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ABSTRACT 
 

Agriculture is becoming more integrated in the agro-food chain and the global market, while 
environmental, food safety and quality are also increasingly impacting on the sector. It is facing with 
new challenges to meet growing demands for food, to be internationally competitive and to produce 
agricultural products of high quality. To cope with these challenges, Agriculture requires a 
continuous and sustainable increase in productivity and efficiency on all levels of agricultural 
production, while resources like water, energy, fertilizers etc. need to be used carefully and 
efficiently in order to protect and maintain the soil quality and environment. Consequently, 
Agriculture needs help in handling the complexity, uncertainty and fuzziness inherent in this 
domain. It requires new solutions for all aspects of agricultural farming, including precision farming 
and optimized resource application. Artificial Intelligence (AI) technology helps various industries to 
improve production and productivity. In agriculture, AI also allows farmers to increase their 
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productivity and reduce negative environmental impacts. AI is changing the way our food is 
processed, where emissions from the agricultural sector have decreased by 20%. Together with 
precision agriculture (PA) and other emerging technologies, artificial intelligence (AI) can play a key 
role in modernizing agricultural practices and achieving the goal of improving the productivity of 
alternative arable cropping systems. In offering progressive change with advanced approaches, 
AI's future in agriculture is well ahead. The aim of this paper is to review various agricultural 
intelligence applications and to reduce the use of colossal amounts of chemicals with the aid of 
these technologies, resulting in reduced spending, improved soil fertility and increased productivity. 
With AI tools and machine learning, farmers can improve yields, protect their crops and have a 
much more reliable source of food. 
 

 
Keywords: Precision agriculture; smart farming; crop monitoring; water management; soil 

management. 
 

1. INTRODUCTION 
 
In current and future climate scenarios the 
resilience and productivity of agricultural systems 
will be increasingly jeopardized [1]. Furthermore, 
population growth trends, expected to reach 8.7 
billion by 2030 and 9.7 billion by 2050 will further 
strain food production systems worldwide, which 
so far have not been able to keep pace [2]. 
Currently, about 37.7 percent of the total land 
area is used for the cultivation of crops. 
Agriculture is significant, from generating jobs to 
contributing to national income. It contributes a 
large portion to the nation's economic growth and 
also plays an important role in the country's 
economy. Increased agriculture has resulted in a 
substantial rise in the rural community's per 
capita income. Therefore, it would be fair and 
fitting to put greater focus on the agricultural 
sector. The agricultural sector accounts for 18 
percent of GDP in India and provides 50 percent 
of the country's population with jobs. Progress in 
the agricultural sector would fuel rural 
development, contributing further to rural 
transformation and ultimately to systemic change 
[3,4]. 
 

Within this changing context, crops face a 
threefold obstacle: management-derived 
challenges as well as increased pressure from 
abiotic and biotic stressors. Thus, the application 
of all available advanced technologies towards 
managing crop variability and maintaining or 
improving yields and reducing negative impacts 
on environmental quality, namely advancements 
in precision agriculture [5] is central to 
approaching these issues. There has been a 
drastic shift in many industries across the globe 
with the advent of technology [6]. Surprisingly, 
agriculture has seen traction for the 
advancement and commercialization of agricul 
tural technology, despite being the least digitised.  

In everyday life, artificial intelligence (AI) has 
started to play a major role, expanding our 
perceptions and ability to alter the world around 
us [7,8,9]. The labour force, which was limited to 
a small manufacturing field, is now contributing to 
various industries with these new technologies. 
As new scientific fields have emerged, agri-
technology and precision farming, now also 
known as digital agriculture, use data-driven 
approaches to drive agricultural production while 
minimising its effect on the environment. A 
number of different sensors provide the data 
produced in modern agricultural operations, 
enabling a better understanding of the operating 
environment and the process itself, leading to 
more detailed and faster decision-making. 

