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ABSTRACT 
 

The study provides a description of electroencephalography (EEG) advancements and their 
application in diagnosing and assessing various neurological diseases over the previous five years. 
The paper covers how EEG is used to examine epilepsy, sleep disorders, movement disorders, 
cognitive function, and brain damage. In epilepsy, EEG remains critical for seizure diagnosis, 
categorization, and localization of epileptogenic zones. Recent enhancements include the 
integration of machine learning techniques with high-density EEG equipment. In terms of sleep 
disorders, aberrant patterns suggestive of illnesses such as sleep apnea or narcolepsy may be 
diagnosed by a sleep architecture study utilizing EEGs, which can also be used to track therapy 
response. Cortical involvement occurs in Parkinson’s disease and Huntington’s disease, as well as 
other areas of the brain stem or basal ganglia. It helps researchers learn more about the cortical 
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damage produced by these disorders, which contributes greatly to understanding their 
pathophysiology. Aside from that, cognitive evaluation based on EEG has evolved via the creation 
of quantifiable biomarkers for early identification and monitoring of deterioration in Alzheimer’s 
disease, among others. Traumatic injuries can damage brain functioning, hence knowledge 
regarding severity predicted outcomes can be acquired by Traumatic Brain Injury evaluation utilizing 
EEG. 
 

 

Keywords: EEG; epilepsy; sleep disorder; movement disorder; brain injury assessment; cognitive 
assessment. 
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1. INTRODUCTION 
 
Electroencephalography, or EEG [1], is a 
technique used to measure and record electrical 
activity in the brain. In order to identify and 
amplify the tiny electrical impulses that are 
generated by brain neurons, several electrodes 
are applied to the scalp. The brain experiences 
electrical activity due to neuronal communication, 
which uses electrical impulses to transmit 
information [2]. These electrical impulses may be 
detected by electrodes applied to the scalp; the 
resulting data is referred to as an EEG recording. 
Typically formed of conductive gel or paste, 
electrodes are tiny metal discs or sensors that are 
placed on the scalp [3,4]. The structure of human 
brain is presented in Fig. 1a and 10-20 electrode 
system is presented in Fig. 1b. The fundamental 
EEG acquisition procedure is depicted in Fig. 2. 
 
The characteristics of EEG signals include their 
frequency, amplitude, and morphology, which can 
change based on neurological disorders, age, and 
brain state. When the brain is calm, awake, and 
the eyes are closed, alpha waves, which are 
oscillations in the 8–13 Hz range, are most 
noticeable. They are connected to a calm and 
relaxed condition and are usually seen across the 
posterior parts of the brain [5]. The higher 
frequency range of 14 to 30 Hz is occupied by 
beta waves, which are frequently seen during 
alertness, mental activity, and active attention. 
They typically cover the frontal and central areas 
of the brain, and during times of stress or worry, 
their amplitude may rise. Theta waves, which 
have a frequency range of 4 to 7 Hz, are 
frequently seen during light sleep, REM (rapid 
eye movement), and sleepiness [6]. They could 
also be present while in very relaxed or meditative 
states. Slow oscillations with a frequency range of 
0.5 to 4 Hz, known as delta waves, are commonly 
seen in deep sleep phases like slow-wave sleep 
(SWS). Additionally, they are linked to neurological 
conditions and other brain illnesses such brain 

injuries. The high-frequency range of 30 to 100 
Hz is attributed to gamma waves, which are 
linked to cognitive functions including perception, 
memory, and attention. They are believed to be 
involved in information processing and neural 
network synchronization since they are seen in 
task-related cortical activity [7]. Fig. 3 shows the 
different type of EEG Signals [8]. 
 
Epilepsy is frequently diagnosed and tracked by 
EEG. During seizures, it can identify aberrant 
electrical activity in the brain. Certain EEG 
patterns can be used to identify the kind of 
epilepsy and inform treatment choices [9]. In 
order to identify sleep disorders such narcolepsy, 
parasomnias, and sleep apnea, sleep                 
medicine uses EEG. Identification of sleep 
phases and irregularities in brain activity while 
sleeping is aided by it [10]. Movement disorders 
including Parkinson’s disease and Huntington’s 
disease can be diagnosed and treated with 
EEG. Although EEG results in these diseases 
are frequently ambiguous, they can be 
augmented to the results of other diagnostic 
tests [11]. Assessing brain function after a 
stroke or Traumatic Brain Injury (TBI) might be 
aided by EEG. It can assist direct rehabilitation 
efforts by identifying irregularities in electrical 
activity that can suggest the degree of brain 
injury [12]. Although attention-deficit/hyperactivity 
disorder (ADHD) and autism spectrum disorder 
(ASD) are neurodevelopmental illnesses for 
which EEG is not usually the primary diagnostic 
technique, it can be utilized in research            
settings to look at underlying brain abnormalities 
[13]. 
 
In the last five years, EEG has become a vital 
diagnostic tool for a wide range of neurological 
disorders, providing information about both 
normal and abnormal brain activity [14]. Recent 
studies have demonstrated the effectiveness of 
EEG in precisely defining neurophysiological 
patterns linked to many illnesses, including 
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epilepsy [15], movement abnormalities [16], and 
cognitive deficits [17]. This article summarizes 
the most recent developments in EEG-based 
diagnostics, illuminating how this field is 
developing in terms of comprehending and 
treating neurological disorders. The structure of 
the manuscript is as follows: Section 2 discusses 
the current trends in epilepsy diagnosis using 
EEG. The sleep disorder diagnosis related 
techniques are presented in Section 3. 

Advancements in movement disorder diagnosis 
using EEG are presented in Section 4. 
Approaches related to cognitive assessment is 
represented in the Section 5. Brain injury 
diagnosis procedures are conveyed in Section 6. 
A overall discussion on the various advancement 
in neurological diagnosis using EEG is 
expressed in Section 7. Section 8 and Section 9 
holds the concluding remarks and future 
directives. 

 

 
 

 
(a) Human Brain Structure 

 
(b) 10-20 Electrode Placement Scheme 

 
Fig. 1. Human brain structure & 10-20 electrode placement scheme 

 

 
 

Fig. 2. EEG acquisition process 
 

 
 

Fig. 3. Types of EEG signal 
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2. EPILEPSY DIAGNOSIS 
 
Epilepsy is a neurological illness that is 
complicated and marked by recurring seizures. It 
is a major worldwide health concern. Abnormal 
electrical activity in the brain causes these 
seizures, which can cause a wide range of 
symptoms, from momentary consciousness 
lapses to convulsions. Even though epilepsy is 
common, it is nevertheless stigmatized and 
surrounded by myths, which negatively affects 
millions of people’s quality of life globally. 
While antiepileptic medications continue to be 
the mainstay of epilepsy care, patients with drug-
resistant epilepsy may find success with surgical 
procedures and neuromodulation methods. Even 
with these developments, managing epilepsy still 
presents some difficulties, such as getting a 
prompt diagnosis, having access to specialist 
treatment, and managing the psychological 
components of the illness. Improving results and 
people’s quality of life requires a multidisciplinary 
approach including researchers, community 
support networks, and healthcare professionals. 
 
An ensemble of pyramidal one-dimensional CNN 
models for EEG seizure detection is introduced by 
Ullah et al. [9], outperforming state-of-the-art 
techniques and attaining 99.1% accuracy on the 
University of Bonn dataset. Their method 
performs better on binary and ternary 
classification problems, with mean accuracies 
ranging from 97.4% to 100% when employing 
single and ensemble models. 
 
According to Jaiswal et al. [18], SpPCA and 
SubXPCA combined with SVM are proposed for 
EEG seizure detection, and on benchmark 
datasets, they achieve 100% accuracy in 
differentiating between normal and epileptic 
signals. By using cross-subpattern correlation 
and subpattern-based PCA for feature extraction 
and classification, their approaches beat those of 
other researchers. 
 
