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ABSTRACT 
 

Background: There is a need for equations with which to calculate the intrinsic rate constants that 
can further characterise enzyme catalysed reactions despite what seems to be conventional 
differences in methodology in the literature. 
Methods: Theoretical, experimental (Bernfeld method), and computational methods. 
Objectives: 1) To derive an alternative intrinsic rate constant equations consistent with their 

dimension, 2) derive electrostatic intermolecular potential energy equation, (e), 3) calculate the 
intrinsic rate constants for forward (k1) and reverse (k2) reactions, and 4) define the dependence or 
otherwise of kinetic constants on diffusion and deduce the catalytic efficiency. 

Results and Discussion: The ultimate quantitative results were ~ 64.69   0.49 exp (+3)/ min (k2) 

(and kd () = ~ 60.66 exp (+3)/ min), ~ 1594.48  11.99 exp (+3) exp (+3) L/mol.min (k1) (and ka 

() = ~1482.47 exp (+3) L/mol.min), ~ 58.00  10.83 exp (+3) /min, the apparent rate constant for 

reverse reaction (kb), and ~ 75.83  10.83 exp (+3) /min, the rate constant for product formation (k3). 
The catalytic efficiency was: 3.025 exp (+ 9) L / mol.     
Conclusion: The relevant equations were derived. Based on the derived equations the intrinsic rate 
constants can be calculated. Since k3 is > kb, then k3 is diffusion controlled and it appears that the 
enzyme has reached kinetic perfection. The evaluation of rate constants either from the perspective 
of diffusion dependency or independency cannot be valid without Avogadro number. 

Original Research Article 
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1. INTRODUCTION 

 
Researchers have shown interest in what has 
been termed diffusion controlled and non-
diffusion controlled enzyme catalysed reactions 
[1-3]. The confusion that may arise is that there 
could not be an encounter complex formation 
without any form of motion. Coupled to this is the 
concept of intrinsic rate constants [1, 2] whose 
equations need to be redetermined. Solute 
molecules which are immobile in their various 
positions cannot form an encounter complex let 
alone solute-solute (e.g. enzyme-substrate) 
complex. However, with reference to the works of 
Allison and McCammon [4] and Elcock et al. [5], 
Lu and McCammon [6] posit that electrostatically 
steered diffusion-reaction processes exist widely 
in chemistry and biochemistry. Similar to this is 
the view that “to bind at an enzyme’s active site, 
a ligand must diffuse or be transported to the 
enzyme’s surface, and, if the binding site is 
buried, the ligand must diffuse through the 
protein to reach it [3].  

 
Although the driving force for ligand binding is 
often ascribed to the hydrophobic effect, 
electrostatic interactions, also, influence the 
binding process of both charged and nonpolar 
ligands [3]. Although Wade et al [3] claimed that 
electrostatic steering is particularly relevant for 
diffusion controlled reaction, it needs to be made 
clear that binding (or preferential interaction by 
binding) cannot occur without ultimate attractive 
electrostatic interaction. In line with this view is 
the claim that “as time increases, the rate 
coefficient decreases because the enzymes must 
diffuse to the substrate in order for reaction to 
occur” [7] following binding which brings motion 
close to zero. 

 
Besides, it has been observed that for an 
enzyme in solution, the rate-determining step in 
catalysis will be either kf, the rate of ES 
formation, or simply k3, the rate of product 
formation [8]. If k3 is rate limiting, the catalytic 
events that occur after substrate binding are 
slower than the rate of the formation of the ES 
complex [8]. If, however, kf is rate limiting, the 
enzyme turns over essentially instantaneously 
once the ES complex has formed [8]. In either 
case, according to Copeman [8], the fastest rate 
of catalysis for an enzyme in solution is limited by 
the rate of diffusion of molecules in the solution. 
This statement seems to imply that regardless of 

the rate limiting step, there must be initial 
translational motion (this may exclude 
randomness within certain intermolecular 
distance).  
 

Many years ago, in the 20th century, the concept 
of intrinsic rate constants was advanced. 
Recently, the paper by Eser and Fitzpatrick [9], 
“Measurement of intrinsic rate constants of 
tyrosine hydroxylase reaction”, showed greater 
clarity for the effect of viscogens on catalytic 
efficiency than was the case for intrinsic rate 
constant. Since rates and rate constants in 
particular are important characteristics of enzyme 
catalysed reactions for industrial applications, 
therapeutics (activation and detoxification of 
drugs), digestion, a step to the end of nutrition 
etc, there is a need to rederive or restate the 
equation for the determination of such intrinsic 
rate constants with consistency in the units of the 
kinetic constants. This is against the backdrop of 
the observation in the literature to the effect that, 
in Shurr’s [1] equation, if generalisability is 

possible, the parameter eq(r) designated as g, is 
exp (+U(r)/kBT) unlike Vijaykumar et aI [10] who 

defined eq(r), given as exp (U(r)/kBT), as the 
equilibrium probability that they (the substate and 
the enzyme for instance) are at the distance, r 
from each other. One may wish to know if this 
observation is on the basis of conceptual 
differences. “It could not be ideological 
differences”. What is ultimately important is the 
need for equations with which to compute the 
intrinsic rate constants that can further 
characterise enzyme catalysed reactions despite 
what seems to be conventional difference in 
methodology in the literature which indicates a 
possibility of a two-part approach for the 
determination of intrinsic rate constants. 
Nevertheless, redefinition of KD and its 
application and, the adoption of Vijaykumar et aI 
[10] approach are to be addressed in the 
appendix section. Thus, the objectives of this 
research are: 1) To derive an alternative intrinsic 
rate constants equations consistent with their 
dimension, 2) derive electrostatic intermolecular 
potential equation, 3) calculate based on derived 
equations the intrinsic rate constants, and 4) 
define the dependence or otherwise of kinetic 
constants on diffusion. 
 