 
In the agricultural sector, Artificial Intelligence 
(AI) is an emerging technology. AI-based 
equipment and machinery took the agricultural 
system today to a new level. This technology has 
increased crop production and enhanced 
tracking, harvesting, processing and marketing in 
real time (Yanh et al., 2007). In the agro-based 
market, the new developments for automated 
systems using agricultural robots and drones 
have made a considerable contribution. Different 
hi-tech computer-based systems are designed to 
recognise various important parameters such as 
weed detection, crop quality and yield detection 
and many other techniques [10]. This review 
paper covers the automated irrigation, weeding 
and spraying technologies used by farmers to 
increase production and decrease the workload. 
Hemalatha and Sujatha [11] placed temperature 
and moisture sensors together to close the loop 
holes of the vehicle predictions. The robots used 
in sensing were located by GPS modules and the 
position of these robots was tracked using 
Google maps. The information from the           
robots was obtained with the aid of the Zigbee 
wireless protocol. The new automated weeding 
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techniques are discussed, followed by the types 
of sprayers used on UAVs, and the deployment 
of drones for the purpose of spraying in the 
fields. In addition, talking about drones, yield 
mapping and monitoring is built starting with an 
overview of the yield mapping processes, 
followed by software programming and briefing 
on the measurement and calibration process, 
and finally the processing of these yield maps is 
illuminated. 

 
2. METHODOLOGY 
 
The systematic literature review related to the 
topic concerned, were collected and studied for 
gathering the concepts and research findings in 
support of this study. 

 
2.1 The Prospects of AI in Indian 

Agricultural Ecosystem  
 
The major sub-areas of AI with immense 
potential for solving a complex problem include 
natural language processing (NLP), robotic 
technology, maschine training (ML), automatic 
reasoning, information representation, computer 
vision, speaking comprehension, automated 
interpretation, virtual reality, Augmented Facts, 
IoT (Internet of Things), cloud computing, 
statistical computing, deep learning, etc. AI-
based technologies help to increase productivity 
in all fields and also manage the challenges 
faced by different levels, including the different 
fields in the agricultural sector, such as crop 
yield, irrigation, crop tracking, weeding, planting 
[12]. In order to provide a highly valued 
application of AI in the sector mentioned, 
agricultural robots are created. The agricultural 
sector is facing a crisis with the global population 
soaring, but AI has the ability to provide a much-
needed solution. Technological solutions based 
on AI have allowed farmers to produce more 
production with less input and even improve 
output quality, also ensuring faster market entry 
for the crops produced. An average of 4.1 million 
data points are expected to be produced by the 
average farm every day by 2050. In agriculture, 
AI machines have great potential to provide 
farmers with information on soil quality, when to 
plant, where to spray herbicides, and where to 
anticipate insect infestations. Therefore, if AI 
systems were able to advise farmers on best 
practises, India could see a revolution in 
agriculture. However, with factors such as 
capacity expansion and cost reduction in mind, 
such a futuristic scenario has a daunting 

challenge of scaling it up to encompass the 
entire value chain. 
 
Agriculture would definitely benefit greatly from 
AI applications, for sure. AI can be used to build 
intelligent systems that are embedded in 
computers that can run with greater precision 
and speed than humans and be sensitive like 
humans at the same time. AI can be the great 
enabler of precision farming along with the 
Internet of Things (IoT) and Sensor Technology. 
In the large scale implementation of Climate 
Smart Agriculture, AI can also play a critical role 
along with remote sensing technology. Some of 
the AI techniques, such as Mobile-based 
Recommender Systems and Expert Systems, 
can dramatically increase the rate of adoption of 
agricultural technologies such as high yielding or 
disease-resistant varieties, thus helping to 
increase the income of farmers. The paradigm 
shift from location-based advisory services to 
customised and context-specific advisory for the 
millions of farmers in our country can also be 
enabled by these AI techniques. 
 