In order to improve efficiency and repeatability, 
Hao et al. [19] present DeepIED, a semi-automatic 
epileptic discharge detector for EEG-fMRI 
recordings based on deep learning. After testing 
37 patients, the results showed a median 
sensitivity of 84.2% and a false positive rate of 5 
events/min. This is much higher than the median 
sensitivity of 50.0% that was obtained using 
template-based approaches. 
 
A deep learning framework for EEG-based 
epilepsy detection is presented by Abbasi et al. 

[14]. It uses LSTM architecture and achieves up 
to 98% accuracy for binary classification and up 
to 95% accuracy for multi-class classification of 
pre-ictal, inter-ictal, and ictal signals. They 
achieve great accuracies with their double-
layered LSTM technique, outperforming SVM 
performance and proving useful in epilepsy 
detection by utilizing characteristics like Hurst 
Exponent and ARMA. 
 

Following DWT preprocessing, Aliyu et al. [20] 
present an RNN for classifying epileptic EEG 
signals that achieves 99% accuracy with optimum 
settings. With 99% accuracy, their RNN beats 
LR, SVM, KNN, RF, and DT. DT comes in second 
with 98% accuracy, and RF has the lowest 
accuracy at 75%. 
 

By detecting certain sub-bands (1.5-2 Hz and 11-
12.5 Hz), Burenter et al. [21] provide a spectral 
analysis-based technique for epilepsy diagnosis 
using seizure-free EEG recordings, reaching 
99% accuracy and outperforming neurologist 
benchmarks (70-95%). Research on healthcare 
information systems may benefit from this 
approach, which provides a reliable, quick, and 
affordable diagnostic substitute. 
 

Using DWT and arithmetic coding, Amin et al. 
[22] provide a CAD approach that achieves 
100% accuracy in separating epileptic seizure 
signals from normal EEG data. Perfect sensitivity 
and specificity are shown by the approach in 
several datasets, indicating that it may be a 
useful addition to clinical epilepsy diagnosis. 
 

In order to detect epileptic seizures, 
Chatzichristos et al. [23] present a multi-view 
fusion model that uses attention-gated U-nets 
and LSTM. This model outperforms previous 
techniques on the TUH EEG seizure dataset and 
receives the highest TAES score in the Neureka 
2020 Epilepsy Challenge. Even with a large 
number of false alarms every day, the sensitivity 
stays below 25%. 
 

In order to train a multi-class classifier, Xu et al. 
[24] provide a self-supervised learning method for 
EEG anomaly detection using scaled 
transformations on regular EEG data. With an 
AUC of 0.943, the approach beats conventional 
anomaly detection techniques and shows 
resilience in cross-validation testing with respect 
to different classifier architectures and hyper-
parameters. 
 

Using artificial neural networks (ANN) and other 
classifiers, Mardini et al. [25] provide an EEG- 
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based seizure detection framework that achieves 
a high accuracy of 97.82% in differentiating 
between epileptic and normal signals across 14 
dataset combinations. Their approach offers a 
useful tool for identifying brain abnormalities and 
may find use in medical diagnostics and 
neuroscience research. 
 
A thorough technique for detecting epileptic 
seizures including preprocessing, feature 
extraction, and classification. It is implemented 
in MATLAB and TensorFlow 2/scikit-learn by 
Malekzadeh et al. [26]. By utilizing 10-fold cross-
validation, the technique attains 99.5% accuracy, 
indicating potential for improving the quality of life 
for those with epilepsy. 
 
In order to diagnose epilepsy based on scalp 
EEGs, Thangavel et al. [27] present a deep 
learning method that uses 1D ConvNets. This 
method achieves a false detection rate of 
0.23/min at 90% sensitivity. With mean EEG 
classification BAC of 78.1% (AUC 0.839) in LOIO 
cross-validation and 79.5% (AUC 0.856) in 
LOSO CV, the technique shows promising 
performance and may be useful in lowering the 
amount of human labour required for epilepsy 
diagnosis. 
 
In order to achieve high accuracy (sensitivity: 
98.09%, specificity: 98.69%, false detection 
rate: 0.24/h) in automated epileptic seizure 
detection from EEG signals, Zubair et al. [28] use 
dimensionality reduction strategies and machine 
learning models. Their approach outperforms 
earlier state-of-the-art studies and shows 
promise for improving seizure detection accuracy 
and efficiency, which will help people with 
epilepsy and medical professionals. 
 
In their article Shankar et al. [15], describe a 
deep learning method that uses CNNs to identify 
epileptic seizures from EEG signals. This 
method produces RP-based 2D pictures for 
certain brain rhythms and achieves up to 93% 
accuracy on databases from Bonn University and 
CHB-MIT. The δ rhythm is shown to be the 
appropriate brain rhythm for seizure analysis, and 
global statistical metrics and entropy are used to 
assess the quality of RP images. 
 
A CNN-LSTM hybrid model is presented by 
Jiwani et al. [29] for the identification of epileptic 
seizures from EEG recordings. It uses both 
spatial and temporal information and has fewer 
trainable parameters. The model’s applicability 
for real-time processing applications is 

demonstrated by its up to 100% accuracy in 
differentiating between healthy persons and 
seizure sufferers when tested on the University 
of Bonn dataset. 
 
Christou et al. [30] use the University of Bonn 
dataset to test the effects of different window 
sizes on the classification of EEG signals using 
BFGS, multistart, modified GA, and K-NN 
classifiers. According to the study, the multistart 
technique outperforms BFGS, modified GA, and 
K-NN, with a 20–21 second window obtaining the 
maximum accuracy (81.59%). 
 

3. SLEEP DISORDERS DIAGNOSIS 
 
The diagnosis of sleep problems is a complex 
task because of the wide range of symptoms and 
their influence on general health and well-being. 
From narcolepsy and parasomnias to insomnia 
and sleep apnea, sleep disorders cover a wide 
range of disruptions, each with its own clinical 
presentations and underlying causes. A thorough 
evaluation that includes a full medical history, a 
clinical assessment, and objective sleep 
investigations like actigraphy and 
polysomnography is frequently necessary for an 
accurate diagnosis. By evaluating nocturnal 
activities, respiratory data, and sleep architecture, 
these diagnostic techniques help determine the 
kind and severity of sleep disorders. 
Furthermore, new technologies and sleep 
monitoring gadgets for use at home present 
chances for remote monitoring and diagnosis, 
improving patient accessibility and convenience. 
To maximize diagnostic accuracy and treatment 
success, multidisciplinary teamwork and patient-
centered care methods are crucial. Nevertheless, 
difficulties still exist in the prompt identification 
and management of sleep disorders. 
 
Without the need of spectrograms or manually 
created features, Chambon et al. [10] offer a 
deep learning technique for temporal sleep stage 
categorization utilizing multivariate time series 
data. 
 
The model leverages PSG inputs, such as EEG, 
EOG, and EMG, and uses linear spatial filters 
and softmax classifiers to achieve state-of-the-art 
performance in identifying sleep phases. It shows 
that recognizing W stage has a high specificity 
(almost 1) and sensitivity (0.85). 
 
Using a time-distributed 1-D convolutional neural 
network trained on the Sleep-EDF dataset, 
Koushik et al. [31] present a real-time sleep 
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staging system that uses deep learning on a 
smartphone with a wearable EEG, achieving 
83.5% accuracy in five-class sleep stage 
categorization. The traditional gold standard for 
sleep staging, polysomnography (PSG), is 
simplified and automated using this method. 
 

The Random Forest classifier outperformed other 
classifiers with an accuracy of 75.29% when 
used in Tzimourta et al. [32]’s approach for sleep 
staging utilizing EEG data from PSG recordings. 
In addition to possibly improving the identification 
of sleep problems, this method presents a viable 
path for a quick and affordable sleep 
examination. 
 