2. THEORY 
 

In this investigation one begins with the premise 
that if the solute-solute attraction is greater than 
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solute-solvent attraction, the aqueous solute 
particles may coalesce and precipitate out of 
solution; this may be applicable to a dilute 
solution which becomes concentrated due to 
substantial partial evaporation. It may arise due 
to continuous addition of the soluble solute. This 
is applicable to all solutes, the ionic and nonionic 
solutes. Indeed any solvent, be it either polar 
organic – or nonpolar organic – solvent in which 
a solute is dissolved is applicable. This is also 
against the backdrop of the claim that the 
intermolecular potential (U(r)) is concentration-
dependent] [1]. In this research however, the 
literature material of immense interest and 
relevant is the work by Shurr [2].  
 

2.1 Diffusion – Dependent and Diffusion – 
Independent Rates 

 

According to the Shurr [2] “the reactions for 
which the rate constant for product formation and 
release, k3 is not diffusion-dependent include 
almost all reactions whose equilibria lie far to the 
side of the products, since the rate of association 
of enzyme, E and products, P to form enzyme-
substrate complex (the possibility of this is not 
clear), ES will generally be sufficiently slow in 
these cases that it is not diffusion dependent, 
and consequently the conjugate dissociation step 
k3 will not be diffusion dependent either”. “Only 
extremely rapid over-all reactions have the 
possibility of a diffusion-dependent k3 when the 
equilibrium greatly favors the products, and such 
cases cannot be experimentally characterised by 
the usual steady-state methods in any case”. 
This view seems to go against the earlier view 
because far right position of equilibria implies 
that the product formation is more favoured and, 
as such, k3 in the scheme below may be » kb. 
 

           kf       k3 

E + S ⇌ ES  E + P             (1) 
          kb  
 

Where, kf and kb are the rate constant for the 
forward reaction, rate constant for the 
dissociation of ES to free enzyme, E and free 
substrate, S. 
 
Based on the assumption that k3 is not diffusion 
controlled, the Michaelis–Menten constant, KM = 
(kb + k3)/kf is the only part of the expression 
which depends upon the diffusion coefficient. 
“Clearly, for saturation (i.e. [𝑆0] » KM) conditions, 
KM may be neglected and diffusion plays no role 
in the reaction, however fast” [1]. Also, if k3 « kb, 

then KM  kf/kb = k2/k1 (where k2 and k1 are the 

intrinsic rate constants for the backward reaction, 

ES  E +S and for the formation of ES 
respectively) so that the KM and also velocity of 

catalytic action,  are independent of diffusion 
processes [1]. Going by these statements, 
despite what seems to be a contradictory 
statement at the beginning of the paragraph, it 

seems that the KM and  are independent of 
diffusion only when k3 « kb. Also, if k3 is » kb, k3 
should be diffusion dependent. Finally, if the kf 
and kb are not appreciably diffusion controlled 

(i.e. f kl « g kD), then KM and, hence,  will not be 
diffusion dependent [1]. The concern in this 
statement is that while g and f to be given 
shortly, are dimensionless, k1 and kD (to be given 
shortly) are neither dimensionless nor of the 
same dimension. The factor, g is given as 
 

g = exp (U(r)/kBT)                       (2) 
 
Where, U (r), kB and T are the intermolecular 
potential energy, Boltzmann constant and 
thermodynamic temperature respectively.  
 
Meanwhile, 
 

f = R ∫ exp(𝑈(𝑟)/𝑘𝐵𝑇)
dr

𝑟2



𝑅
                  (3) 

 

Where R (= RE + RS) is the reaction radius where 
RE and RS are the hydrodynamic radii of the 
enzyme and substrate respectively. 
 

 kD = 4(RE + Rs)(DE + Ds)                  (4) 
 

The unit of kD is m3/s because the diffusion 
coefficients for the enzyme, DE and substrate, DS 
is m2/s and the unit of RE or RS is the metre; the 
unit of k1 is 1/M.min. Therefore, f kl and g kD 
cannot be compared qualitatively. 
 

For a diffusion-dependent reaction in the 
absence of forces 
 

𝐾M =
𝑘2

𝑘1
+
𝑘3

𝑘f
= 𝐾eq

−1 +
𝑘3

𝑘D
(
𝑘D+𝑘1

𝑘1
)                 (5) 

 

However, if it is known that k3 » kb, then if k3/kD 
KM (which may not be case because the unit of 
k3 is 1/min and that of kD is m3/s), it may be 
concluded that the reaction is diffusion 
dependent. While the forces in question are not 
specified in the original work [1], nevertheless the 

equation 𝐾M =
𝑘2

𝑘1
+
𝑘3

𝑘f
 may be likely, unlike the 

equation, 𝐾M = 𝐾eq
−1 +

𝑘3

𝑘D
(
𝑘D+𝑘1

𝑘1
) because k1 and 

kD do not possess the same unit. However, it 
may be speculated that such force may be 
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intermolecular potential force referred to in paper 
one [1]. Besides, k2 and k3 are 1st order rate 
constants (mol/mol/unit time) while k1 and kf are 
2nd order rate constants ((dm3/mol)/unit time). 
 

 Summarising, Shurr [1] posits that the 
usual enzyme reaction is independent of 
diffusion and, hence, the medium viscosity 
under the following circumstances: (a) [S0] 
» KM and (b) k3 « kb; the enzyme reaction is 
diffusion-dependent under the following 

circumstances: (a) [S0] ≲ KM and (b) k3 » 
kb. Based on this summary, one can 
evaluate the experimental data generated 
under the given conditions so as to 
determine any dependence or otherwise 
on diffusion. 

