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Abstract 

 
Doche et al. constructed a family of elliptic curves (DIK elliptic curves) and proposed more efficient tripling 

formulas leading to a fast scalar multiplication algorithm. In this paper we present a direct method to compute 

the number of 𝔽‾ 𝑞-isomorphism classes (isomorphism over 𝔽‾ 𝑞) and 𝔽𝑞isomorphism classes of DIK family of 

elliptic curves defined over a finite field 𝔽𝑞. We give the explicit formulae for the number of 𝔽‾ 𝑞-isomorphism 

and an estimate formulae for the number of isomorphism classes. These result can be used in the elliptic 

curve cryptosystems. 

 

 
Keywords: Elliptic curves; isomorphism classes; cryptography. 

 

1 Introduction 
 

Elliptic curve cryptosystems were proposed by Miller (1986) and by Koblitz (1987) which relies on “the 

difficulty of elliptic curve discrete logarithmic problem”. “The basic operation required to implement the system 

is point multiplication, that is the computation of 𝑘𝑃 for a large 𝐾 and a point 𝑃 on elliptic curves. To obtain 
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faster operations, much effort has been done in representing the elliptic curves in special forms which provide 

faster addition, doubling and tripling in the last decades” [1]. In 2006, Doche, Icart and Kohel [2] introduced 

“the faster tripling in Weierstrass form curves 𝑦2 = 𝑥3 + 3𝑢(𝑥 + 1)2". In 2008,  study the general curves 𝑦2 =
𝑥3 + 3𝑎(𝑥 + 𝑡)2. Seeing  for comparison analysis of computational cost for all kinds of curves. It is natural to 

count the isomorphism classes of these elliptic curves over a finite field 𝔽𝑞  which has cryptographic 

applications. This has been done for Weierstrass curves [3,4], the numbers of distinct Edwards curves and their 

variants are presented in [5], Edwards curves [6], elliptic curves with rational 3-torsion [7], Legendre curves [8]. 

The isomorphism classes of different curve models were first studied in [5].  In [9], Farashahi and Hosseini give 

explicit formulas for” the number of distinct elliptic curves over a finite field, up to isomorphism, in two 

families of curves introduced by C. Doche, T. Icart and D.R. Kohel. But their papers use more mathematical 

theory, in our paper we take a more direct approach, which looks as if it is easier for people to understand”.  

 

In this paper we present a direct method to compute the number of 𝔽‾ 𝑞-isomorphism classes (isomorphism over 

𝔽‾ 𝑞) and isomorphism classes of Doche-Icart-Kohel curves defined over a finite field 𝔽𝑞. We give the explicit 

formulae for the number of 𝔽‾ 𝑞-isomorphism and an estimate formulae for the number of isomorphism classes. 

These result can be used in the elliptic curve cryptosystems. 

 

The rest of this paper is organized as follows. In section 2 we give some basic notation about elliptic curves and 

isomorphism. In section 3 we counting 𝔽‾ 𝑞-isomorphism classes of Doche-Icart-Kohel curves defined over a 

finite field. And finally, we counting isomorphism classes of Doche-Icart-Kohel curves defined over a finite 

field. Throughout the paper, 𝔽𝑞 denotes a finite field with characteristic > 3 and denote its algebraic closure by 

𝔽‾ 𝑞. 

 

2 Elliptic Curve  
 

A curve means a projective variety of dimension 1. An irreducible curve is said to be elliptic curve if it is 

birationally equivalent to a plane non-singular cubic curve. 