Using obstructive sleep apnea (OSA) detection 
as a focal point, Korkalainen et al. [33] provide a 
deep learning approach for sleep stage division. 
With EEG+EOG, the model achieved 83.9% 
accuracy for sleep staging, with accuracy 
decreasing with OSA severity. This model was 
successful in both healthy persons and patients 
with suspected OSA. 
 

A deep learning model called DOSED is 
introduced by Chambon et al. [34] to automate 
the detection of micro-architecture events in EEG 
data. When it comes to precise event location, 
duration, and type prediction—all of which are 
critical for identifying sleep disorders—DOSED 
exceeds existing state-of-the-art methods. 
 

Using a decision tree-based multi-class support 
vector machine classifier, Ravan et al. [35] offer 
an EEG-based machine learning strategy that 
achieves 94.2% classification accuracy across 
three sleep categories for quantifying sleep 
quality. Even with untested datasets, the 
approach helps physicians diagnose sleep 
problems by providing a reliable and accurate 
assessment of sleep quality. In their study, 
Buettner et al. [36] provide a fast and precise 
machine learning technique for identifying sleep 
disorders, namely REM sleep behaviour disorder. 
They surpass previous standards, obtaining over 
90% accuracy using a mere 10-minute EEG 
recording clip. The speed and precision of 
identifying sleep disorders—which is vital for 
preventing secondary illnesses like Parkinson’s 
or dementia—can be greatly improved with this 
method. 
 

Using deep learning on photoplethysmography 
(PPG) data, Korkalainen et al. [37] correctly 
estimate total sleep time and the apnea-
hypopnea index (AHI) with accuracy rates of 
80.1%, 68.5%, and 64.1% for three, four, and five-

stage sleep classifications, respectively. This 
technique may make it easier and more 
affordable to diagnose sleep problems, 
particularly obstructive sleep apnea (OSA). In 
order to identify patient groups with sleep-related 
illnesses, Jarchi et al. [38] provide a bio-signal 
processing and deep learning approach that 
outperforms state-of-the-art classifiers and 
achieves 72% accuracy. By integrating ECG 
and EMG data, their suggested deep neural 
network design provides thorough analysis for 
the diagnosis of disorders including restless legs 
syndrome (RLS) and obstructive sleep apnea 
(OSA). 
 
With high accuracies ranging from 91.3% to 
99.2% using ensemble boosted trees classifier, 
Sharma et al. [39] propose an EEG-based 
method for automated identification of six sleep 
disorders, providing a quick and easy way to 
diagnose sleep disorders in homes and clinics. 
 
A thirty-layer CNN model using EEG signals is 
introduced by Sudhakar et al. [40] for the 
detection of sleep disorders. AlexNet 
outperforms GoogleNet with an accuracy of 
93.33%, showing promise even with a small 
dataset size. 
 
An automated sleep stage classification system 
employing EEG signals and supervised 
classifiers is presented by Sharma et al. [41]; for 
balanced datasets, it achieves up to 92.8% 
accuracy and 0.915 Cohen’s Kappa coefficient. 
For diagnostic reasons, the approach may be 
used in sleep labs and provides a dependable 
means of evaluating the quality of sleep in 
individuals suffering from different types of sleep 
disorders. 
 
Using bidirectional recurrent neural networks for 
sleep EEG signals, Fu et al. [42] create a deep 
learning model that achieves 70–85% 
classification accuracy for each category on the 
Sleep-EDF dataset. Their approach outperforms 
previous models in terms of accuracy, indicating 
its efficacy and potential for real-world use in 
sleep study. 
 
Using deep learning models trained on 135 EEG 
signals acquired with AES, Leino et al. [43] offer 
an accurate automated sleep staging approach 
based on ambulatory forehead EEG, attaining up 
to 89.1% accuracy. The model shows good 
ability to discriminate between different stages of 
sleep, especially when using the Fp1/Fp2 EEG 
channel combination. 



 
 
 
 

Basak et al.; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 226-249, 2024; Article no.AJRCOS.117108 
 
 

 
232 

 

4. MOVEMENT DISORDERS DIAGNOSIS 
 
EEG-based movement disorder diagnosis is a 
developing field of study that aims to clarify the 
neurological underpinnings of motor dysfunction. 
EEG can offer important insights into cortical 
involvement and abnormal brain activity 
associated with illnesses including Parkinson’s 
disease, Huntington’s disease, and dystonia, 
even though it is not usually the primary 
diagnostic tool for movement disorders. Event-
related potentials, aberrant oscillatory activity 
patterns, and cortical synchronization can all be 
seen in EEG recordings, which can provide 
further data for neuroimaging research and 
clinical evaluations. EEG can also help 
distinguish movement disorders from other 
neurological illnesses that share symptoms, 
which can lead to a more precise diagnosis and 
better treatment planning. Even though EEG has 
great potential, issues like low spatial resolution 
and variability in EEG results among people with 
movement disorders highlight the need for more 
research and integration of EEG with other 
diagnostic modalities for a thorough assessment 
and treatment of these intricate conditions. 
 
The deep convolutional neural network technique 
presented by Vrbancic et al. [11] outperformed 
conventional approaches, however it lagged 
slightly below the state-of-the-art approach in 
terms of accuracy when it came to identifying 
motor impairment neurological diseases from 
EEG data. Nevertheless, it streamlines the 
diagnosis of neurological disorders by providing 
totally automated categorization devoid of human 
involvement. 
 
Mumtaz et al. [44] developed an automated 
diagnosis system for Major Depressive Disorder 
based on EEG-derived synchronization likelihood 
(SL) features, with high accuracy rates of 98% 
for SVM, 91.7% for LR, and 93.6% for NB 
classification. Their findings suggest a viable new 
approach for diagnosing depression by 
demonstrating how EEG-based features may 
consistently identify MDD patients from healthy 
controls. 
 
By employing an additional tree classifier, 
Vanegas et al. [45] achieve virtually flawless 
classification performance with an AUC of 
0.99422 when proposing machine learning-
based detection of EEG biomarkers in 
Parkinson’s disease during visual stimulation. In 
addition to offering important insights into the 
neurophysiological hallmarks of the disease, their 

work emphasizes the potential of EEG spectral 
amplitude across various frequency bands for 
precise PD diagnosis. 
 
To diagnose and prognosticate idiopathic Rapid 
Eye Movement Behaviour Disorder (RBD), 
Ruffini et al. [46] present deep learning models 
based on eyes-closed resting EEG data. Using 
both deep convolutional neural networks 
(DCNN) and deep recurrent neural networks 
(RNN), their method—which draws inspiration 
from audio or picture classification— achieves 
about 80% classification accuracy, 
demonstrating the promise of deep learning in 
EEG data for cognitive problem identification. 
 
For the purpose of classifying motor imagery 
EEG signals, Dai et al. [47] present a unique 
deep learning framework that combines 
convolutional neural networks (CNN) with 
variational autoencoders (VAE). This approach 
outperforms current approaches, demonstrating a 
3% improvement on the BCI Competition IV 
dataset 2b. With an average kappa value of 
0.564, their method—which combines time, 
frequency, and channel information—achieves the 
greatest results and shows promise for motor 
imagery EEG categorization. 
 
By using automated machine learning 
approaches, Koch et al. [48] are able to 
categorize EEG signals in patients with 
Parkinson’s disease (PD) with an 84.0% 
classification accuracy using automated 
calculated features. Their method suggests 
novel biomarkers for Parkinson’s disease (PD) 
cognitive function and demonstrates that a 
greater accuracy of 91.0% may be achieved by 
combining automated and clinical aspects. 
 