 In the first paper by Shurr [2] the equations 
of kb, the effective steady-state reverse 
rate constant and kf, the effective steady-
state forward rate constant were stated 
without any derivational process. The 
equations are given as 

 

𝑘b =
𝑘D𝑘2 exp(𝑈(𝑟) 𝑘B𝑇⁄ )

𝑓𝑘1+𝑔𝑘D
              (6) 

 

𝑘f =
𝑘D𝑘1

𝑓𝑘1+𝑔𝑘D
                (7) 

 
Once again, it is necessary to restate that the 
concept of intrinsic rate constants may be 
quantitatively useful in biochemical, medical, and 
biological sciences in general. Intrinsicality may 
be an inherent tendency for a physicochemical 
process to occur. This may be applicable to 
biochemical reactions leading to one or more 
effects such as enhanced rate constants in 
general if factors that can enable the process 
exist. Thus, while Eq. (6) and Eq. (7) contain the 
intrinsic rate constants, the presence of only a 
single kD in the denominator in both equations 
renders them dimensionally invalid. As in the 
literature [2], the equations may be restated with 
kD appearing twice in the denominator by 
replacing the k1 in Eq. (6) with KD leading to the 
following results. 
 

𝑘b =
𝑘2 exp(𝑈(𝑟) 𝑘B𝑇⁄ )

𝑓+𝑔
                  (8) 

 

Looking critically at Eq. (8) one sees that the 
nominator contains g such that f + g as 
denominator should be > g; this implies that the 
kb is a fraction of the ‘k2’. Applying the same 
procedure to Eq. (7) gives 
 

𝑘f =
𝑘1

𝑓+𝑔
               (9) 

Before further comment, it needs to be stated 
that g may be constant for a given system. Thus, 
making the denominator in Eq. (6), Eq. (7), Eq. 
(8), and Eq. (9) subject of the formula and upon 
rearrangement one obtains 
 

𝑔 =
𝑘1𝑘b

𝑘2𝑘f
                (10) 

 

Meanwhile for a reaction to occur the reactants 
must be within reach of each other as applicable 
to binding interaction between the substrate and 
enzyme. The substrate molecules are randomly 
distributed (Fig. 1). The introduction of an aliquot 
of enzyme solution starts a reaction after 
translational motion, the effect of swirling 
notwithstanding. Fig. 2 illustrates the 
intermolecular distance in which randomness is 
negligible as the molecules approach each other. 
This is where diffusion becomes universally 
relevant the distinction between diffusion– 
dependent and diffusion–independent catalytic 
action of enzymes notwithstanding.  
 

If one is not mistaking, Eq. (3) seems to suggest 
that two particles are to be separated from an 
intermolecular distance equal to R to an infinite 
intermolecular distance; however in this research 
the coming together of the enzyme and substrate 
is also of interest because there is a need to be 
aware of the electrostatic force of attraction 
between the enzyme and the substrate. The 
equation for this is given in method subsection. 
Since the reaction radii can be seen to be 
constant, there must be a distant apart from 
which mutual weak electrostatic perturbation of 
the combining molecules occurs (Fig. 3); 
attractive perturbative interaction cannot occur at 
an infinite intermolecular distance if consideration 
is given to conservative forces. 
 

The outcome of Eq. (3) (whose physical meaning 
was not stated in the original work [2]) based on 
attractive interaction can be stated as 
 

𝑓 = 𝑅𝑔 (
1

𝑟1
−

1

𝑟2
)                (11) 

 

Where, r2 > r1 and r1 = R; r2 >R. A careful 
examination of Eq. (11) should reveal that f is < 1 
but > 0. Although R has been defined, but in this 
research, it is replaced with the intermolecular 
distance (Rter) where terminal velocity is attained. 
On the basis of this and the fact that g may be < 
1, if the intermolecular potential energy is 
negative, then kb and kf are fractions of k2 and k1 
respectively. Next is the determination of the 
alternative equation of g based on what has been 
described as diffusion–dependent and diffusion– 
independent kinetic constants. 
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Fig. 1. Reaction mixture containing the molecules of enzyme and substrate 
Blue (◊) and red (□) stand for the enzyme and the substrate molecules respectively. The positions of the symbols 

depict randomness. The substrate molecules are previously in random distribution before the addition of the 
aliquot of the enzyme solution, though swirling rapidly distributes the molecules of enzyme 

 
E                                                                                                S 

 
Fig. 2. Initial intermolecular distance (Rx) 

Initial intermolecular distance where the there is infinitesimal tendency for randomness; the velocity of the solute 
is bulk-like 

 
                                                                               E            S                     
 

Fig. 3. Change in intermolecular distance with time 
The linear interval            illustrates the minimum intermolecular distance (R0) needed for the commencement of 
electrostatic attraction. The longer arrow portrays the fact that the smaller molecule, the enzyme made a longer 

displacement than the substrate 

 

2.2 Determination of Alternative Equation 
of the Intermolecular Potential Energy 

 

The intermolecular potential energy for the 
diffusion-independent case depends on the 
relationship given as [1]. 
 

𝐾M

𝑀alt
=
𝑘2

𝑘1
                 (12) 

 

Making k2 subject of the formula and substitute 
same into Eq. (10) gives 
 

𝑔 =
𝑘b𝑀alt

𝑘f𝐾M
                 (13) 

 

It is clear here that g must always be > 0 and, it 

could be <1 but «  if U (r) is negative. 
 

Therefore, 
 

𝑈(𝑟) = 𝑘B𝑇 I n (𝑀alt 𝑘b 𝐾M𝑘f⁄ )        (14) 
 

The intermolecular potential energy for the 
diffusion-dependent case requires the following 

equation [1]. However, this may appear to be a 
contradiction considering the fact that Eq. (15) 
below refers to a case in the absence of forces 
that are not explicitly defined. Clearly, 
subsequent derivation may confirm this absence 
of forces. Thus,  

 
𝐾M

𝑀alt
=
𝑘2

𝑘1
+
𝑘3

𝑘f
               (15) 

 
The reason for the appearance of the molar 
mass of maltose, the product of amylolysis has 
been explained elsewhere [11]. Making k2 
subject of the formula and substituting into Eq. 
(10) gives: 

 

𝑔 = 
𝑘b

(𝐾M 𝑀alt⁄ −𝑘3 𝑘f⁄ )𝑘f
                 (16) 

 
Therefore, 

 

𝑈(𝑟) = 𝑘B𝑇 I n
𝑘b

(𝐾M 𝑀alt⁄ −𝑘3 𝑘f⁄ )𝑘f
              (17) 
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However, 𝑘b = (𝐾M 𝑀alt⁄ − 𝑘3 𝑘f⁄ )𝑘f  confirming 
the fact that  𝑈(𝑟) = 0 . Additional reason is 
advanced in method section. It is however, 
difficult to concede to the notion of zero 
intermolecular force if not mistaken for something 
else. But the implication is that, the 
intermolecular distance approaches infinity if not 
infinite, going by the concept of conservative field 
forces. Biochemical transformation is unlikely at 
infinite dilution. The values of the kb and kf can 
be determined by fitting the equations in 
literature [11] to the data generated 
experimentally. The equations are given in the 
method subsection. 