 

We know every elliptic curve 𝐸/𝐾 can be written as a Weierstrass equation 

 

𝐸: 𝑌2 + 𝑎1𝑋𝑌 + 𝑎3𝑌 = 𝑋3 + 𝑎2𝑋
2 + 𝑎4𝑋 + 𝑎6 

 

with coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ 𝐾. The discriminant △ (𝐸) and 𝑗-invariant are defined as 

 

△ (𝐸) = −𝑏2
2𝑏8 − 8𝑏4

3 − 27𝑏6
2 + 9𝑏2𝑏4𝑏6 

 

And 

 

𝑗(𝐸) = (𝑏2
2 − 24𝑏4)

3/△ (𝐸), 
 

where; 

𝑏2 = 𝑎1
2 + 4𝑎2,

𝑏4 = 2𝑎4 + 𝑎1𝑎3,

𝑏6 = 𝑎3
2 + 4𝑎6,

𝑏8 = 𝑎1
2𝑎6 − 𝑎1𝑎3𝑎4 + 4𝑎2𝑎6 + 𝑎2𝑎3

2 − 𝑎4
2.

 

 

Let 𝐸1/𝐾: 𝑌
2 + 𝑎1𝑋𝑌 + 𝑎3𝑌 = 𝑋

3 + 𝑎2𝑋
2 + 𝑎4𝑋 + 𝑎6  and 𝐸2/𝐾: 𝑌

2 + 𝑎1
′𝑋𝑌 + 𝑎3

′𝑌 = 𝑋3 + 𝑎2
′𝑋2 + 𝑎4

′𝑋 +
𝑎6
′  be two elliptic curves defined over 𝐾, we call them are isomorphism over 𝐾‾  or 𝐾‾ -isomorphism if there is an 

isomorphism which is defined over 𝐾‾ . We call them are isomorphism over 𝐾 or 𝐾-isomorphism if there is an 

isomorphism which is defined over 𝐾. It is well known that 𝐸1 and 𝐸2 are isomorphism over 𝐾‾  if and only if 

𝑗(𝐸1) = 𝑗(𝐸2), where 𝐾‾  is the algebraic closure of 𝐾. However, 𝐸1 and 𝐸2 are isomorphism over 𝐾 if and only 

if there exists 𝑢, 𝑟, 𝑠, 𝑡 ∈ 𝐾 and 𝑢 ≠ 0 such that the change of variables 

 

(𝑋, 𝑌) → (𝑢2𝑋 + 𝑟, 𝑢3𝑌 + 𝑢2𝑠𝑋 + 𝑡) 
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equation 𝐸1 to equation 𝐸2. The relationship of isomorphism is an equivalence relation. The above change of 

variables is said to be admissible change of variables. Therefore, 𝐸1 and 𝐸2 are isomorphism over 𝐾 if and only 

if there exists 𝑢, 𝑟, 𝑠, 𝑡 ∈ 𝐾 and 𝑢 ≠ 0 such that 

 
𝑢𝑎1

′ = 𝑎1 + 2𝑠,

𝑢2𝑎2
′ = 𝑎2 − 𝑠𝑎1 + 3𝑟 − 𝑠

2,

𝑢3𝑎3
′ = 𝑎3 + 𝑟𝑎1 + 2𝑡,

𝑢4𝑎4
′ = 𝑎4 − 𝑠𝑎3 + 2𝑟𝑎2 − (𝑡 + 𝑟𝑠)𝑎1 + 3𝑟

2 − 2𝑠𝑡,

𝑢6𝑎6
′ = 𝑎6 + 𝑟𝑎4 + 𝑟

2𝑎2 + 𝑟
3 − 𝑡𝑎3 − 𝑡

2 − 𝑟𝑡𝑎1.

 

 

If 𝑎1 = 𝑎3 = 𝑎1
′ = 𝑎3

′ = 0, then 𝐸1 and 𝐸2 are isomorphism over 𝐾 if and only if there exists 𝑢, 𝑟, 𝑠, 𝑡 ∈ 𝐾 and 

𝑢 ≠ 0 such that 

 

𝑢2𝑎2
′ = 𝑎2 + 3𝑟,

𝑢4𝑎4
′ = 𝑎4 + 2𝑟𝑎2 + 3𝑟

2,

𝑢6𝑎6
′ = 𝑎6 + 𝑟𝑎4 + 𝑟

2𝑎2 + 𝑟
3.