Transfer learning of pre-trained Convolutional 
Neural Networks (CNNs) is used by Shajil et al. 
[49] to classify motor imagery (MI) EEG signals. 
The highest classification accuracy of 
82.78±4.87% was achieved for the BCI 
Competition IV dataset 2a and 83.79±3.49% for 
an acquired dataset using InceptionV3 CNN. 
Their work demonstrates how well pre-trained 
CNN models—especially those with more layers 
and parameters—may be used to efficiently 
classify two-class MI EEG data. 
 

Bouallegue et al. [50] propose a dynamic filtering 
and deep learning-based technique for detecting 
neurological illnesses based on EEG data. 
This method combines FIR and IIR filters with 
a Gated-Recurrent Unit (GRU) Recurrent Neural 
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Network (RNN) for preprocessing. Using 
Convolutional Neural Networks (CNN), their 
system achieves remarkable accuracy in feature 
extraction and classification, with 100% accuracy 
in diagnosing epilepsy and 99.5% in diagnosing 
autism.  
 
The thirteen-layer CNN architecture proposed 
by Oh et al. [51] achieves 88.25% accuracy, 
84.71% sensitivity, and 91.77% specificity in the 
identification of Parkinson’s disease (PD) using 
EEG signals. This approach, which eliminates 
the requirement for traditional feature 
representation phases, shows promise as a 
dependable, long-term PD diagnosis tool when 
verified using stratified ten-fold cross-validation. 
 
Using machine learning methods and the 
Maximum Overlap Discrete Wavelet Transform 
(MODWT), Abdulwahab et al. [52] create an EEG 
Motor-Imagery BCI System. Achieving 98.81% 
average accuracy using SVM algorithm using 
MODWT for feature extraction, their work 
highlights the importance of EEG for severe 
motor disorders, rehabilitation, and 
communication. 
 
Using raw MRIs to identify microstructural neural 
network biomarkers, Bashir et al. [53] present 
DystoniaNet, a deep learning-based technique for 
aided diagnosis of movement disorders, 
especially isolated dystonia. With an overall 
accuracy of 98.8%, DystoniaNet outperforms 
shallow machine learning networks, 
demonstrating the promise of computational 
intelligence in the early identification of 
movement disorders. 
 
Using resting state EEG data, Shaban et al. [16] 
provide a deep learning-based framework with 
98% accuracy, 97% sensitivity, and 100% 
specificity for automated Parkinson’s disease 
(PD) screening and classification. This 
framework supports doctors in diagnosis and 
treatment recommendations by acting as an 
accurate and dependable computer-aided 
diagnostic tool. 
 
In comparison to traditional research, Urtnasan 
et al. [54] achieve a superior F1-score of 92% 
using deepPLM, a deep learning model for 
automated identification of periodic limb 
movement syndrome using ECG signals. With 
excellent accuracy in test, assessment, and 
training groups, it presents a viable substitute for 
PLMS screening, especially for home health care 
services. 

A deep neural network technique for 
automatically determining movement intention 
from EEG data is presented by Shahini et al. 
[55]. High accuracy of 96.9% and 89.8%, 
respectively, are attained for two-class and three-
class situations. This method outperforms prior 
approaches that rely on manual feature 
extraction since it operates directly on raw EEG 
data without feature extraction. 
 
In order to diagnose Parkinson’s illness, Shaban 
et al. [56] describe a deep learning technique 
that applies a 20-layer CNN to the Wavelet 
domain of resting-state EEG. With a high 
specificity and sensitivity of about 99.9%, the 
method is successful in correctly dividing           
people into two groups: those with Parkinson’s 
disease (with and without treatment) and healthy 
controls. 
 

5. COGNITIVE ASSESSMENT 
 
EEG-based cognitive evaluation has become a 
useful technique for studying brain activity and 
evaluating cognitive functions. EEG, a non-
invasive way of monitoring brain electrical 
activity in real time, provides insights into the 
neural dynamics associated with a variety of 
cognitive functions such as executive function, 
memory, and attention. Examining EEG data 
allows researchers to identify neural signatures 
that signal cognitive states, task involvement, 
and cognitive load. In addition, event-related 
potentials (ERPs) derived from EEG data give 
precise temporal resolution and may be used to 
investigate cognitive processes with millisecond 
accuracy. Moreover, quantitative EEG (qEEG) 
analysis offers quantifiable measurements of 
brain activity, making it possible to find 
biomarkers linked to neurodegenerative illnesses 
including Alzheimer’s disease and cognitive 
decline. It is possible to diagnose cognitive 
deterioration early, track the course of a disease, 
measure the effectiveness of treatment, and 
improve patient care and cognitive rehabilitation 
techniques by incorporating EEG-based 
cognitive evaluation into clinical practice. 
 
An end-to-end deep neural network model was 
created by Almogbel et al. [13] to directly predict 
cognitive effort from raw EEG data. For a 150-
second window, the model achieved an 
astounding 95.31% accuracy. Their CNN-based 
method successfully recovers high-level 
characteristics from EEG data, showing promise 
for precise cognitive strain assessment with much 
room for improvement. 
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Using cutting-edge machine learning techniques, 
Liu et al. [57] provide an EEG-based evaluation of 
mental tiredness across four levels. Their work 
emphasizes the trade-off between recognition 
rates and practicality, stressing prospects for 
future accuracy increases in subject-independent 
techniques. They achieve an average accuracy 
of 93.45% in subject-dependent approaches and 
39.80% in subject-independent approaches. 
 

In human-machine collaboration situations, Yang 
et al. [58] provide a deep learning-based method 
for quantifying cognitive mental effort using EEG 
signals. By utilizing subject-specific integrated 
deep learning committees, their ensemble 
classifier surpasses standard classifiers in 
accuracy, achieving 92%, but at the cost of 
greater computing complexity and parameter 
overhead. 
 

Using EEG spectrum data and traditional machine 
learning, Plechawska et al. [59] offer a subject- 
independent technique for cognitive workload 
estimation that achieves up to 91% accuracy 
using kNN model validation and cross-validation. 
Selecting features improves classification 
accuracy, proving useful in task level                   
estimate. 
 

A deep neural network is introduced by Almogbel 
et al. [60] to detect cognitive workload and 
driving context directly from raw EEG signals. 
The network achieves an average accuracy of 
96% and can distinguish between driving on a 
city or highway with accuracy, indicating the 
effectiveness of deep CNNs in workload and 
context classification without the need for 
preprocessing. 
 

In comparison to traditional techniques, Sridhar 
et al. [61] achieve enhanced diagnosis of mild 
cognitive impairment (MCI) by introducing a 
subject-agnostic BLSTM network to assess 
cognitive functions based on brain signal 
characteristics. The work shows potential fir 
accuracy in detecting MCI by using gamma band 
power analysis and sensory-motor paradigms to 
determine cognitive deterioration. 
 
In order to distinguish between writing and typing 
activities, Qu et al. [62] suggest an EEG-based 
technique that uses machine learning and deep 
learning algorithms to achieve accuracy levels 
above chance. According to their research, EEG 
indicators are able to identify minute differences in 
cognitive tasks, even when the tasks’ 
communication and cognitive modes are 
equivalent. 

A methodology for separating moderate cognitive 
impairment (MCI) patients from healthy controls 
using EEG data is put forth by Siuly et al. [63]. 
By utilizing auto-regressive model features and 
Permutation Entropy in conjunction with 
contemporary machine learning techniques, they 
surpass previous approaches and offer a reliable 
biomarker for MCI identification, attaining a 
remarkable 98.78% accuracy rate through the 
use of Extreme Learning Machine. 
 
In order to differentiate Parkinson’s Disease 
patients based on cognitive function, Geraedts 
et al. [64] present a completely automated 
machine learning pipeline that uses EEG signals 
and achieves a mean accuracy of 92%. This 
method shows potential for cognitive profiling in 
PD patients undergoing Deep Brain Stimulation 
screening. 
 