 
2.3 Considering Electrostatic Kinetic 

Energy as a Key Factor in the 
Catalytic Function of Enzyme 

 
While it is obvious that potential and kinetic 
energies are convertible, the interest in the latter 
is due to its direct link with translational motion 
which ensures delivery to target. Attraction 
begins when minimum intermolecular distance is 
reached. There should be an initial increase in 
velocity, a decrease due to viscosity, a steady 

velocity and sudden decrease to  zero velocity 
(Fig. 4). 
 

In a previous investigation [12], the need for 
minimum intermolecular distance for the 
commencement of attractive electrostatic 
interaction was established. This is relevant to 
very dilute reaction mixture of the enzyme and 
substrate in laboratory test tubes unlike in vivo 
cases where the concentration of pancreatic [13] 
plus intestinal alpha-amylase [14-15] is known to 
be very high. It is known that “substrate 
concentrations within cells are in the 

neighbourhood of their KM values (exp ( 6)–exp 

( 2) M); with reference to Cha [15], Goldstein 
[16] and Srere [17], Schnell and Maini [14] posit 
that this scenario enhances the full potential of 
the enzymes or the intrinsic capacity of the 
enzyme to executes its function as may be 
expressible via the intrinsic reverse and forward 
rate constants [2]. The 1st step in this regard is to 
derive electrostatic interaction energy otherwise 
called interaction potential equation. The 
derivation is based on the assumption that the 
total work down in transit between a position in 
bulk before collision and after collision is equal to 
the sum of the work down within the electrostatic 
field and outside the field. Thus, 
 

𝐹Tot(ℜ − 𝑅) =
𝑘B𝑇

𝐿
(ℜ − 𝑅ter) + 𝐹Elect(𝑅ter −

𝑅)            (18a) 

 
 

Fig. 4. Hypothetical time course of the velocity changes as solute molecules approach each 
other attractively. 

At the commencement of attractive interaction there is an increase in velocity, followed by a decrease to velocity 

> than bulk, and finally to  zero velocity as complex formation occurs. The decrease is due to solvent resistance 

otherwise called viscosity. The initial bulk-like and final (which  0) velocities are more important and relevant 
than the increase in velocity. Once again the blue background symbolises the fact that the reaction occurred in 

aqueous medium 
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Where, ℜ, FTot, L, FElect and Rter are the 
concentration-dependent bulk intermolecular 

distance where U(r)  0, total force, the cube 
root of the molar volume of water, the 
electrostatic force of attraction, and the 
intermolecular distance where terminal velocity is 
attained. FTot is given as in manuscript in 
preparation as: 

 

𝐹Tot = 

(
ɤ(ℜ−𝑅)

𝑚
+ √(

ɤ(ℜ−𝑅)

𝑚
)
2
+(

𝐿𝑢
2

𝑘B𝑇
)

22
)(𝑘B𝑇)

2

(𝑢𝐿)
2       (18b) 

 
ɤ = 0.97471916 [12] and u is determined as 
described in the literature [18] and manuscript in 

preparation; 𝑢 = √ √4𝑚(𝑘B𝑇 𝐷E 𝐿⁄ )23

𝑚

2

  where DE and 

m are respectively, the diffusion coefficient and 
mass of the enzyme molecule. The electrostatic 
force is given as: 

 

𝐹Elect =
𝐹Tot(ℜ−𝑅)−

𝑘B𝑇

𝐿
(ℜ−𝑅ter)

𝑅ter−𝑅
         (18c) 

 
The electrostatic energy (Elect) is given as: 

 

Elect

= 𝐹Elect𝑅0           (18d) 

 
3. MATERIALS AND METHODS 

 
3.1 Materials 
 
3.1.1 Chemicals 

 
Aspergillus oryzea alpha-amylase (EC 3.2.1.1) 
and insoluble potato starch were purchased from 
Sigma–Aldrich, USA. Tris 3, 5 – dinitrosalicylic 
acid, maltose, and sodium potassium tartrate 
tetrahydrate were purchased from Kem light 
laboratories Mumbai, India. Hydrochloric acid, 
sodium hydroxide, and sodium chloride were 
purchased from BDH Chemical Ltd, Poole 
England. Distilled water was purchased from 
local market. The molar mass of the enzyme is ~ 
52 k Da [19]. 

 
3.1.2 Equipment 

 
Electronic weighing machine was purchased 
from Wenser Weighing Scale Limited and 
721/722 visible spectrophotometer was 
purchased from Spectrum Instruments, China; 
pH meter was purchased from Hanna 
Instruments, Italy. 

3.2 Methods 
 

3.2.1 Preparation of solution of reactants and 
assay 

 

The enzyme was assayed according to Bernfeld 
method [20] using gelatinised potato starch 
whose concentration range is 4-10 g/L; the 
weight average molecular weight of the insoluble 
potato starch is 7.73 exp (+7) g/mol [21]. 
Reducing sugar produced upon hydrolysis of the 
substrate using maltose as standard was 
determined at 540 nm with extinction coefficient 
equal to ~ 181 L/mol.cm. Concentration equal to 
1 g/100 mL of potato starch was gelatinised at 
100 oC for 3 min and subjected to serial dilution 
after making up for the loss of moisture due to 
evaporation to give concentrations ranging 
between 4 and10 g/L. Concentration equal to 0.1 
g/100 mL of Aspergillus oryzea alpha-amylase 
was prepared by dissolving 0.1 g of the enzyme 
(as the stock) in 100 mL of Tris HCl buffer at pH 
= 6.9. Assay of the enzyme was carried out with 
an enzyme concentration = 1 mg/L. The duration 
of assay was 3 minutes at 25oC. 
 

