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Abstract 

 
In this paper we tackle the challenging problem to determine, in a simple but reliable way, whether – for a 

given, arbitrary number x, x  2 – the n-th root of x produces a rational or an irrational result, i.e. we 

determine whether √𝑥
𝑛

  Q or √𝑥
𝑛

  Q. To solve this problem in a straightforward manner we make use of 

the prime factorization of x. As a main contribution we present a generally applicable algorithm to decide 

whether √𝑥
𝑛

  Q (for n,xN\{1} ) and if so, to determine the resulting value. Moreover, we design several 

tests which can be applied to determine, for which values of n, √𝑥
𝑛

  Q if the natural number x satisfies a 

given set of properties. Quite often the tests proposed will allow us to answer the question “ √𝑥
𝑛

  Q ?” in a 

matter of seconds. Finally, we demonstrate that, for a very high percentage of all natural numbers x, x  2, it 

is impossible to find even a single n  N, n  2 such that √𝑥
𝑛

  Q. 
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1 Introduction 
 

In [1] it has been demonstrated that it is astonishingly simple to answer the question “for which n  N, n  2 the 

n-th root of x yields to a rational result, i.e. √𝑥
𝑛

  Q ?” This question can be answered easily if one makes use of 

the (unique) prime factorization of x possessing the following structure:  

  

x = p1
k_1  • p2

k_2  • • •  pi
k_i  • • •  pm

k_m           (1),  

 

where pi are prime numbers  i{1, 2, …, m} and pi  pj  ij, m  1, ki  N   i{1, 2, …, m}. 

 

Note: k_i to be read as ki. 

 

The result derived in [1] was: 

 

For any n,x  N, n,x  2:  

 

 √𝑥
𝑛

  Q     n  CD({k1, k2, …, km}),          (2), 

 

where CD(M), for M being a subset of N, denotes the set of common divisors c, c  2, of all elements of the set 

M.  

 

Therefore, if m  2: 

 

CD({k1, k2, …, km}) := {cN, c  2  ki  i = i(ki)  N: c • i =ki}, 

and, if m=1: 

 

CD({k1}) := {cN, c  2     N: c •  =k1}. 

 

It should be noted that for answering our question “ √𝑥
𝑛

  Q ?” by applying eq. (2) the values of the pi appearing 

in eq. (1) are of no interest but only the values of the exponents ki are relevant. 

 

The existence of √𝑥
𝑛

 has been proven, e.g., in [2]. 

 

EXAMPLES: 

 

▪ Ex1.1:   x = p10,  p denoting an arbitrary prime number 

 

 CD({10}) = {2, 5, 10} and, therefore, √𝑝10 Q, √𝑝105
 Q, √𝑝1010

 Q. 

 

In [1] it has also been proven that, if √𝑥
𝑛

  Q and x  N, then this also directly implies that  √𝑥
𝑛

  N. 

This will be taken into account by us in the following. 

 

▪ Ex1.2:   x = 210,   

 

 CD({10}) = {2, 5, 10} cf. above and, therefore, √210 = 210:2 =25=32  N, √2105
 = 210:5 =22=4  N, √21010

 

= 210:10 =21=2  N. 

 

▪ Ex1.3:   x = 331776 = 212 • 34. Therefore, we have to determine CD({12, 4}) = {2, 4}. This implies 

that  √331776 N and √331776
4

 N. But, √331776
𝑛

 Q n{2,4}. 
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One of the main goals of this contribution is to develop simple tests to determine – for arbitrary natural numbers 

n, x  N, n  2 and x  2 – whether √𝑥
𝑛

  Q and therefore even √𝑥
𝑛

  N. For our tests we need the prime 

factorization of x, according to eq. (1).  

 

Algorithms solving the problem of prime factorization of natural numbers are well-known (for details see, e.g., 

[3,4,5]). 

 

The prime factorization of x can be derived (in particular with the help of a computer) without much effort, if 

the numerical value of x is not very high. However, it is obvious that if x is the product of two extremely large 

prime numbers, prime factorization of x may become very difficult or even practically unfeasible. This fact is 

used, e.g. in the field of cryptography, in particular to construct very secure encryption algorithms, such as the 

RSA algorithm (see [6]).  

 

To simplify our notation and argumentation throughout this paper let us introduce some basic notations and 

abbreviations. 

 

We denote by:  

 

N2 := {x  N  x  2}. 