 

 

See [10,11,12] for more details. 

 

For two elliptic curves 𝐸1 and 𝐸2 which are defined over finite field 𝔽𝑞, if 𝑗(𝐸1) = 𝑗(𝐸2), then we call them are 

𝔽‾ 𝑞-isomorphism. Some formulae about counting the number of the isomorphism classes of general elliptic 

curves over a finite field can be found in literatures. In , R. Schoof present the number of isomorphism classes of 

elliptic curves over a finite field 𝔽𝑞 is 2𝑞 + 3 + (
−4

𝑞
) + 2 (

−3

𝑞
), where (

𝑛

𝑞
) is Jacobi Symbol. In , A.J. Menezes 

present the number of isomorphism classes of elliptic curves forms 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over a finite field 𝔽𝑞 is 

2𝑞 + 6,2𝑞 + 2,2𝑞 + 4,2𝑞 for 𝑞 ≡ 1,5,7,11 (mod 12) respectively. The following definition from [1]. 

 

Definition 1.  A Doche-Icart-Kohel curves over a finite field 𝔽q is defined by Ea:  y
2 = x3 + 3a(x + 1)2 where 

a ∈ 𝔽q with a (a −
9

4
) ≠ 0. 

 

The Doche-Icart-Kohel curves is smooth elliptic curves for 𝑎 (𝑎 −
9

4
) ≠ 0 . The 𝑗 -invariant is 𝑗(𝐸𝑎) =

283
3
𝑎(𝑎−2)3

4𝑎−9
. Following, we count the number of 𝔽‾ 𝑞-isomorphism classes and 𝔽𝑞-isomorphism classes. In fact, 

we can generalise the above family of curves to a more general situation. 

 

Definition 2.  A general Doche-Icart-Kohel curves 𝐸𝑎,𝑡  over a finite field 𝔽𝑞  is defined by 𝐸𝑎,𝑡:  𝑦
2 = 𝑥3 +

3𝑎(𝑥 + 𝑡)2 where 𝑎, 𝑡 ∈ 𝔽𝑞 and 𝑡𝑎(4𝑎 − 9𝑡) ≠ 0. 

 

The 𝑗-invariant is 𝑗(𝐸𝑎,𝑡) =
283

3
𝑎(𝑎−2𝑡)3

𝑡3(4𝑎−9𝑡)
. 

 

3 Counting 𝔽‾𝒒-isomorphism Classes 
 

Let 𝐸𝑎 and 𝐸𝑏  are two Doche-Icart-Kohel curves defined over 𝔽𝑞 , then 𝐸𝑎 and 𝐸𝑏  are isomorphism over 𝔽‾ 𝑞  if 

and only if there exists 𝑢, 𝑟 ∈ 𝔽𝑞‾  and 𝑢 ≠ 0 such that 

 

{
3𝑢2𝑏 = 3𝑎 + 3𝑟,

6𝑢4𝑏 = 6𝑎 + 6𝑎𝑟 + 3𝑟2,

3𝑢6𝑏 = 3𝑎 + 6𝑎𝑟 + 3𝑎𝑟2 + 𝑟3.

  or  {
𝑢2𝑏 = 𝑎 + 𝑟,

2𝑢4𝑏 = 2𝑎 + 2𝑎𝑟 + 𝑟2,

3𝑢6𝑏 = 3𝑎 + 6𝑎𝑟 + 3𝑎𝑟2 + 𝑟3.

 

 

Because 𝑢𝑏 ≠ 0, thus (𝑎 + 𝑟)(𝑟2 + 2𝑎𝑟 + 2𝑎)(3𝑎 + 6𝑎𝑟 + 3𝑎𝑟2 + 𝑟3) ≠ 0. Therefore, 
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{
 

 2𝑢2 =
𝑟2 + 2𝑎𝑟 + 2𝑎

𝑎 + 𝑟
,

3𝑢2

2
=

𝑟3 + 3𝑎𝑟2 + 6𝑎𝑟 + 3𝑎

𝑟2 + 2𝑎𝑟 + 2𝑎
.