3.2.2 The determination of kinetic constants  
 

Alternative direct linear plot [22] was explored for 
the determination of KM, the Michaelis–Menten 
constant and vmax, the maximum velocity of 
amylolysis. The equations used for the 
determination of kinetic constants are [11, 23]: 
 

𝑘 = 𝑀alt ( 
𝑣max  ± √𝑣max

2 − 4 𝑆lope[S0]
2

2[𝑆0]
)        (19) 

 

Where, vmax, slope, [S0], k, and Malt are the 
maximum velocity of amylolysis, slope from the 

plot of velocity of amylolysis, v versus [S0]/(vmax  

v), concentration of the substrate, first order rate 
constant for the utilisation of the substrate, S and 
molar mass of maltose as product respectively. 
 

I n
1

1−
[𝐸0]𝑀alt
[𝑆0]

 I n 
[𝐸0]

[𝐸0]−[𝐸𝑆]

= 𝑘 𝑡                        (20) 

 

Where, [E0], t, and [ES], are the molar 
concentration of the enzyme at t = 0, duration of 
ES formation and molar concentration of 
enzyme-substrate complex. 
 

I n
[𝐸0]

[𝐸0]−[𝐸𝑆]
=
(𝑘−1+𝑘2)[𝑆0]

𝐾M𝑘
(1 − exp(−𝑘 𝑡))   (21) 

 

However, without prejudice to Eq. (20) and the 
graphical approach in literature [11], it has been 
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realised that I n
1

1−
[𝐸0]𝑀alt
[𝑆0]

 I n 
[𝐸0]

[𝐸0]−[𝐸𝑆]

= (1 −

exp(−𝑘 𝑡)) if the product of the calculated values 
of t (Eq. (20)) and calculated values of k based 
on Eq. (19) is substituted into Eq. (21). This can 

be interpreted to mean that  I n
[𝐸0]

[𝐸0]−[𝐸𝑆]
 can be 

plotted against [𝑆0] (I n
1

1−
[𝐸0]𝑀alt
[𝑆0]

 I n 
[𝐸0]

[𝐸0]−[𝐸𝑆]

) 𝑘⁄  to 

yield a slope = 
(𝑘−1+𝑘2)

𝐾M 
 from where, 𝑘−1 + 𝑘2  is 

given as slope  KM. Ultimately, the kf is then 

given as: slope  Malt. 
 

3.2.3 The determination of intermolecular 
distance for electrostatic attraction 

 

The determination of the minimum intermolecular 
distance for the commencement of electrostatic 
attraction (being also the beginning of negative 
potential energy of interaction in line with 
conservative field force principle) is as previously 
described. The equation is given below. 
 

𝑅0 = 𝑅 (1− (𝑆lope(1) (𝑆lope(2))
2

⁄ ))⁄       (22a) 

Where R (which is = RE + RS where RE and RS 
are taken as the radii of spheres whose diffusion 
coefficients are equal to that of the species, the 
enzyme and substrate respectively being 
considered by exploring Einstein-Stoke 
equation); Slope(1) is the 1st slope from the plot of 

the square of effective collision frequency () 

versus 1/ℜ (ℜ  R) and Slope(2) is the 2nd           

slope from the plot of  versus 1/ℜ where ℜ is 

the concentration-dependent intermolecular 

distance. The frequency of collision,   2RDCE 
where CE ([ES] NA) is expressed in number of 
molecules per cubic metres, where NA is the 
Avogadro number), and D is taken to be equal to 
the sum of the DS and DE. The DS for potato 
starch was calculated using the relationship: DS 

= Dv∛(Mv/MS) where Dv, MS and Mv are the 

diffusion coefficient (which is 1.31 exp (11) 
m2/s) of tomato bushy virus [24] at 298.15 K, 
weight average molecular mass of potato starch, 
and molar mass of virus given as 1.06 exp 
(+7)/mol [24]. 
 
In order to determine the dimensionless          
factor f at intermolecular distance where       
terminal velocity is reached, such       
intermolecular distance (Rter) needs to be 
determined. Hence, as in the manuscript in 
preparation, the Rter can be calculated with Eq. 
(22b) below. 
 

(Rter  R)2 ((242  RE ɤ2 R DE CE (u L)2)2  48 

2  RE (ɤ2)2R DE CE (u L)2 (kB T)2/m2) = 

(L(u)2 kB T )2                     (22b) 

Where , RE, CE = [ES]NA (where [ES] is in 
mol/m3 and NA is the Avogadro number), ɤ = 
0.97471916 a factor which enables the 
calculation of distance covered by the smaller 
particle of two particles moving towards each 

other as described elsewhere [12] and DE is 
given as in the same manuscript under 
preparation as: 

 

𝐷E =
(

 
 48 2 𝑅𝐸 ɤ𝟐

𝟐𝑅 𝐶E(𝑢 𝐿)
𝟐
(𝑘B)

𝟐

𝑚2
  + √(

48 2  𝑅𝐸ɤ𝟐
𝟐 𝑅 𝑪𝐄(𝑢 𝐿)

𝟐
(𝑘B)

𝟐

𝑚2
)

2

+4(24 2𝑅𝐸ɤ𝟐𝑅 𝐶E(𝑢 𝐿)
𝟐)
2(𝐿𝑢

2𝑘B)
2

(−𝑅)2

2

)

 
 

2(24 2 𝑅𝐸 ɤ𝟐𝑅 𝐶E(𝑢 𝐿)
𝟐)
2             (22c) 

