenotype of PVAT that surrounds
mesenteric arteries. This response is mediated by the proinflammatory cytokine IL-6,
whose concentration is augmented in plasma and PVAT after ethanol consumption. The
procontractile phenotype induced by IL-6 involves activation of NADPH oxidase in PVAT,
with further increases in O2

•− generation. IL-6 derived from PVAT also mediates intravas-
cular recruitment of neutrophils in response to ethanol, showing that PVAT may shift to a
proinflammatory phenotype in response to ethanol [15].

So far, studies support the notion that PVAT may be a target of the effects of ethanol,
while it also contributes to the deleterious effects displayed by ethanol in the vasculature
(Figure 3). PVAT is a metabolically active organ that under non-physiological conditions
contributes critically to cardiovascular disease onset and progression. In this scenario,
dissecting the precise role of PVAT in the vascular effects of ethanol is of paramount interest.
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6. Direct Effects of Ethanol in the Vasculature

Ethanol exerts direct effects in the vasculature. At low concentrations, ethanol induces
relaxation while at higher concentrations it promotes vasoconstriction. Pioneer studies
of Dr. Altura, using in-situ and in-vitro approaches, have shown that ethanol inhibits
vasoconstriction induced by distinctive vasoactive agents and promotes concentration-
dependent vasorelaxant actions on rat venules, veins, arterioles, and arteries [132–135].
Inhibition of Ca2+ ion uptake by vascular smooth muscle cells was initially suggested
as a mechanism whereby low concentrations of ethanol (170–430 mmol/L) promoted
relaxation [136]. Functional studies in the rat aorta and mesenteric arterial bed additionally
showed that ethanol attenuated both extracellular and intracellular Ca2+ ion mobilization
in vascular smooth muscle [137].

The effect of ethanol on Ca2+ion mobilization is not the only mechanism associated
with ethanol-induced direct vasorelaxation. Functional studies provided evidence that
endothelial-derived factors including NO [138,139] and prostaglandin [138] play a role in
ethanol-induced vasorelaxation. In cultured bovine aortic endothelial cells and human
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umbilical endothelial cells, ethanol increased both mRNA and protein expression of eNOS
as well as the concentration of NO [140]. Ethanol (10 and 50 mmol/L) also stimulated NO
production in cultured umbilical vein endothelial cells via stimulation of Ca2+ ion-activated
potassium channels [141]. This evidence shows that vascular relaxation induced by ethanol
involves the participation of both endothelial and vascular smooth muscle cells [137,138].

We provided evidence that redox-sensitive and NO-dependent signaling pathways
mediate ethanol-induced vascular relaxation [142]. Based on data obtained in functional
assays and in cultured vascular smooth muscle cells from rat aortas, we showed that the
endothelium-independent vasorelaxant action of ethanol (0.03–200 mmol/L) is mediated
by the NO-cGMP pathway and also involves the opening of both ATP-sensitive and voltage-
dependent K+ion channels. Production of NO in response to ethanol occurs rapidly by the
activation of a constitutive isoform of NOS. Antioxidant treatment of endothelium-intact or
-denuded aortic rings prevented ethanol-induced relaxation, showing that this response is
mediated, in part, by ROS. Ethanol metabolism by ADH and CYP2E1 in the vasculature is
possibly the main source of ROS generation, which trigger the vascular production of NO
leading to vascular relaxation [142].

The direct vasocontractile effect of ethanol occurs at concentrations higher than
those needed to promote relaxation. Initial studies in this field showed that ethanol
(8–570 mmol/L) induced a concentration-dependent response in endothelium-intact or
endothe-lium-denuded basilar and middle cerebral arteries, from dogs, sheep, piglets,
and baboons. In all cases, ethanol-induced contraction was dependent of extracellular
and intracellular Ca2+ ion mobilization [143]. Exposure of cultured smooth muscle cells
for seven days to crescent concentrations of ethanol of 46, 115, and 460 mg/dl led to in-
creases in cytosolic free Ca2+ions of 22%, 56%, and 58%, respectively [108]. Importantly,
ethanol-induced increases in cytosolic free Ca2+ions in cultured smooth muscle cells as
well as ethanol-induced contraction of cerebral arteries were attenuated by the antioxidant
α-tocopherol, suggesting a role for ROS in such responses [110,144]. Later, it was demon-
strated that H2O2 modulates the increase in cytosolic free Ca2+ions induced by ethanol,
implicating this ROS in ethanol-induced vascular contraction [111].

A more detailed description of the direct vasocontractile effects of ethanol was pro-
vided by Yogi et al. [112]. Ethanol was found to induce contraction of isolated rat aortic
rings with intact or denuded endothelium, but endothelial cells counteract ethanol-induced
contraction via activation of the NO-cGMP pathway. Ethanol increased H2O2concentration
in cultured vascular smooth muscle cells and functional assays revealed that catalase, a
scavenger of H2O2, blunted the vascular contraction induced by ethanol, supporting a role
for H2O2in this response. Their findings also revealed that the vasocontractile prostanoids
PGF2αand TXA2 derived from COX1 are involved in ethanol-induced contraction. In addi-
tion, ROS were demonstrated to be involved in prostanoid-mediated contraction. Finally, it
was described that O2

•− and COX1-derived metabolites are important mediators of ethanol-
induced increases in intracellular Ca2+ ions. Collectively, the findings of Yogi et al. [112]
supported the proposal that ROS and COX pathways are associated with ethanol-induced
smooth muscle contraction and increases in intracellular Ca2+ ions.

Altogether, the studies designed to evaluate the direct vascular action of ethanol
showed that its effects are concentration-dependent. In addition, neither contraction nor
relaxation is dependent on the presence of the endothelium. These studies identified signal-
ing pathways whereby ethanol promotes vasoconstriction and vasorelaxation. Although
these results shed light on putative molecular mechanisms whereby ethanol mediates direct
actions in the vasculature, we must be aware of the fact that they cannot be necessarily
extrapolated to in vivo conditions.

7. Conclusions

Ethanol consumption is associated with a robust oxidative response in the vasculature,
which correlates to hypertension and neuroendocrine changes. The latter are characterized
by increased sympathetic activity and activation of RAAS, an upstream mechanism that



Antioxidants 2023, 12, 1813 19 of 25

contributes to NADPH oxidase activation, overproduction of ROS and vascular dysfunction.
NADPH oxidase-derived ROS trigger important processes underlying vascular injury in-
cluding intracellular Ca2+ ion accumulation, reduced NO bioavailability, MAPK activation,
endothelial dysfunction, and loss of the anticontractile effect of PVAT. Redox imbalance
induced by ethanol in the vasculature leads to impaired vasodilatation and hypercontractil-
ity, which are recognized as central events in the hypertensive state induced by ethanol
consumption. Thus, it is of great importance to invest in implementing strategies that help
to prevent alcoholism, reducing the risk of ethanol-associated cardiovascular diseases.
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