 

 

Therefore, 

 

𝑟(𝑟3 + 4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎) = 0. 
If 𝑟 = 0 then 𝑢2𝑏 = 𝑢4𝑏 = 𝑢6𝑏 therefore 𝑢2 = 1 and 𝑏 = 𝑎. 

If 𝑟3 + 4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎 = 0  and 𝑎 + 𝑟 = 0 , then 𝑟 = −𝑎  and 𝑎(𝑎 − 2) = 0 . 

If 𝑟3 + 4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎 = 0 and 𝑟2 + 2𝑎𝑟 + 2𝑎 = 0, then 𝑟(𝑟2 + 2𝑎𝑟 + 2𝑎) + 2𝑎𝑟2 + 10𝑎𝑟 + 12𝑎 = 0, 

therefore 𝑟2 + 5𝑟 + 6 = 0  for 𝑎 ≠ 0 . Thus 𝑟 = −2  or 𝑟 = −3 . 

If 𝑟3 + 4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎 = 0  and 𝑟3 + 3𝑎𝑟2 + 6𝑎𝑟 + 3𝑎 = 0 , then 𝑎𝑟2 + 6𝑎𝑟 + 9𝑎 = 0 , therefore 𝑟2 +
6𝑟 + 9 = 0 , thus 𝑟 = −3 . 

Assume 𝑟3 + 4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎 = 0 and 𝑟 ≠ −2,−3,−𝑎, then 

 

𝑏 =
𝑎 + 𝑟

𝑢2
=
2(𝑟2 + 2𝑎𝑟 + 𝑎2)

𝑟2 + 2𝑎𝑟 + 2𝑎
, 

 

if 𝑏 = 𝑎, then (𝑎 − 2)𝑟2 + (2𝑎2 − 4𝑎)𝑟 = 0, that is 𝑟(𝑎 − 2)(𝑟 + 2𝑎) = 0, thus 𝑟 = 0 or 𝑟 = −2𝑎 if 𝑎 ≠ 2. 

Moreover, 𝑏 =
2(𝑟2+2𝑎𝑟+𝑎2)

𝑟2+2𝑎𝑟+2𝑎
= 2(1 +

𝑎2−2𝑎

𝑟2+2𝑎𝑟+2𝑎
), Therefore, from above argument, we have 

 

Lemma 3.  Two Doche-Icart-Kohel curves 𝐸𝑎 and 𝐸𝑏( 𝑏 ≠ 𝑎) defined over 𝔽𝑞 are 𝔽‾ 𝑞-isomorphism if and only 

if there exists 𝑟 ∈ 𝔽‾ 𝑞 and 𝑟 ≠ 0,−2,−3,−𝑎,−2𝑎 such that 𝑟3 + 4𝑎𝑟 + 12𝑎𝑟 + 12𝑎 = 0 and 𝑟2 + 2𝑎𝑟 ∈ 𝔽𝑞. 

 

Let 𝑓(𝑎) =
4𝑎−9

4𝑎
 with 𝑎 ∈ 𝔽𝑞 ,  𝑎 ≠ 0,

9

4
 then we have the following lemma: 

 

Lemma 4.  Let 𝑥1, 𝑥2, 𝑥3 are the roots of 𝑥3 − 𝑓(𝑎) = 0 in 𝔽‾ 𝑞, then 𝑟𝑖 =
3

𝑥𝑖−1
, 𝑖 = 1,2,3 are the roots of 𝑟3 +

4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎 = 0 in 𝔽‾ 𝑞. 