 
3.2.4 The generalisable equations for the determination of intrinsic rate constants 
 

Having determined the equation for e, the dimensionless factor g, given as Eq. (2) can be determined 
such that the 2nd dimensionless factor f can also be determined given the value of R0. The method for 
the determination of the latter is given as Eq. (22a). One can obtain the reverse intrinsic rate constant 
by rearranging Eq. (8) to give 
 

𝑘2 = 𝑘b(𝑓 + 𝑔) 𝑔⁄                                                                                                  (23) 
 
Likewise the forward intrinsic rate constant is obtained by rearranging Eq. (9) to give 
 

𝑘1 = 𝑘f(𝑓 + 𝑔)                                                                                               (24) 
 

Having previously defined f as g(1R/R0), Eqs (23) and (24) is restated respectively as: 
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k2 = kb (2  Rter /R0) (Thus k2  f (g))                                                                                (25) 

 
k1 = kf g(2  Rter /R0) (Thus k1 = f (g))                                                                                          (26) 

 
Equations (25) and (26) can be applied in a straight forward manner in the determination of relevant 
intrinsic rate constant. 

 
3.3 Statistical Analysis 

 
The standard deviation was determined 
according to the method described by Hozo et al 
[25] and by means of Microsoft Excel. The mean 
values of 3 determinations were used to 
determine all the effective kinetic constants. 
 

4. RESULTS AND DISCUSSION 
 
This research clearly is not concerned with rate 
constants mainly but there is a need to state 
equations of intrinsic rate constants that are 
dimensionally consistent as to be very much 
applicable to biochemical and even biophysical 
processes that need quantification. There is also 
important need to characterise enzyme catalysed 
reactions as either diffusion–dependent or 
diffusion–independent reaction. In this regard, 
there is always a need to bear in mind that, be it 
diffusion–dependent or diffusion–independent 
reaction, there is always initial intermolecular 
motion due to attractive interaction and thermal 
energy. Hence there is the diffusion-limited rate 
constant, kD which determines the rate at which 

the two particles (e.g. enzyme and substrate) 
diffuse towards each other [26]. 
 
The parameter kD is adopted for the 
determination of what may the termed apparent 
(or effective) rate constants, the 2nd order rate 
constant, kf for ES formation and the 1st order 
rate constants, kb for the dissociation of ES. In 
this regard, Vijaykumar et aI [10] derived kf and 
kb in line with what they called Agmon and Szabo 
[26] procedure to give equations (which are 

different from Eq. (6) and Eq. (7) [1]) where eq(r) 

(i.e. exp ( U(r)/kBT)) was defined as the 
equilibrium probability that they are at the 
distance, r from each other. In Shurr’s [1] 
equation, if generalisability is possible, the 

parameter eq(r) designated as g, is exp 
(+U(r)/kBT). One may wish to know if this 
observation is on the basis of conceptual 
differences. “It could not be either conventional 
or ideological differences”. Despite these 
commendable efforts, the issue of dimension 
remains unresolved. This issue was intuitively 
resolved as shown in Eq. (8) and Eq. (9). Based 
in part on the method in literature [11] it is 

 

Table 1. Apparent and intrinsic rate constants 
 

Results obtained based in part on modified Shurr’s approach 

k3 /min kb /min kf/L/mol.min g 

75.83  10.83 exp (+3) 58.00  10.83 exp (+3) 1417.48  0.20 exp (+3) 

([S]+[E])/mol/L/exp (8) k2/ min/exp (+3) k1 /L/mol.min 

7.098 63.83 1617.32 0.910 
8.391 64.42 1596.00 0.900 
9.685 65.13 1584.25 0.891 
10.979 64.77 1593.19 0.896 
12.272 65.05 1586.26 0.892 
14.860 64.91 1589.86 0.894 

Average  SD 64.69  0.49 1594.48  11.99 0.897  0.007 
Results obtained based in part on modified Vijaykumar et al approach 

koff() ~ 60.66 exp (+3) /min 

ka()    ~ 1482.47 exp (+3) /min 

The rate constants, kf, kb, k3, k2 (koff()), and k1(ka()) are the 2nd order rate constant for enzyme-substrate 
formation (ES), reverse rate constant for the dissociation of ES, rate constant for product formation, and the 

intrinsic rate constants, the dissociation rate constant for the formation of E (enzyme) and S (substrate) and the 

association rate constant for the formation of ES respectively. Total enzyme concentration is ~1.923 exp ( 8) 
mol/mL; [S] + [E] and g values are approximation to 3 decimal places while the rest are approximations to 2 

decimal places. The Michaelis-Menten constant and maximum velocity of amylolysis are 32.29  6.04 g/L and 

1458.34  208.35 M/min; the catalytic efficiency is: 3.025 exp (+9) L / mol. In line with Shurr’s [1] approach, U(r) 
= kBT In g 
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possible to calculate the intermolecular potential 
which enabled the calculation of the equilibrium 
probability [26], a necessary requirement for the 
calculation of intrinsic rate constants (Table 1). 
Though not shown in any table, it needs to be 
revealed that substitution of relevant data into 

Eq. (14) gave ~  2.07 kJ/mol as interaction 
potential for a diffusion-independent reaction or 
rate constant if that was the case; for the 
diffusion-dependent reaction or rate constant, 
U(r) = 0. This implies that no ES may have been 
formed. 
 