 

Moreover, for a natural number xN2 we want to introduce notations to denote the set of natural numbers 

nN2 , for which √𝑥
𝑛

 results in a rational root, i.e. √𝑥
𝑛

Q . So let denote 

 

Nrat_R (x)  the set of natural numbers nN2 such that for given xN2 : √𝑥
𝑛

Q  nNrat_R (x) 

 

and – analogously – let denote   

 

Nirrat_R (x)  the set of natural numbers nN2 such that for given xN2 : √𝑥
𝑛

Q  nNirrat_R (x). 

 

Our notations Nrat_R (x) and accordingly Nirrat_R (x) are used to denote – for a specific x  N2 – the set of natural 

numbers x  N2 leading to rational or irrational results, respectively, of the n-th root √𝑥
𝑛

. We generalize this 

notation by replacing x by a set S  N2 , e.g., in which the elements have common properties. Then, Nrat_R (S) 

denotes the subset of N2 such that  xS and  nNrat_R (S):  √𝑥
𝑛

  Q. And the meaning of Nirrat_R (S) will be 

analogous. 

 

The rest of this paper is structured as follows: In Section 2 we will start by giving a short survey of the 

methodology which underlies our investigation of n-th roots and which differs significantly from the 

methodology conventionally used up to now. Thereafter, in Section 3, we introduce simple tests which allow us, 

in a fast and efficient way, to precisely determine – for any given x  N2  – the sets Nrat_R (x) and Nirrat_R (x). We 

will demonstrate the ease of use of our tests by various examples. In Section 4, investigations will be presented 

regarding the set of natural numbers the n-th roots of which all are irrational. The paper will conclude with a 

short summary and outlook. 

 

2 Basic Methodology Used 
 

Let us now shortly summarize the main methodology underlying this paper. 

 

Basically, we will apply the following 

 

ALGORITHM: Calculation of the value √𝑥
𝑛

 (for x, n  N2  if √𝑥
𝑛

Q )  

 

▪ Goals: Given n, x. Test whether √𝑥
𝑛

Q or √𝑥
𝑛

 Q. 

 

If √𝑥
𝑛

  Q then determine the value of √𝑥
𝑛

  . 
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▪ STEP 1: For given x  N2 determine the prime factorization of x.  

 

Result: x = p1
k_1  • p2

k_2  • • • pm
k_m .  

 

▪ STEP2: Determine the common (integer) divisors for the set of exponents {k1, k2, …, km} occurring in 

the prime factorization of x, i.e. we determine CD({k1, k2, …, km}) using the definition of the set CD as 

introduced above. 

▪ STEP 3: For  n CD({k1, k2, …, km}) we can conclude √𝑥
𝑛

Q ; and  for all other values of n N2 , we 

now know that √𝑥
𝑛

 Q. 

▪ STEP 4: If √𝑥
𝑛

Q then √𝑥
𝑛

 = p1
k_1/n  • p2

k_2/n  • • •  pm
k_m/n . 

 

Remark: To the best of the knowledge of the author of this contribution, up to now, there does not exist any 

publication which presented an algorithm, oriented to a similar purpose, being as simple and efficient as the 

algorithm suggested by us. 

 

3 Tests for √𝒙
𝒏

 Being an Irrational Number (for  n, x  N, n, x  2) 
 

In our introduction we have already demonstrated that for an arbitrary x  N2 possessing a prime factorization 

according to eq. (1) only the exponents k1, k2, …, km appearing in the factorization are relevant and the set Nrat_R 

(x) can be determined by Nrat_R (x) = CD({k1, k2, …, km}).  

 

And, similarly, Nirrat_R (x) =  N2 \ Nrat_R (x). 

 

Here, we make use of these elementary insights, to construct simple tests which are easy to apply and which will 

allow us to recognize immediately – for an adequately chosen subset S  N2 – whether √𝑥
𝑛

N or √𝑥
𝑛

Q for x 

S and a natural number n  N2, being arbitrarily chosen. 

 

➢ Test T1: 

 

Let us start by considering the set  

 

S1= { x  N2  x= p1
  • p2

k_2  • • •  pi
k_i  • • •  pm

k_m ; where pi are prime numbers  i{1, 2, …, m} and pi  pj  

ij, m  1, kj  N   j{2, 3, …, m} }. 

 

It should be noted that, without loss of generality, it is sufficient that for at least one of the k i in eq. (1) the 

condition ki =1 to hold. Then, the form required by S1 can be achieved by simply renumbering the ki.  