 

Proof 1.  Since 

 

[(
3

𝑥𝑖 − 1
)
3

+ 4𝑎 (
3

𝑥𝑖 − 1
)
2

+ 12𝑎 (
3

𝑥𝑖 − 1
) + 12𝑎] (𝑥𝑖 − 1)

3

= 27 + 36𝑎(𝑥𝑖 − 1) + 36𝑎(𝑥𝑖 − 1)
2 + 12𝑎(𝑥𝑖 − 1)

3

= 12𝑎𝑥𝑖
3 − 12𝑎 + 27

= 12𝑎
4𝑎 − 9

4𝑎
− 12𝑎 + 27

= 12𝑎 − 27 − 12𝑎 + 27 = 0

 

 

The lemma follows. 0◻ 
 

Let 𝛽3 =
4𝑎−9

4𝑎
, if 

3

𝛽−1
= −3 , then 

4𝑎−9

4𝑎
= 0  and 𝑎 =

9

4
. 

If 
3

𝛽−1
= −2 , then 𝛽 =

−1

2
 and 𝑎 = 2 . 

If 
3

𝛽−1
= −𝑎 , then 𝛽 =

𝑎−3

𝑎
, 

(𝑎−3)3

𝑎3
=

4𝑎−9

4𝑎
, thus 𝑎2 − 4𝑎 + 4 = 0  and 𝑎 = 2 . 

If 
3

𝛽−1
= −2𝑎, then 𝛽 =

2𝑎−3

2𝑎
, 
(2𝑎−3)3

8𝑎3
=

4𝑎−9

4𝑎
, thus 2𝑎2 − 6𝑎 + 3 = 0. Therefore, in 𝔽‾ 𝑞 , 𝑎 =

3−√3

2
 or 𝑎 =

3+√3

2
. 

If 2𝑎2 − 6𝑎 + 3 = 0 is solvable in 𝔽𝑞, then 3 is a square in 𝔽𝑞, then 𝑞 ≡ 1,11 (mod 12). 
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Now, we present and prove the theorem: 

 
Theorem 5.  Let 𝑁𝑞 be the number of 𝔽‾ 𝑞-isomorphism classes of Doche-Icart-Kohel curves which defined over 

a finite field 𝔽𝑞 of characteristic > 3, then we have 

 

𝑁𝑞 =

{
 
 
 
 
 

 
 
 
 
 
3𝑞 + 1

4
,    if 𝑞 ≡ 1 ( mod 12),

𝑞 − 1

2
,    if 𝑞 ≡ 5 ( mod 12),

3𝑞 − 1

4
,    if 𝑞 ≡ 7 ( mod 12),

𝑞 − 1

2
,    if 𝑞 ≡ 11 ( mod 12).

 

 

Proof 2.  For 𝑟3 + 4𝑎𝑟 + 12𝑎𝑟 + 12𝑎 = 0, the discriminant is △= −48𝑎2(4𝑎 − 9)2, since 𝑎 ≠ 0,
9

4
 thus △≠ 0 

and 𝑟3 + 4𝑎𝑟 + 12𝑎𝑟 + 12𝑎 = 0 has 3 diffident roots 𝑟1, 𝑟2, 𝑟3 in 𝔽‾ 𝑞. 

 

Since 𝑏 =
2(𝑟2+2𝑎𝑟+𝑎2)

𝑟2+2𝑎𝑟+2𝑎
= 2(1 +

𝑎2−2𝑎

𝑟2+2𝑎𝑟+2𝑎
) , assume 𝑟1

2 + 2𝑎𝑟1 + 2𝑎 = 𝑟2
2 + 2𝑎𝑟2 + 2𝑎  in 𝔽‾ 𝑞 , then (𝑟1 −

𝑟2)(𝑟1 + 𝑟2 + 2𝑎) = 0, then 𝑟1 + 𝑟2 = −2𝑎. For 𝑟1 + 𝑟2 + 𝑟3 = −4𝑎, then 𝑟3 = −2𝑎. Thus, we must have 𝑟3 +
4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎 = (𝑟 + 2𝑎)(𝑟2 + 2𝑎𝑟 + 𝑦), where 𝑦 = 6 and 𝑎 satisfy 2𝑎2 − 6𝑎 + 3 = 0. 