Based on another approach in this research, Eq. 
(23) to be specific, the attractive energy per 

molecule was ~ 1.02 exp ( 21) J but need not 
be used further. Taking in part, the approach of 

Shurr [2], the values of eq(r) (or g which is = exp 
(+U(r)/kBT)) were determined as shown in Table 
1. Having known the value of a dimensionless 
parameter, f (Eq. (11)) - calculated after 
replacing r2 with R0) - and g, the intrinsic rate 
constants were calculated according to Eq. (25) 
(and Eq.A.15b) and Eq. (26) (and Eq. A. 18b). 
The modified approach of Vijaykumar et al [10] 
yielded values that are similar (though the 
magnitudes differ) to any of the results from 
modified approach of Shurr [14]. Unlike modified 
Shurr’s approach, modified approach of 
Vijaykumar et al did not require information about 

g (or eq(r)) for the computation of the intrinsic 
rate constants. The calculated values were > the 
apparent rate constants as shown in Table (1). 
These results seemed to suggest that enzymes 
can achieve higher rates if challenge of viscosity 
and greater stability of the enzyme can be 
attained. As shown in Table (1), the apparent 
rate constant for product formation is > the 
reverse rate constant for the dissociation of ES to 
free enzyme and substrate. This means that the 
substrate undergoes conversion to product as 
quickly as the ES is formed [8]. The rate limiting 
step is thus, the formation of ES. Cognate to this 
is the issue of catalytic perfection [8] which 
requires the catalytic efficiency to be very high as 
in this research as shown as footnote under 
Table 1. 
 

5. CONCLUSION 
 

The equations for the calculation of intrinsic rate 
constants were derived and were re-stated with 
dimension consistent with the kinetic parameters 
determined. The equation for intermolecular 
electrostatic potential energy is exactly derivable. 
The intrinsic rate constants could be higher than 
the apparent rates constants. The apparent rate 

constant (k3) for product formation and release is 
> the apparent reverse rate constant for the 
release of free enzyme, E and free substrate, S. 
Thus, the k3 may be diffusion controlled. With 
reservation it seems the enzyme has attained 
kinetic perfection under the assay condition. 
Besides, the research has shown that certain 
parameters cannot be validly quantified, without 
Avogadro number. 
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APPENDIX 

 

1. FURTHER REDEFINITION OF INTRINSIC RATE CONSTANTS 
 
In this section Vijaykumar et al approach is introduced so as to enable the creation of results that may 

compare with the results obtained using Shurr’s approach. Meanwhile taken kD given as kD = 4(RE + 
Rs)(DE + Ds) leaves one with a dimensional issue that has been addressed in the main text. But its 
application has been tied however, to the caveat that, when intermolecular distance is chosen to be 
beyond the range rc (intermolecular distance allowing for mutual electrostatic interaction) of the 
interaction potential, then an exact expression given above for KD, the Smoluchowski diffusion-limited 
reaction rate constant is applied [10]. However, one need to know of what value this could be if in line 
with conservative field principle, the potential energy of interaction is zero as to imply that no 
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electrostatic attraction of the enzyme for the substrate occurs. The application is reflected in Eq. (A.3) 
and Eq. (A.4) for intrinsic association rate constant and intrinsic dissociation rate constant 
respectively. Meanwhile in line with Vijaykumar et al [10] the corresponding equations expected if 
Shurr’s approach is taken into account are: 
 

𝑘b =
𝑘2 exp( 𝑈(𝑟) 𝑘B𝑇⁄ )

𝑓+exp( 𝑈(𝑟) 𝑘B𝑇⁄ )
                              (A.1) 

𝑘f =
𝑘1

𝑓+exp( 𝑈(𝑟) 𝑘B𝑇⁄ )
                            (A.2) 

 

Where, in line with Vijaykumar et al approach [10], g (or eq(r)) is given as exp ( U(r)/kBT). 
 

𝑘on = 
𝑘a()𝑘D()

𝑘a()+𝑘D()
                                     (A.3) 

 

Again the unit of association rate constant (kon) and its corresponding intrinsic rate constant (ka ()) is 

dm3/mol per unit time, while kD() is strictly dm3 per unit time. The same dimensional issue is 
applicable to Eq. (A.4) below because the unit of first order rate constants, apparent or effective rate 
constant and the corresponding intrinsic rate constant is a dimensionless quantity per unit time. The 
mole concept must not be precluded! 
 

𝑘off = 
𝑘d()𝑘D()

𝑘a()+𝑘D()
                                (A.4) 

 

Where koff and kd(), the effective dissociation rate constant and the corresponding intrinsic 

dissociation rate constant are in dimensionless quantity per unit time. Making ka() = kD() leads to kon 

being = ka()/2 and koff being = kd()/2. These are definitely different from Eq. (24) and Eq. (23) 
respectively. This is despite the fact that the intrinsic values remain > than the effective rate 
constants. The bone of contention is therefore, the concern for validity. However, in the literature [27] 
is the equation given as: 
 

kD = 4 NA(RE + Rs)(DE + Ds)                           (A.5) 
 

Where, NA is the Avogadro constant. Making ka () and kd () in Eq. (3) and Eq. (4) respectively 
subject of the formula gives respectively 
 

𝑘a() =  
𝑘on𝑘D()

𝑘D()−𝑘on
                                (A.6) 

 

𝑘d() =  
𝑘off(𝑘a()+𝑘D())

𝑘D()
                                (A.7) 

 

In order that Eq. (A.6) to be valid, kD () must be > kon. To be noted is the fact that application of 4(RE 
+ Rs)(DE + Ds) as the KD makes it of no consequence because it is « 1. This could be seen clearly if 
Vijaykumar et al approach (Eq. (A.6) and Eq. (A.7)) is critically examined. Such a scenario in addition 
to the issue of dimension calls to question the approaches of Vijaykumar et al [10] and Shurr [1]. 

However, the substitution of 4NA (RE + Rs)(DE + Ds) in place of kD should give a dimensionally and 
scientifically more consistent result. It is the introduction of Avogadro number that gives a correctional 
effect. This is thus, effected beginning from Eq. (A.6) as follows: 
 

𝑘a() =  
4𝑘on(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A

4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A−𝑘on
                        (A.8) 

 

The function () is dropped in order to avoid technical confusion. Since ka() is never practicably a 
negative parameter, 4(𝑅E  +  𝑅s)(𝐷E  +  𝐷s)𝑁A  must always be > kon which may not be the case 

without NA. Moreover, 
4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A

4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A−𝑘on
> 1 so that 𝑘a() is always greater than 𝑘on. 