Precision farming area where we can take 
advantage of AI and help farmers optimise their 
space, to be more specific about crop types, 
weather patterns, and when and where we 
should go to raise crops. In agriculture, the best 
thing AI can do is to escape drudgery and tedium 
from many agricultural operations so that we can 
put our time and resources into much better 
ways of seeking a variety of innovative AI 
technologies to exceed human capabilities. 
 

2.2 Vocational Skills  
 
Panpatte [13] revealed that artificial intelligence 
enables farmers to collect large quantities of 
government and public website data, analyse all 
of it, and provide farmers with solutions to many 
ambiguous problems, as well as providing us 
with a smarter way of irrigating, resulting in 
higher farmers' yields. In the near future, farming 
will be a combination of technical as well as 
biological abilities due to artificial intelligence, 
which will not only act as a better outcome for all 
farmers in terms of efficiency, but also reduce 
their losses and workloads. Agricultural AI can be 
used to automate multiple procedures, reduce 
risks, and provide farmers with reasonably 
simple and productive farming. 
 
Manivannan and Priyadharshini [14] also found 
that robotics has played a significant role in the 
development and management of agriculture. 
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The researchers have now begun to emphasise 
technologies for the design of autonomous 
agricultural instruments because productivity was 
lacking in traditional farming machinery. In this 
field, the room for robotic technology has 
significantly improved efficiency [15]. The robots 
autonomously carry out various agricultural 
operations, such as weeding, irrigation, farm 
guarding for efficient reporting, ensuring that 
adverse environmental conditions do not impact 
production, improving accuracy, and handling 
individual plants in various unfamiliar ways. 
 

Griepentrog et al. [16] noted that Robotics and 
Autonomous Systems (RAS) replaced the laser 
weeding technology with the manual weeding 
procedure, where a mobile centred infra-red light 
disrupts the cells of the weeds, computer-
controlled this beam. Automated irrigation 
systems were also developed for the efficient use 
of water. Automatic irrigation scheduling 
strategies were replaced by manual irrigation that 
was based on soil water measure. 
 

2.3 Yield Prediction 
 

For yield mapping, yield estimation, matching 
crop supply with demand, and crop management 
to improve productivity, yield prediction, one of 
the most important topics in precision agriculture, 
is of high importance. For a more precise 
prediction, the established method used satellite 
imagery and obtained crop growth characteristics 
fused with soil data. A method for detecting 
tomatoes based on EM and remotely sensed red 
green blue (RGB) images captured by an 
unmanned aerial vehicle (UAV) was proposed by 
Senthilnath et al. [17]. Su et al. [18] developed a 
technique based on SVM and basic geographic 
information obtained from weather stations in 
China for the rice production process prediction. 
Finally, another study proposed a generalised 
approach for forecasting agricultural yields [19]. 
The method is based on the application of 
ensemble neural networks (ENN) on agronomic 
data generated for a long period (1997-2014). 
The study addresses regional forecasts based on 
helping farmers to avoid market supply and 
demand imbalances induced or accelerated by 
crop quality. 
 

2.4 Weed Detection 
 

Another critical issue in agriculture is weed 
identification and control. Many farmers refer to 
weeds as the most significant threat to the 
production of crops. For sustainable agriculture, 
accurate identification of weeds is of high 

importance, as weeds are difficult to identify and 
discriminate against crops. Again, in conjunction 
with sensors, ML algorithms can lead to precise 
detection and discrimination of low-cost weeds 
without environmental concerns and side effects. 
ML for weed detection can allow instruments and 
robots to be established to kill weeds, minimising 
the need for herbicides. 
 