 
Assume 𝑞 ≡ 5( mod 12), then 𝑞 ≡ 2 ( mod 3), therefore for every element in 𝔽𝑞 has just one cubic root in 𝔽𝑞. 

Therefore, 𝑥3 −
4𝑎−9

4𝑎
= 0 is solvable and has just one root in 𝔽𝑞 and two roots in some quadratic extensions of 

𝔽𝑞. Thus, 𝑟3 + 4𝑎𝑟 + 12𝑎𝑟 + 12𝑎 = 0 has just one root in 𝔽𝑞 and two other roots 𝑟2, 𝑟3 are in some quadratic 

extensions of 𝔽𝑞 . We claim 𝑟2
2 + 2𝑎𝑟2 ∉ 𝔽𝑞  and 𝑟3

2 + 2𝑎𝑟3 ∉ 𝔽𝑞 . For if 𝑟2
2 + 2𝑎𝑟2 ∈ 𝔽𝑞 , then the minimal 

polynomial of 𝑟2 over 𝔽𝑞  has the form 𝑥2 + 2𝑎𝑥 + 𝑑 for some 𝑑 ∈ 𝔽𝑞 . Therefore, 𝑟3 + 4𝑎𝑟 + 12𝑎𝑟 + 12𝑎 =

(𝑟 + 𝑒)(𝑟2 + 2𝑎𝑟 + 𝑑)  for some 𝑒 ∈ 𝔽𝑞 . Thus, 𝑒 = 2𝑎  and 2𝑎2 − 6𝑎 + 3 = 0 , but this occur just at 𝑞 ≡

1,11 (mod 12) . Moreover, 
2(𝑟2

2+2𝑎𝑟2+𝑎
2)

𝑟2
2+2𝑎𝑟2+2𝑎

=
3−√3

2
 or 

2(𝑟2
2+2𝑎𝑟2+𝑎

2)

𝑟2
2+2𝑎𝑟2+2𝑎

=
3+√3

2
 when 𝑞 ≡ 1,11 (mod 12)  and 𝑎 =

3−√3

2
 or 

3−√3

2
. 

 

Therefore, for 𝑞 ≡ 5 ( mod 12) , 𝑁𝑞 =
𝑞−2−1

2
+ 1 =

𝑞−1

2
. Similarly, for 𝑞 ≡ 11 ( mod 12) , because 𝑟 = −2𝑎 

will lead to 𝑏 = 𝑎, therefore 𝑁𝑞 =
𝑞−2−1−2

2
+

2

2
+ 1 =

𝑞−1

2
. 

 

If 𝑞 ≡ 1 ( mod 3)  and 𝑎 ∈ 𝔽𝑞  not is a cube, then all the roots of 𝑥3 −
4𝑎−9

4𝑎
= 0  in 𝔽‾ 𝑞  are in some cubic 

extensions of 𝔽𝑞. Thus the roots of 𝑟3 + 4𝑎𝑟 + 12𝑎𝑟 + 12𝑎 = 0 are all in this cubic extensions of 𝔽𝑞 and no 

roots in 𝔽𝑞 . Therefore, for these 𝑎  and 𝑟 , 𝑟2 + 2𝑎𝑟 + 2𝑎  not in 𝔽𝑞 . Assume 𝑞 ≡ 1,7 ( mod 12) , then 𝑞 ≡

1 ( mod 3). Therefore, have 
𝑞−1

3
 elements there exists cubit root, and have 3 diffident cubic roots. Hence, for 

𝑞 ≡ 7 ( mod 12) , 𝑁𝑞 =
𝑞−1

3
−2

4
+ ((𝑞 − 2) − (

𝑞−1

3
− 2)) =

3𝑞−1

4
. For 𝑞 ≡ 1 ( mod 12) , 𝑁𝑞 =

𝑞−1

3
−2−2

4
+

2

2
+

((𝑞 − 2) − (
𝑞−1

3
− 2)) =

3𝑞+1

4
. 