To identify cognitive burden, Gupta et al. [65] 
suggest a technique that combines deep learning 
with EEG-based functional connectivity, resulting 
in state-of-the-art accuracy of 80.87%. The study 
shows how functional connectivity information 
may be used for workload categorization in real 
time. 

 
For the purpose of classifying EEG signals, 
Suchetha et al. [66] offer two unique deep 
learning architectures: SCN and MBCN. MBCN 
outperforms SCN and conventional approaches, 
reaching 88.33% accuracy and displaying 
reduced computing complexity. 

 
An integrated EEG, eye tracking, and 
neuropsychological test low-cost screening 
paradigm for MCI is presented by Jiang et al. 
[17]. With predictive power of 84.5 ± 4.43% and 
88.8 ± 3.59% in two cohorts, respectively, and 
AUCs of 0.941 and 0.966, the model has 
potential for use in the prediction of cognitive 
decline in the future. 

 
Using EEG data and deep learning methods, 
Longo et al. [67] provide a self-supervised 
approach for modelling mental workload. 
Promising accuracy and generalizability are 
demonstrated by the approach, with a mean 
absolute percentage error of around 11% and 
consistent accuracy among individuals. 

 
The effectiveness of a single-channel EEG 
device for assessing cognitive states is evaluated 
by Molcho et al. [68]. Their results point to a 
promising approach for identifying cognitive 
decline that may find widespread clinical 
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application: machine learning-based EEG 
characteristics taken from an auditory cognitive 
exam. 
 

6. BRAIN INJURY ASSESSMENT 
 
EEG is a useful tool for brain injury assessment 
for assessing neurological function after 
traumatic brain injury (TBI) and other types of 
brain injury. With the sensitive and non-
invasive monitoring of brain activity provided by 
EEG, doctors can identify anomalies in 
electrical transmission linked to brain damage. 
After an acute insult, EEG can give 
instantaneous information on the degree and 
kind of neuronal damage, which can assist 
influence treatment choices and forecast                  
patient outcomes. Additionally, non-convulsive 
status epilepticus and subclinical seizures,                  
which are frequent aftereffects of brain injury and 
may exacerbate secondary brain damage if 
ignored, can be identified by EEG monitoring in 
the critical care unit. Furthermore, quantitative 
EEG (qEEG) analysis may measure alterations 
in patterns of brain activity over time, offering 
significant prognostic data and directing activities 
related to rehabilitation. Even though EEG is 
useful, there are still issues that need to be 
addressed in order to maximize its application in 
brain injury evaluation and therapy. These 
issues include how to interpret EEG results                             
in the context of multifactorial brain damage                  
and the requirement for standardized 
procedures. 
 
In order to detect epileptiform activity in rat EEG 
records following traumatic brain injury, Obukhov 
et al. [12] create a technique that uses wavelet 
transform and logistic regression, with an 
accuracy of around 80%. 
 
Using EEG reactivity data, Amorim et al. [69] 
created a semi-automated technique that 
predicts outcomes in hypoxic-ischemic brain 
damage, with AUCs of 0.8 for random forest, 
which is equivalent to expert evaluation. 
Promising support for prognostication in cardiac 
arrest is provided by this approach. 

 
In a mouse model of traumatic brain injury (TBI), 
Vishwanath et al. [70] classified EEG data using 
machine learning methods, namely CNNs, and 
achieved accuracies of up to 92.03% when 
evaluating sleep and wake data. Their results 
point to the possibility of using these methods to 
diagnose neurological disorders such traumatic 
brain injury. 

A computer-aided method for automatically 
identifying Disorders of Consciousness (DoC) 
in brain-injured patients using EEG signals is 
presented by Wang et al. [71]. With a support 
vector machine classifier ensemble, their 
technique achieves a high accuracy of 98.21%, 
showing remarkable possibilities for precise 
diagnosis and medical treatment. 

 
Deep neural network designs are proposed by 
Faghihpirayesh et al. [72] for the automated 
identification of biomarkers for post-traumatic 
epilepsy (PTE) in patients with moderate-to-
severe traumatic brain injury (TBI) using EEG 
data. Their recurrent neural network provides a 
potential path for reliable, automated PTE 
detection and prediction in TBI patients, with an 
80.78% accuracy rate in recognizing epileptiform 
anomalies. 
 
Machine learning is used by Thara et al. [73] to 
forecast the results of paediatric traumatic brain 
injury (TBI). Support vector machines, neural 
networks, random forests, logistic regression, 
naive Bayes, and k-nearest neighbour algorithms 
are all used in their study, which is carried out in 
Southern Thailand. Support vector machines 
show the best results. These ML algorithms 
show potential as screening tools for prognostic 
counselling and functional outcome prediction in 
paediatric traumatic brain injury cases due to 
their excellent sensitivity and specificity. 

 
EEG-derived psychophysiological indicators 
were used in a pilot research by Di et al. [74] 
to predict clinical outcomes in patients with 
disorders of consciousness (DoC) following brain 
damage. The translational value of EEG 
biomarkers in DoC assessment was highlighted 
by the accurate outcomes predictions for 
traumatic patients that were obtained by 
combining dominant frequency measures and 
functional connectivity, while mutual information 
combination and functional connectivity best 
predicted outcomes for nontraumatic patients. In 
nontraumatic patients, the suggested technique 
yielded an accuracy of 83.3% (sensitivity = 
92.3%, specificity = 60%), and in traumatic 
patients, an accuracy of 80% (sensitivity = 
85.7%, specificity = 71.4%). 

 
Italinna et al. [75] use supervised machine 
learning and normative modelling to detect mild 
Traumatic Brain Injury (mTBI) from MEG 
recordings. The technique improved clinical 
decision-making by identifying mTBI patients 
from controls with a 79% accuracy rate. 
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7. DISCUSSION 
 

The comparative analysis of studies on 
automatic seizure detection in Table 1 presents a 
diverse array of methodologies, feature extraction 
techniques, classification algorithms, and results. 
Various techniques are studied, including deep 
learning models such as Convolutional Neural 
Networks (CNNs) and Recurrent Neural 
Networks (RNNs), as well as classic machine 
learning classifiers and ensemble models. 
Feature extraction techniques span from simple 
signal processing techniques like the Discrete 
Wavelet Transform (DWT) to more complex 
approaches like Spectral Principal Component 
Analysis (SpPCA) and Recurrence Plots. 
Classification algorithms vary widely, including 
SVMs, LSTM, CatBoost, and novel architectures 
like attention-gated U-nets. Results showcase 
high accuracy rates, often surpassing 90%, with 
some studies achieving perfect classification 
performance. Sensitivity, specificity, false 
detection rates, and area under the curve (AUC) 
are among the reported metrics, demonstrating 
the robustness and potential clinical utility of the 
proposed methods in seizure detection. 
However, further validation and standardization 
across diverse datasets are necessary to ensure 
the reliability and generalizability of these 
automated seizure detection systems. 
 

The comparative analysis of sleep disorder 
studies in Table 2 reveals a diverse landscape of 
methodologies, feature extraction techniques, 
classification algorithms, and results. Deep 
learning models such as convolutional neural 
networks (CNNs) and recurrent neural networks 
(RNNs) are used in the studies, as well as 
classic machine learning techniques such as 
Support Vector Machines (SVMs) and Random 
Forest. Feature extraction methods span time 
domain features, frequency domain features, 
energy in sub-bands, entropy, moments, and 
multi-level wavelet decomposition, each tailored 
to capture pertinent information from EEG, ECG, 
EMG, and PPG signals. Notably, deep learning 
models emerge as prominent tools, 
showcasing their prowess in automatically 
learning intricate patterns from raw data, leading 
to state-of-the-art performance across various 
tasks. While traditional methods still find 
application, the superior performance of deep 
learning architectures, as evidenced by 
consistently high accuracy and sensitivity, 
underscores a paradigm shift in sleep disorder 
analysis. However, the choice of methodology 
and feature extraction techniques remains 
contingent upon the specific objectives and 

characteristics of the sleep disorder being 
studied. 
 