Pantazi et al. [20] also found that a new 
approach for the identification of Silybum 
marianum, a weed that is difficult to eradicate 
and causes significant losses in crop yield, is 
based on counter propagation (CP)-ANN and 
multispectral images taken by unmanned aircraft 
systems (UAS). In the second research, Pantazi 
et al. [21] developed a new technique for crop 
and weed species identification based on ML 
techniques and hyperspectral imaging. More 
specifically, the authors built an active learning 
method to recognise maize (Zea mays) as a crop 
plant species and as weed species, Ranunculus 
repens, Cirsium arvense, Sinapis arvensis, 
Stellaria media, Tarraxacum officinale, Poa 
annua, Polygonum persicaria, Urtica dioica, 
Oxalis europaea, and Medicago lupulina. Precise 
identification and discrimination of these species 
for economic and environmental reasons was the 
main objective. 
 

Hagras et al. [22] have shown that autonomous 
mobile robots are also instruments used for 
various tasks in precision agriculture, as shown 
in (Fig. 1). Most autonomous robots have 
sensors for input information which is then 
processed by the control unit. The robot control 
system may be based on fuzzy logic. Robots can 
be used for inspection and treatment of plants by 
inbuilt gripper systems and eye-hand systems 
[23]. 
 

Waheed et al. [24] investigated the potential of 
hyperspectral remote sensing data to             
provide better crop management information. 
Hyperspectral Image processing can be used for 
all kinds of new and efficient agriculture purposes 
[25] such as leaf nitrogen accumulation, nitrogen 
deficiency, and invasive weed species. 
 

2.5 Maximize the Output 
 

Ferguson et al. [26] concluded that the optimum 
production standard for all plants is set by variety 
selection and seed quality. Emerging 
technologies have led to the best variety of crops 
and have also increased the option of hybrid 
seed choices that are best suited to the needs of 
farmers. By understanding how the seeds 
respond to different weather conditions, different 
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soil types, it has been implemented. The 
chances of plant diseases are lowered by 
gathering this knowledge. We are now able to 
meet industry dynamics, annual results and 
customer needs, so farmers are able to optimise 
the return on crops effectively. 
 
Aqeel-ur-Rehman et al. [27] reviewed WSN 
technology and their applications in different 
aspects of agriculture, the need of wireless 
sensors in agriculture and reported existing 
system frameworks in the agriculture domain. 
Keshtgari and Deljoo [28] used Wireless Sensor 
Networks (WSNs) for precision agriculture in 
2011. WSN are usually used for collecting, 
storing and sharing sensed data. The outcome 
was a drastic reduction in cost and improved 
quality agricultural production and precision 
irrigation on combining applications of precision 
agriculture and WSN. Hakkim et al. [29], 
concluded that an increase economic returns as 
well as reduce the energy input and 
environmental impacts of agriculture through 
precision farming. Tools and equipment used 
were Global Positioning System (GPS), sensor 

technologies, geographic information system 
(GIS), grid soil sampling and variable- rate 
fertilizer (VRT) application, crop management, 
soil and plant sensors, rate controllers, precision 
irrigation and in pressurized systems, software, 
yield monitor and precision farming on arable 
land, precision farming within the fruits, 
vegetables and viticulture sectors. 
 
A device comprising five sensors, i.e. ultrasonic 
distance sensors, thermal infrared radiometers, 
NDVI sensors, portable spectrometers, and RGB 
web cameras for high-throughput phenotyping in 
plant breeding was shown by Bai et al. [30]. 
These multiple sensors were used to measure 
crop canopy characteristics from the field  plot, 
GPS was used to geo-refer the sensor 
measurements and two environmental sensors 
(a solar radiation sensor and air 
temperature/relative humidity sensor) were 
integrated to collect simultaneous environmental 
data. In the field tests, the results obtained from 
the soybean and wheat fields using the 
performance of the sensor system were 
satisfactory and robust. 