 
Thus the proof is completed.                                                                                          ◻ 
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4 Counting 𝔽𝒒-isomorphism Classes 
 

Let 𝐸𝑎 and 𝐸𝑏  are two Doche-Icart-Kohel curves defined over 𝔽𝑞 , then 𝐸𝑎 and 𝐸𝑏  are isomorphism over 𝔽𝑞  if 

and only if there exists 𝑢, 𝑟 ∈ 𝔽𝑞  and 𝑢 ≠ 0 such that 

 

{
𝑢2𝑏 = 𝑎 + 𝑟,

2𝑢4𝑏 = 2𝑎 + 2𝑎𝑟 + 𝑟2,

3𝑢6𝑏 = 3𝑎 + 6𝑎𝑟 + 3𝑎𝑟2 + 𝑟3.

 

 

From the argument of section 2, we only to consider that 𝑢2 is or isn’t a square element in 𝔽𝑞  when 𝑢2 be 

represented by 𝑎 and 𝑟, where 𝑟 =
3

√
4𝑎−9

4𝑎

3
−1

 is the root of 𝑟3 + 4𝑎𝑟2 + 12𝑎𝑟 + 12𝑎 = 0. For 

 

3𝑢2

2
=

𝑟3 + 3𝑎𝑟2 + 6𝑎𝑟 + 3𝑎

𝑟2 + 2𝑎𝑟 + 2𝑎
= −𝑎

𝑟2 + 6𝑟 + 9

𝑟2 + 2𝑎𝑟 + 2𝑎

= −𝑎
(𝑟 + 3)2

𝑟2 + 2𝑎𝑟 + 2𝑎
,

 

 

We only to see 
−2𝑎

3(𝑟2+2𝑎𝑟+2𝑎)
 is or isn’t a square element in 𝔽𝑞. For 

−2𝑎

𝑟2+2𝑎𝑟+2𝑎
=

−2𝑎

3(𝑟2−
𝑟3+4𝑎𝑟2

6
)
=

4𝑎

𝑟2(4𝑎+𝑟−6)
, it is 

only to see 𝑎(4𝑎 + 𝑟 − 6) = 4𝑎2 + 𝑎𝑟 − 6𝑎 is or isn’t a square element in 𝔽𝑞. 

 

Let 𝑟 =
3

√
4𝑎−9

4𝑎

3
−1

=
3

𝜌−1
, then 𝑎(4𝑎 + 𝑟 − 6) =

9

4(1−𝜌3)
⋅ (

9

1−𝜌3
−

3

1−𝜌
− 6) =

9

4(1−𝜌3)2
⋅ (6𝜌3 − 3𝜌2 − 3𝜌) . 

Therefore, it is only to see 3(2𝜌3 − 𝜌2 − 𝜌)  is or isn’t a square element in 𝔽𝑞 . Summarising the above 

discussion, we can obtain the following theorem. 

 

Theorem 7.  Let 𝑁𝑞 be the number of 𝔽𝑞-isomorphism classes of Doche-Icart-Kohel curves which defined over 

a finite field 𝔽𝑞 of characteristic > 3, then we have 𝑁𝑞 ≤

{
 
 
 

 
 
 
11𝑞−23

12
,    if 𝑞 ≡ 1 ( mod 12),

𝑞 − 2,    if 𝑞 ≡ 5 ( mod 12),

11𝑞−17

4
,    if 𝑞 ≡ 7 ( mod 12),

𝑞 − 3,    if 𝑞 ≡ 11 ( mod 12).

 

 

5 Conclusion 
 

In this paper we present a direct method to compute the number of 𝔽‾ 𝑞-isomorphism classes and 𝔽𝑞-isomorphism 

classes of DIK family of elliptic curves defined over a finite field 𝔽𝑞. We give the explicit formulae for the 

number of 𝔽‾ 𝑞-isomorphism and an estimate formulae for the number of isomorphism classes. In the future, we 

hope to be able to give exact formulas for the number of 𝔽𝑞-isomorphism classes. 
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