 

TEST T1: If  xS1  then  CD({k1, k2, …, km}) = . 

 

Therefore, Nrat_R (S1) =  and  Nirrat_R (S1) = N2  , i.e. √𝑥
𝑛

Q  xS1 ,  n  N2.  

 

Remark: A special case for S1 is S1
* = { p  N2  p is a prime number} and, therefore, it is proven that √𝑝𝑛 Q  

nN2 and p, p being a prime number. 

 

➢ Test T2: 

 

Let us now consider the set  

 

S2= { x  N2  x= p1
k_1  • p2

k_2  • • •  pm
k_m ; where pi are prime numbers  i{1, 2, …, m} and pi  pj  ij, m  

2, ki  N   i, and  , {1, 2, …, m}:  k and k having no common divisors d>1}. 

 

TEST T2: If  xS2  then  CD({k1, k2, …, km}) = . 

 

Therefore, Nrat_R (S2) =  and  Nirrat_R (S2) = N2  , i.e. √𝑥
𝑛

Q  xS2 ,  n  N2.  
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Remark: A special case for S2 is S2*= { p1
k_1  • p2

k_2  p1, p2, k1 (resp. k_1) and k2 (resp. k_2) are all prime 

numbers and p1 p2 and k1 k2 }. Consequently, it is proven – for this special case of S2 – that √𝑥
𝑛

Q  nN2 

and  xS2*. 

 

➢ Test T3: 

 

We want to close this section with a test leading to the result that, for xS, Nrat_R (x) is not an empty set as in 

tests T1 and T2 but in this case it contains just one element. 

 

Thus, let us consider the set  

 

S3= { x  N2  x= p1
k_1  • y, y=1 or y= p2

k_2  • p3
k_3  • • •  pm

k_m , m  2 ; where pi and k1 (resp. k_1) are prime 

numbers i{1, 2, …, m} and pi  pj  ij,  and, in the prime factorization of x, if m  2, all exponents ki (resp. 

k_i), i  1, share the common divisor k1 , but no other}. 

 

TEST T3: If  xS3  then  Nrat_R (x) = {k1} and Nirrat_R (x) = N2 \ {k1} 

 

EXAMPLES: 

 

▪ Ex2.1:   x = p1
101, e.g. p1=211 (being a prime number), i.e. x represents a number possessing more than 

200 digits. Applying test T3 (where we set y=1) we rapidly find out that Nrat_R (x) = {101}, i.e. √𝑥
𝑛

  Q  

n  N2 , n  101 as well as that √𝑥
101

 = p1 N. 

 

▪ Ex2.2:   Let S12 = (p12  p representing an arbitrary prime number)  Nrat_R (S12) = CD({12}) = 

{2,3,4,6,12}, i.e. √𝑥
𝑛

N  xS12 ,  n Nrat_R (S12). And, therefore, Nirrat_R(S12)= N2\{2,3,4,6,12}. 

 

Last but not least, let us shortly discuss the interesting question of how to determine the value of √𝑥
𝑛

 if we know 

that √𝑥
𝑛

  N, i.e. nNrat_R (x). Assuming again that the prime factorization of x is given and is such as specified 

by eq. (1) then, of course, we immediately recognize that 

 

                      √𝑥
𝑛

 = p1
k_1/n  • p2

k_2/n  • • •  pm
k_m/n . 

 

Actually, this is an astonishingly simple way to determine the value of any n-th root of any natural number 

xN2 , if √𝑥
𝑛

 results in a rational (and in this case, in particular, even in a natural) number. 

 

4 Investigating the Set of Natural Numbers Possessing Irrational n-th Roots  
 

Let us now introduce an additional notation to name the total set of natural numbers, which possess irrational n-

th roots only: 

 

SN_irrat_roots := {x  N2  √𝑥
𝑛

Q  nN2}. 

 

Considering test T1 (cf. Section 3) it is evident, that the set S4 = {x  N2  x=4y−2, yN} characterizing the 

even numbers not being an integer multiple of 4 represent a strict subset of SN_irrat_roots. In particular, the 

elements x of S4 possess a prime factorization such that 

 

x = 2 • p1
k_1  • p2

k_2  • • •  pm
k_m , pi denoting an odd prime number   i{1, 2, …, m}. 

 

Therefore S4  S1. 