 

 
 

Fig. 1. Autonomous mobile robots that are used in precision farming. Fig. (a) Robotic 
Phenotypin [31]; (b) Agricultural robot [32]; (c) Strawberry harvesting Robot [33];  

(d) Autonomous Robot (e) Robotic Apple Harvester [34]; (f) Autonomous Agriculture Robot 
“Vinebot” [35]; (g) Agriculture Robot Use in Field [36]; (h) Weed Removing Robot [37];  
(i) Autonomous Agriculture Robot “BoniRob” [38]; (j) Agricultual Vehicle Robot [39];  

(k) Agriculture Robot [40]; (l) Agriculture spraying robot [41] 
 



 
 
 
 

Naresh et al.; CJAST, 39(48): 96-110, 2020; Article no.CJAST.64959 
 
 

 
101 

 

Kuska et al. [42] also found that hyperspectral 
imaging and non-imaging sensors are alternative 
useful instruments that can be used to collect 
data on both the quantitative and qualitative 
dimensions of plant resistance. Four different 
kinds of hyperspectral sensor technologies are 
available: push broom scanner, whisk broom 
scanner, filter-based sensor and non-imaging 
sensor and each one of these technologies have 
their advantages based on application. They may 
be applied for the phenotyping of disease 
resistance in crops [43]. Another platform is 
tower- based phenotyping [44]. An architecture 
that consists of a combination of two platforms: 
an autonomous ground vehicle (Vinobot) and a 
mobile observation tower (Vinoculer) [45]. This 
system is advantageous in the sense that the 
ground vehicle could collect data from individual 
plants, while the observation tower could provide 
an overview of an entire field, identifying specific 
plants for further inspection by the Vinobot the 
different platforms are depicted in Fig. 2.  
 
Under three conditions, Liu et al. [46] examined 
crop phenotyping. The first was in managed 
conditions, for example, green houses or 
specially built platforms, using high-throughput 
phenotyping techniques. RGB, 3D laser 
scanning, multi and hyper spectral imaging, 
fluorescent sensing, and thermal IR cameras are 
some of the sensing techniques for high 
throughput phenotyping. Li DAR (Light Detection 
and Ranging) is an alternative technology for 
remote sensing capable of accurately acquiring 
three-dimensional (3D) data. It has its potential in 
application to crop Phenotyping and has been 
successfully used for 3D high-throughput crop 
phenotyping [47]. 
 
The second was under a semi-controlled 
environment such as lodge, drought and disease 
resistance by phenotypic reinforcement test. The 
third approach was multi-environmental traits 
(MET) in unregulated environments; crop plants 
are treated according to farmers' cultural 
practises. Research on methods and tools for 
test design and analysis, phenotypic acquisition 
and management to help the establishment of a 
reliable MET crop cultivar system, to enhance 
testing performance and reliability, as well as to 
reduce the risk of selection and introduction of 
cultivars, has therefore been concluded to be 
urgent. 
 
Paez-Garcia et al. [48] aimed to improve root 
traits and phenotyping strategies. The idea of a 
combination of phenotypic root screening 

approaches was proposed which ultimately 
focused on higher yields in rain-fed systems by 
establishing a relation between young root 
systems for rapid root screening in the laboratory 
or greenhouse. The proposed strategies here 
can help to incorporate “root breeding” which 
would result in sustainable agricultural systems 
worldwide. 
 

2.6 Irrigation 
 
Almost 85% of the available freshwater 
resources worldwide are used by the agricultural 
industry. And with population growth and the rise 
in food demand, this percentage is increasingly 
growing. This leaves us with the need to come 
up with more effective technologies to ensure 
that irrigation water supplies are properly used. 
Automatic irrigation scheduling methods have 
been substituted for manual irrigation based on 
soil water measurement. During the 
implementation of autonomous irrigation 
machines, plant evapotranspiration, which 
depended on different atmospheric parameters 
such as humidity, wind speed, solar radiation and 
even crop factors such as the stage of growth, 
plant density, soil properties and pests, was 
taken into consideration. 
 