The comparative analysis of movement disorder 
diagnosis studies in Table 3 reveals a diverse 
range of methodologies, feature extraction 
techniques, classification algorithms, and 
achieved results. Researchers use a variety of 
deep learning architectures, including 
Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and their 
combinations, to evaluate EEG data, ECG 
signals, and raw MRIs for diagnosis. Machine 
learning techniques such as Support Vector 
Machines (SVMs), Logistic Regression (LR), 
and k-Nearest Neighbours (k-NN) are also 
used, frequently in combination with 
sophisticated feature extraction methods such 
as wavelet transformations and 
synchronization likelihood features. Results 
demonstrate high accuracy rates, with some 
studies achieving almost perfect classification 
performance, surpassing traditional methods. 
Additionally, transfer learning and automated 
feature selection techniques contribute to 
improved diagnostic accuracy and efficiency. 
These findings underscore the potential of 
machine learning and deep learning approaches 
in enhancing movement disorder diagnosis 
through the analysis of physiological signals and 
medical imaging data. 
 

However, further validation on larger and more 
diverse datasets is essential to ensure the 
robustness and generalizability of these 
diagnostic tools in clinical settings. 
 

The comparative analysis of the studies 
presented in Table 4 reveals a diverse landscape 
of methodologies, feature extraction 
techniques, classification algorithms, and results 
in cognitive assessment using EEG data. While 
deep learning models dominate the landscape 
for their ability to extract features directly from 
raw EEG signals, machine learning techniques 
also play a significant role, particularly in 
leveraging more traditional feature extraction 
methods. Results vary widely across studies, 
with reported accuracy rates ranging from 
modest to high levels, influenced by factors such 
as data quality, feature extraction effectiveness, 
and algorithm choice. Despite this variability, the 
studies collectively highlight the potential of EEG-
based cognitive assessment in detecting 
cognitive decline, assessing cognitive workload 
and differentiating cognitive states, offering 
promising perspectives for improving clinical 
diagnosis and human-machine interaction. 
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Table 1. Comparison of studies on automatic seizure detection 
 

Study Methodology Feature Extraction Classification Algorithm Result 

Ullah et al.  [9] Ensemble of P-1D-CNN models  EEG sub signals P-1D-CNN Accuracy of 99.1 ± 0.9% on 
University of Bonn dataset 

Jaiswal et al. [18] Automated seizure detection SpPCA, SubXPCA SVM 100% accuracy for classification of 
normal and epileptic EEG signals 

Hao et al.  [19] Deep learning-based semi-
automatic detector 

EEG Signals Deepied (RNN-based) Median sensitivity of 84.2% with false 
positive rate set at 5 events/min 

Abbasi et al. [14] Deep learning with LSTM 
architecture 

Hurst Exponent, ARMA LSTM Up to 99.17% accuracy for various 
EEG signal classifications 

Aliyu et al. [20] Recurrent neural network 
(RNN) 

DWT RNN (with optimizations) 99% accuracy with the best 
generalization, outperforming other 
algorithms 

Burenter et al.  [21] Spectral analysis of seizure-free 
EEG recordings 

Fine-graded spectral 
analysis 

Ensemble of Classifiers Accuracy of 99% in diagnosing 
epilepsy 

Amin et al. [22] Discrete wavelet transform 
(DWT) and arithmetic coding 

DWT Linear and non-linear 
machine learning 
classifiers 

Perfect classification performance 
(100% accuracy) for detecting 
epileptic seizure activity 

Chatzichristos et al. 
[23] 

Attention-gated U-nets and 
long short-term memory network 

Self label EEG U-net & LSTM Outperformed state-of -the-art 
methods, highest TAES score in 
Neureka 2020 Epilepsy Challenge 

Xu et al. [24] Self-supervised learning 
method for anomaly detection 

Self label EEG Multi-class classifier using 
self-labeled normal EEG 
data 

Outperformed classic anomaly 
detection methods, AUC of 0.943 

Mardini et al. [25] Machine learning classifiers Self label EEG ANN ANN achieved accuracy of 97.82% 
for detecting epileptic seizures 

Malekzadeh et al. 
[26] 

Preprocessing, feature 
extraction, and classification 
steps 

Tunable-Q Wavelet 
Transform 

CNN–RNN model Accuracy of 99.5% using 10-fold 
cross-validation 

Thangavel et al. [27] Deep learning with ConvNets Various input features, 1D 
ConvNet model 

CNN False detection rate of 0.23/min at 
90% sensitivity, mean EEG 
classification BAC of 78.1% (AUC of 
0.839) 
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Study Methodology Feature Extraction Classification Algorithm Result 

Zubair et al. [28] Dimensionality reduction and 
machine learning 

DWT CatBoost High accuracy with sensitivity of 
98.09%, specificity of 98.69%, and 
false detection rate of 0.24/h 

Shankar et al. [15] Deep learning with CNN Recurrence Plots (RP) 
from EEG signals 

CNN Classification accuracy up to 93% on 
Bonn University and CHB-MIT 
databases 

Christou et al. [30] Evaluating impact of different 
window sizes 

EEG signals BFGS, multistart, modified 
GA, K-NN 

Highest accuracy achieved with 20-
21 seconds window size, multistart 
method reached 81.59% accuracy 

Jiwani et al. [29] Combined CNN and LSTM 
models 

EEG signals CNN and LSTM Maximum accuracy of 100% for 
distinguishing between healthy and 
seizure patients 

 

Table 2. Comparative analysis of sleep disorder studies 
 

Study Methodology Feature Extraction Classification Algorithm Result 

Chambon et al. [10] Deep learning with multivariate 
and multimodal time series 

Time domain feature Deep learning model with 
linear spatial filters and 
softmax classifier 

State-of-the-art performance with 
high sensitivity and specificity in 
detecting sleep stages 

Koushik et al. [31] Deep learning on smartphone, 
time-distributed 1-D deep 
convolutional neural network 

Time domain feature 1-D deep convolutional 
neural network 

83.5% accuracy for five-class sleep 
staging 

Tzimourta et al. [32] Filtering EEG signal, calculating 
energy in sub-bands 

Energy in sub-bands Random Forest, SVM, k-
NN, Decision Tree, 
Na¨ıve Bayes 

Best classification accuracy: 
Random Forest (75.29%) 

Korkalainen et al. 
[33] 

Deep learning-based method, 
single EEG channel, EEG+EOG 

Time domain feature Deep learning 
architecture 

Sleep staging accuracy: 83.7% 
(single EEG channel), 83.9% 
(EEG+EOG) 

Chambon et al. [34] Dreem One Shot Event Detector 
(DOSED), deep learning 
architecture 

Time domain feature DOSED (deep learning 
architecture) 

Outperforms state-of-the-art 
methods in event detection 

Ravan et al. [35] Electroencephalography-based 
machine learning approach, 
decision tree-based multi-class 
support vector machine classifier 

Quantitative features from 
EEG signals 

Support Vector Machine 
(SVM) 

Average classification accuracy of 
94.2% for sleep quality 
measurement 
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Study Methodology Feature Extraction Classification Algorithm Result 

Buettner et al. [36] Machine learning approach for 
sleep disorder diagnosis using 
electroencephalographic data 

Frequency domain feature Random Forest Accuracy of over 90% for classifying 
REM sleep behaviour disorder 

Korkalainen et al. 
[37] 

Deep learning model, PPG data Time domain feature Deep learning 
architecture 

Accuracies: 80.1% (3-stage), 68.5% 
(4-stage), 64.1% (5-stage) 