 
Subjecting Eq. (A.7) to similar treatment gives: 
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𝑘d() =  
𝑘off(𝑘a()+4(𝑅E  + 𝑅s)(𝐷E + 𝐷s)𝑁A)

4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A
                    (A.9) 

 
Once again, the intrinsic dissociation constant, a 1st order rate constant, is always > koff 

because 
(𝑘a()+4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A)

4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A
> 1.Though this claim is mathematically valid for both Eqs. (A.8) 

and (A.9), the issue of potential energy of interaction being zero as the maximum value, in line with 
conservative field principle, remains relevant because, U(r) is zero  at infinite dilution as to imply that 
enzyme-substrate interaction may be nonexistence. 
 
In order that binding can take place there must be a form of attractive interaction between the bullet 
and target molecule such as enzyme and substrate, drug and deadly pathogen etc; this presupposes 
that there should be kinetic energy and consequently negative potential energy of interaction, a key 
characteristics of conservative field principle. As applied to equations arising from Shurrs approach, 
the equation of the equilibrium probability that two molecules are at the distance, r from each other is 
derived as follows: 
 

𝑘a() + 𝑘D() =
𝑘a()𝑒𝑞()𝑘D()

𝑘on
=
𝑘d()𝑘D()

𝑘off
                  (A.10) 

 
Simplification and rearrangement of Eq. (A.10) gives as follows an equation exactly the same as that 
derived from Shurr’s given equations: 
 


𝑒𝑞
() =

𝑘d()𝑘on

𝑘a()𝑘off
                    (A.11) 

 

The equations, ka = ka(), kd = kd() and kD = kD() means that these rate constants, in contrast to the 

effective rate constants kon and koff, depend on the choice of  [10]. This simply means that any of the 

intrinsic rate constants is a function of ‘’. 
 
Meanwhile, the scientist, the biochemist in particular in the subfield, enzymology, professionals such 
as medics, pharmacists, dieticians and nutritionist is interested on the fate of food or drug as the case 

may be; this may preclude the value of  that is beyond the range rc of the interaction potential, where 
U(r) may be equal to zero. In such situation, binding of the enzyme to food substrate or drug as may 
be applicable and the drug to the pathogen may be impossible due to over dilution. Thus a negative 

U(r) (or equivalently the kinetic energy) is desirable. This implies that the equilibrium probability eq() 
(Eq. (A.11)) needs to be reintroduced. Thus, 
 

𝑘on = 
𝑘a()𝑒𝑞()𝑘D()

𝑘a()𝑒𝑞()+𝑘D()
                    (A.12) 

 

𝑘off = 
𝑘d()𝑘D()

𝑘a()eq()+𝑘D()
                     (A.13) 

 
From Eq. (A.12), 
 

𝑘a() =  
𝑘on𝑘D()

(𝑘D()−𝑘on)eq()
                     (A.14) 

 
Upon substitution of Eq. (A.11) into Eq. (A.14) and simplification one obtains, 
 

𝑘d() =  
𝑘D()𝑘off

𝑘D()−𝑘on
                            (A.15a) 

 

In order not to slip into former confusion, kD() as 4(RE + Rs)(DE + Ds)NA is substituted into Eq. 
(A.15a) to give: 
 



 
 

 
 

Udema; AJOCS, 8(2): 8-21, 2020; Article no.AJOCS.59777 

 

 

 
21 

 

𝑘d() =  
4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A𝑘off

4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A−𝑘on
                        (A.15b) 

 

From Eq. (A.13), kd() is also given as: 

𝑘d() =  
𝑘off()(𝑘a()eq()+𝑘D())

𝑘D()
                    (A.16) 

 
Substitution of Eq. (A.11) into Eq. (A.16) gives respectively 1st after rearrangement and 2nd after 

making (𝑘𝑎
2)() subject of resulting equation the following: 

 
𝑘off
2 𝑘𝑎

2

𝑘d𝑘𝑜𝑛
=

𝑘D
2𝑘off

𝑘D−𝑘on
− 𝑘off𝑘D                     (A17a) 

 

𝑘a() = √(
𝑘D()

𝑘D()−𝑘on
− 1)

𝑘d()𝑘on𝑘D()

𝑘off

2
                         (A.17b) 

 
Simplification of Eq. (A.17 b) gives finally 
 

𝑘a() =
𝑘on𝑘D()

𝑘D() − 𝑘on
                            (A.18a) 

 

𝑘a() =
4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A𝑘on

4(𝑅E + 𝑅s)(𝐷E + 𝐷s)𝑁A− 𝑘on
                                      (A.18b) 

 
Equations (A.15a)/(15b) and (A.18a)/(A.18b) have the same denominator and most importantly as 
usual, all the independent variables (or parameters) can either be theoretically (in particular with 

respect to kD ()) or experimentally with respect to kon and koff determined. While it is obvious that 
binding interaction is a function of attractive kinetic energy which must diminish in favour of increasing 
potential energy during dissociation, the determination of intrinsic rate constants does not require 
information about the potential energy of interaction for their determination as long as the background 
approach of Vijaykumar is the case. One should not shy away from the fact that the equilibrium 
probability is equal to one if potential energy of interaction is substantially negative (or substantial and 
sustained mutual electrostatic attraction yielding kinetic energy) as to engender enzyme-substrate 
formation for instance, leading to catalysis of whatever kind. Substitution of Eqs (A.15b) and (A.18b) 
into Eq. (A.11) verifies this view. 
 
With respect to Vijaykumar et al [10], Eqs (8) and (9) may imply that where U(r) is equal to zero, on 

account of  being > rc, a case of infinite dilution, there can never be any form of association or 
encounter complex formation preceding enzyme-substrate complex formation, and, if there has never 
been association there could never be any dissociation. On the other hand with respect to Shurr [2], 

Eqs (25) and (26) show respectively that where R0  , kb  k2 / 2 and k1 = 0 because g = 0 (U(r) = 0 

at infinite dilution). However, there is no question of kb  k2 / 2 because if there was no association, 
there can never be dissociation of ES. 
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