 

Testing whether a given (even) number is an integer multiple of 4 is certainly very simple. We just have to test 

whether the last two digits are a multiple of 4. Consequently, we realize immediately that all natural numbers 

ending with 02, 06, 10, 14, …, 98 are part of set S4 and for all the other even natural numbers n : nS4. 
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By finding the set S4 we have proven the result that for  xN a number zS4  can be found in the immediate 

neighborhood of x such that  x−z   2. Also, the fact Nirrat_R (S4) = N2  directly implies that zSN_irrat_roots. 

Thus, we can say that the set SN_irrat_roots is a “dense coverage” of the set N. 

 

Considering now, e.g., the set N1000  := {n  N  n  1000} already the properties of set S4 imply that at least 

25% of all numbers of N1000  are part of SN_irrat_roots. A more detailed view shows that – defining regions of 

size 100 to partition the set N1000  – we find only rather few natural numbers x, being part of each partition, for 

which xSN_irrat_roots. 

 

In detail, we observe that for 

 

• Partition P1 = {2, 3, …, 99}: 

 

x SN_irrat_roots       xM1 = {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81}. 

 

Thus, only for 11 numbers in P1:    n N2 with  √𝑥
𝑛

  N, x M1. 

 

• Partition P2 = {100, 101, …, 199}: 

 

x SN_irrat_roots       xM2 = {100, 121, 125, 128, 144, 169, 196}. 

 

Thus, only for 7 numbers in P2:    n N2 with  √𝑥
𝑛

  N, x M2. 

 

• Partition P3 = {200, 201, …, 299}: 

 

x SN_irrat_roots       xM3 = {216, 225, 243, 256, 289}. 

 

Thus, only for 5 numbers in P3:    n N2 with  √𝑥
𝑛

  N, x M3. 

And in all the other partitions covering neighboring numbers (with a size of 100) between 300 and 1000 at least 

97% of those 100 natural numbers are part of SN_irrat_roots. This implies that, considering an arbitrary natural 

number x, 300x1000, in nearly all cases we will find a number x* directly neighboring to x (distance=1) such 

that x*  SN_irrat_roots. In almost all cases, however, even “x  SN_irrat_roots“ would already be satisfied for 

x itself. 

 

5 Conclusions and Outlook  
 

This contribution showed that understanding the properties of n-th roots √𝑥
𝑛

 of natural and of positive rational 

numbers can be improved significantly if the argumentation directly relies on the prime factorization, resulting 

for x, as opposed to the usual argumentation based on polynomials. We demonstrated that, using the prime 

factorization of x, it is possible to design numerous tests which allow one to recognize in an astonishingly 

simple and efficient manner whether √𝑥
𝑛

 , for arbitrary values x  N2 and n  N2, result in a rational or an 

irrational value. In case √𝑥
𝑛

  Q (with the consequence √𝑥
𝑛

  N), by means of an innovative calculation 

method, it is usually feasible to determine the exact result of √𝑥
𝑛

  in a matter of seconds. Calculation methods to 

determine the result of √𝑥
𝑛

  which also allow one to approximate the value of √𝑥
𝑛

 (such as, e.g., Newton’s 

method [7 or 8,9,10]) can thereby be limited to the approximation of √𝑥
𝑛

, if √𝑥
𝑛

Q. Similarly, usage of the 

Lemma of Gauß [11] can be restricted to some cases in which we want to prove that √𝑥
𝑛

Q and, e.g., prime 

factorization of x could be practically infeasible. 

 

The tests presented by us to cover the cases √𝑥
𝑛

, for x  N2, can be extended in a straight-forward manner to 

cases √𝑦𝑛 , in which yQ+ \ N, for given n  N2 (where Q+ denotes the set of positive rational numbers). Those 

modified tests could be used to prove that √𝑦𝑛   Q (still for yQ+ \ N) and, if so, to determine the value of √𝑦𝑛  

(which, typically, will no longer be a natural number). 

 

As it has been proven by the author earlier [1]: √𝑥
𝑛

Q    xR+ \ Q ,  n  N2 . 
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Therefore, evidently, for any given n  N2 it is not (!) possible that:  √𝑥
𝑛

  Q for any xR+ \ Q. 

 

This contribution clearly shows that the decision whether the n-th root √𝑥
𝑛

 of a natural number x possesses a 

rational value becomes rather trivial, if the prime factorization of x is available. In the particular case that a 

given natural number x is relatively small, e.g. x1000, then obtaining the prime factorization of x is actually a 

very simple task.  
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