Jarchi et al. [38] Deep learning, ECG and EMG Entropy & Moments Deep Neural Network 
(DNN) 

Accuracy: 72% in recognizing four 
groups with sleep-related disorders 

Sharma et al. [41] Automated identification of six 
sleep disorders using EEG 
signals 

Ensemble boosted trees 
classifier 

Ensemble boosted trees 
classifier 

Highest accuracy: 91.3% for 
identifying the type of sleep disorder 

Sudhakar et al. [40] Detection of sleep disorders 
using EEG signals and deep 
learning neural networks 

Time domain feature Convolutional Neural 
Network (CNN) 

Accuracy: 93.33% using AlexNet 

Sharma et al. [39] Automated sleep stage 
classification using multi-level 
wavelet decomposition and 
norm-based feature extraction 

Multi-level wavelet 
decomposition and norm-
based feature extraction 

Supervised classifiers Highest accuracy: 92.8% (balanced 
dataset) for sleep stage 
classification 

Fu et al. [42] Deep learning model for sleep 
EEG signals using bidirectional 
recurrent neural network 
encoding and decoding 

Time & Frequency domain 
feature 

Bidirectional Recurrent 
Neural Network (BiRNN) 

Classification accuracy: 70-85% for 
each category 

Leino et al. [43] Accurate automatic sleep staging 
based on ambulatory forehead 
EEG using deep learning models 

Time domain feature Deep learning 
architecture 

Accuracy: 79.7% (5-stage), 84.1% 
(4-stage), 89.1% (3-stage) for sleep 
staging using ambulatory forehead 
EEG 
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Table 3. Comparative analysis of movement disorder diagnosis studies 
 

Study Methodology Feature Extraction Classification Algorithm Result 

Vrbancic et al. [11] Deep Convolutional Neural 
Networks (CNN) 

EEG signals CNN Overall accuracy of 69.23%, 
outperformed traditional methods 

Mumtaz et al. [44] Machine Learning EEG-derived 
synchronization likelihood 
(SL) features 

SVM, LR, NB High accuracy rates achieved for 
Major Depressive Disorder diagnosis 

Vanegas et al. [45] Machine Learning EEG-based biomarkers Extra Tree Classifier 
(ETC) 

Almost perfect classification 
performance for PD diagnosis 

Ruffini et al. [46] Deep Convolutional Neural 
Network (DCNN), Deep 
Recurrent Neural Network (RNN) 

EEG data as 
spectrograms 

DCNN, RNN 80% (±1%) classification accuracy in 
control vs. PD-conversion group 

Dai et al. [47] Convolutional Neural Network 
(CNN), Variational Autoencoder 
(VAE) 

Combined time, 
frequency and channel 
information 

CNN-VAE Outperformed best classification 
method in literature, improved 
accuracy by 3% 

Koch et al. [48] Automated Machine Learning 794 features from EEG 
channels 

Automated computed 
features 

Classification accuracy of 84.0%, 
better performance with automated 
features alone 

Shajil et al. [49] Transfer Learning Pre-trained Convolutional 
Neural Networks (CNNs) 

InceptionV3, AlexNet, 
ResNet50 

InceptionV3 achieved highest 
classification accuracy of 
82.78±4.87% 

Bouallegue et al. [50] Dynamic Filtering, Deep 
Learning 

FIR and IIR filters, Gated-
Recurrent Unit (GRU), 
Convolutional Neural 
Network (CNN) 

GRU, CNN Average accuracy of 100% for 
epilepsy diagnosis, 99.5% for autism 
diagnosis 

Oh et al. [51] Convolutional Neural Network 
(CNN) 

EEG signals CNN Accuracy: 88.25%, Sensitivity: 
84.71%, Specificity: 91.77% 

Abdulwahab et al. 
[52] 

Machine Learning Maximum Overlap 
Discrete Wavelet 
Transform (MODWT) 

SVM, k-NN, Decision 
Tree 

Average accuracy of 98.81% using 
MODWT 

Bashir et al. [53] Deep Learning Raw MRIs DystoniaNet Overall accuracy of 98.8% for 
dystonia diagnosis 

Shaban et al. [16] Deep Learning Resting state EEG data Artificial Neural Networks Accuracy: 98%, Sensitivity: 97%, 
Specificity: 100% 



 
 
 
 

Basak et al.; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 226-249, 2024; Article no.AJRCOS.117108 
 
 

 
241 

 

Study Methodology Feature Extraction Classification Algorithm Result 

Urtnasan et al. [54] Deep Learning ECG signals Deep PLM F1-score: 92%, Accuracy: 88% in 
training group 

Shahini et al. [55] Deep Neural Network Raw EEG data Deep Neural Network Accuracy: 96.9% for two-stage, 
89.8% for three-stage movement 
intentions 

Shaban et al. [56] Deep Convolutional Neural 
Network (CNN) 

Wavelet domain of 
resting-state EEG 

CNN Accuracy: 99.9%, Specificity: 100%, 
Sensitivity: 97% for classifying HC, 
PD with and without medication 

 
Table 4. Comparative analysis of cognitive assessment by EEG 

 

Study Methodology Feature Extraction Classification Algorithm Result 

Almogbel et al. [13] Deep Learning Raw EEG signals End-to-end Deep Neural 
Network model 

High accuracy rate of 95.31% for cognitive 
workload classification without pre-
processing or feature engineering 

Liu et al. [57] Machine Learning EEG recordings Subject-dependent and 
Subject-independent fatigue 
recognition algorithms 

Subject-dependent average accuracy of 
93.45%, Subject-independent average 
accuracy of 39.80% 

Yang et al. [58] Deep Learning EEG signals Ensemble Classifier based on 
Subject-specific Integrated 
Deep Learning Committees 

Subject-specific classification accuracy of 
92% outperforms classical shallow and 
deep classifiers 

Plechawska et al. 
[59] 

Machine Learning EEG spectral data k-Nearest Neighbours (kNN) 
model 

High maximal accuracies achieved, ∼91% 
for validation dataset and cross-validation 
approach 

Almogbel et al. [60] Deep Learning Raw EEG signals End-to-end Deep Neural 
Network model 

Average accuracy of 0.960 for workload 
and context classification, high recall and 
precision scores on raw EEG signals 

Sridhar et al. [61] Deep Learning Brain signal features Bidirectional Long Short-Term 
Memory (BLSTM) Network 

Outperforms conventional deep neural 
networks in detecting Mild Cognitive 
Impairment (MCI) 

Qu et al. [62] Machine Learning EEG data Various machine earning and 
deep learning algorithms 

Different tasks (writing vs. typing) can be 
classified with accuracy up to 70% for 
individual subjects 
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Study Methodology Feature Extraction Classification Algorithm Result 

Siuly et al. [63] Machine Learning EEG data Extreme Learning Machine 
(ELM), Support Vector 
Machine (SVM), K-Nearest 
Neighbours (KNN) 

ELM-based method achieves the highest 
classification accuracy of 98.78% for 
distinguishing MCI from healthy controls 

Geraedts et al. [64] Machine Learning EEG signals ML pipeline High accuracy achieved for differentiating 
Parkinson’s Disease patients based on 
cognitive function 

Gupta et al. [65] Deep Learning EEG-based functional 
connectivity 

Mutual Information (MI), 
Convolutional Neural Network , 
Phase Locking Value (PLV), 
Phase Transfer Entropy (PTE) 

State-of-the-art accuracy of 80.87% for 
cognitive workload classification using 
EEG functional connectivity 

Suchetha et al. [66] Deep Learning EEG signals Sequential Convolutional 
Network (SCN), Multi Branch 
Convolutional Network (MBCN) 

MBCN model outperforms SCN model and 
traditional methods, achieving high 
accuracy, F1-score, p recision, and 
sensitivity 

Jiang et al. [17] Machine Learning EEG, eye tracking, 
neuropsychological 
tests 

Machine learning model Excellent classification performances for 
screening mild cognitive impairment (MCI) 
with potential for prediction 

Longo et al. [67] Deep Learning EEG data Self-supervised deep learning 
techniques 

Good accuracy and generalizability for 
mental workload modelling using a brain 
rate index 

Molcho et al. [68] Machine Learning EEG features Machine learning- based EEG 
features 

The proposed tool demonstrates the ability 
to assess cognitive states and detect 
cognitive decline 
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Table 5. Comparative analysis of brain injury assessment by EEG 
 

Study Methodology Feature Extraction Classification Algorithm Result 

Obukhov et al. [12] EEG-based detection of 
epileptiform activity 

EEG records Wavelet transform, logistic 
regression 

Accuracy of around 80% in 
detecting epileptiform activity 

Amorim et al. [69] EEG reactivity for predicting 
outcomes in hypoxic-ischemic 
brain injury 

EEG reactivity data Random Forest, GLM, expert 
review 

Comparable performance to 
expert EEG reactivity assessment 
for outcome prediction in hypoxic-
ischemic brain injury 

Vishwanath et al. [70] Machine learning for identifying 
biomarkers of TBI 

EEG data, CNNs Convolutional neural networks Accuracy up to 92.03% in 
identifying biomarkers of TBI 

Wang et al. [71] Automated detection of 
Disorders of Consciousness 
(DoC) in brain-injured patients 

EEG signals Power Spectral Density 
Difference (PSDD), SVM 
ensemble 

Highest accuracy of 98.21% in 
detecting DoC and wakefulness in 
brain-injured patients 

Faghihpirayesh et al.  
[72] 

Deep learning for automated 
detection of epileptiform 
activity in TBI patients 

EEG data Recurrent neural network Accuracy of 80.78% in 
automatically identifying 
epileptiform abnormalities in TBI 
patients 

Thara et al. [73] ML prediction of outcomes in 
paediatric traumatic brain injury 
(TBI) 

Clinical and radiologic 
characteristics 

Support Vector Machines, Neural 
Networks, Random Forest, 
Logistic Regression, Naive Bayes, 
k-NN 

High performance in predicting TBI 
outcomes, with support vector 
machines achieving the best 
results 

Di et al.  [74] EEG biomarkers for predicting 
clinical outcome in patients 
with DoC 

EEG biomarkers Machine learning procedure Accuracy of 80%-83.3% in 
predicting clinical outcomes in 
patients with DoC 

Italinna et al. [75] MEG-based detection 
of mild traumatic brain injury 

MEG recordings Support Vector Machine Accuracy of 79% in distinguishing 
mild TBI patients from controls 
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The comparative analysis presents in Table 5 
presents a comprehensive overview of research 
endeavors aimed at utilizing EEG and MEG data 
for assessing brain injuries and predicting clinical 
outcomes. Each study employs distinct 
methodologies, ranging from EEG- based 
detection of epileptiform activity to MEG-based 
identification of mild traumatic brain injury. 
Various feature extraction techniques and 
classification algorithms such as wavelet 
transform, CNNs, and Support Vector Machines 
are utilized, reflecting the diversity in analytical 
approaches. Despite differences in 
methodologies, the results demonstrate 
promising accuracies, with some studies 
achieving accuracies exceeding 90%. These 
findings underscore the potential of EEG and 
MEG data as valuable tools in clinical settings for 
diagnosing brain injuries, monitoring patient 
outcomes, and guiding treatment decisions. 
Additionally, the comparative analysis focuses on 
ongoing advances in machine learning and deep 
learning approaches, which improve the accuracy 
and reliability of brain damage assessment 
methods based on neuroimaging data. 
 

7.1 limitations of the Current Studies 
 
The development of EEG-based diagnostic 
techniques has the potential to completely 
transform clinical procedures in a number of 
areas, such as the diagnosis of movement 
disorders, the categorization of sleep disorders, 
the detection of seizures, cognitive evaluation, 
and the assessment of brain injuries. To 
guarantee these approaches’ effectiveness and 
applicability in actual healthcare settings, a 
number of issues and concerns must be taken 
into account. 

 
• Seizure Identification using EEG 

 
– Difficulty in ensuring model resilience 

across diverse datasets and real-world 
situations. 

– Lack of real-time application, limiting 
immediate therapeutic value. 

– Challenges in model interpretability                     
hinder acceptance by medical  
professionals. 

– Lack of uniformity in assessment measures 
and datasets complicates outcome 
comparison. 

– Computational complexity of deep learning 
models may hinder deployment in 
resource-limited settings. 
 

• Sleep Disorder Classification using EEG 
 
– Limited generalizability across different 

populations and recording settings. 
– Potential oversight of valuable data from 

other modalities like EOG and EMG. 
– Concerns about interpretability of deep 

learning models. 
– Absence of standardized assessment 

measures and datasets complicates 
comparison. 

– Computational cost of deep learning 
approaches may limit practical 
deployment. 
 

• Movement Disorder Diagnosis using EEG 
 
– Difficulty in extrapolating results to larger 

and more diverse populations. 
– Potential overlook of supplementary 

information from other modalities. 
– Interpretability concerns with deep learning 

models. 
– Lack of standardized assessment 

measures and datasets hampers 
comparison. 

– Computational complexity of deep 
learning models may restrict practical 
deployment. 
 

• Cognitive Assessment using EEG 
 

– Small sample sizes limit generalizability. 
– Inconsistent methodologies across studies 

hinder replication and comparison. 
– Focus on offline EEG analysis may not 

capture naturalistic cognitive processes. 
– Interpretability issues with deep learning 

models. 
– Need for more clinical trials to confirm 

practicality and therapeutic value. 
 

• Brain Injury Assessment using EEG 
 

– Limited reliability and generalizability due to 
small sample sizes. 

– Inconsistency in preprocessing 
methodologies and feature extraction 
strategies. 

– Interpretability concerns with deep learning 
and machine learning models. 

– Focus on offline EEG analysis may 
not capture real-time brain injury 
progression. 

– Need for standardized procedures and 
improved model interpretability for 
practical deployment. 
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8. CONCLUSION 
 
The comparative analyses conducted                
amongst various neuroimaging research 
demonstrate the noteworthy advancements 
achieved in the application of deep learning and 
machine learning approaches to neurological 
diagnoses. This research demonstrates the 
adaptability and efficacy of sophisticated 
computational approaches in identifying 
significant patterns from complicated 
neuroimaging data, ranging from seizure 
detection to cognitive evaluation and brain 
damage prediction. When combined with 
creative feature extraction techniques and 
reliable classification algorithms, the                  
impressive performance of deep learning models 
highlights how automated diagnostic                    
systems have the potential to completely 
transform clinical practice. However, in order to 
fully achieve this promise, more work                       
must be done to integrate multimodal 
neuroimaging data, test and standardize these 
approaches across a variety of datasets, and 
resolve issues with regulatory approval and 
interpretability. 
 

9. FUTURE DIRECTIVES 
 
Future prospects for neuroimaging-                          
based diagnostics research are bright and varied. 
The development of novel approaches for early 
detection and personalized treatment                   
planning, the improvement of current diagnostic 
tools, and the investigation of the synergies 
between various modalities to obtain a deeper 
understanding of neurological disorders are all 
made possible by the advancements in 
machine learning and deep learning 
techniques. As technology advances, increasing 
emphasis is being placed on ethical 
considerations, ensuring that algorithmic 
decision-making is transparent and egalitarian, 
and fostering multidisciplinary collaborations to 
bridge the knowledge gap between 
computational neuroscience and clinical practice. 
Through the utilisation of computational 
techniques and neuroimaging data, a new age of 
precision medicine may be ushered in, 
characterised by patient care that is optimised 
and personalized due to insights gained from the 
intricate workings of the human brain. 
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