Kumar [49] stated that the various irrigation 
techniques were primarily intended to establish a 
system with reduced use of resources and 
improved production. In order to assess the 
fertility of the soil by detecting the percentage of 
the primary soil ingredients, instruments such as 
the fertility metre and the PH metre are set up on 
the field. By means of wireless technology for 
drip irrigation, automatic plant irrigators are 
planted on the ground. This technique preserves 
the fertility of the soil and ensures that water 
supplies are used efficiently. 
 

Shekhar et al. [50] also found that by detecting 
the amount of water, soil temperature, nutrient 
content and weather forecasting, smart irrigation 
technology is built to increase productivity 
without the intervention of large numbers of 
human power. By turning the irrigator pump 
ON/OF, the actuation is carried out according to 
the microcontroller. The M2M, Machine to 
Machine technology, is designed to enable 
communication and sharing of data with each 
other and to the server or cloud via the main 
network between all agricultural nodes. 
 
Automated Irrigation System: Water wastage is 
one of the main disadvantages of traditional
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Fig. 2. Different sensor platforms for crop phenotyping: (a) robotic field platform [51]  
(b) Robotic platform [45], (c) Ground based platform [52] (d) Robotic platform with artificial 

vision [53], (e) Ground based platform [54] (f) Robotic platform [55] (g) Robotic based platform 
[56] (h) UAV platform [57] (i) Robotic platform [58] (j) Robotic platform [59] (k) Robotic platform 

[60] (l) Robotic platform [61] 
 

irrigation systems. A sensor-based smart 
irrigation system for efficient water use has been 
developed by many businesses with the aid of 
advanced technology. In this system, soil 
moisture and temperature sensors interact 
directly with embedded components on the field 
and take care of required water distribution 
among crops without farmer’s interaction. This 
system helps maintain the desired soil and      
the optimum water range for plant growth in the 
root zone. Jha et al. [62] have also developed an 
automated irrigation system with Arduino 
technology to decrease human power and time 
consumption in the irrigation process. The 
concept of an effective and automated irrigation 
system was also created by Savitha and       
Uma Maheshwari [63] by developing remote 
sensors using Arduino's technology that can 
increase output by up to 40 percent. One of the 
many technologies used to measure the      
quality of soil moisture is used by soil moisture 
sensors. It is buried near the crop root areas [64]. 
The sensors assist in assessing the         
moisture level accurately and relay this reading 
to the irrigation controller. Sensors for soil 

moisture also help to substantially conserve 
water [65]. 
 

2.7 6 Main Areas Where Agriculture Can 
Benefit From AI 

 
2.7.1 Io T-driven Development 
 
Every day, huge data volumes are produced via IoT 
in both structured and unstructured formats (internet 
of things). These concern historical pattern     
details, soil reports, new research, rainfall, plague, 
drone, camera images, etc. All this knowledge can 
be sensed by Cognitive IOT solutions and provide 
clear insights to maximise yield. 
 
2.7.2 Measuring the soil 
 
Proximity Sensing and Remote Sensing are two 
technologies that characterise intelligent data 
fusion. Soil testing is one useful example of this 
high-resolution data. Although remote sensing 
needs sensors to be installed into airborne or 
satellite systems, soil-contact or very close-range 
sensors are needed for proximity sensing. This 
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assists in soil characterization in a specific location 
depending on the soil below the surface. 

 
2.7.3 Generation of image-based insight 

 
Drone-based images can assist in in-depth field 
research, tracking crops, field scanning, and so on. 
To ensure quick action by farmers, they can be 
paired with computer vision technology and IOT. 
These feeds will produce weather warnings for 
farmers in real time. 

 
2.7.4 Crop disease detection 
 
Using Computer Vision Technology under 
white/UV-A light, images of different crops are 
captured. Before sending it to the market, farmers 
may then organise the product into different stacks. 
Image pre-processing ensures that the leaf images 
are segmented for further diagnosis into regions. 
Such a system can more distinctly classify pests. 
 

2.7.5 Optimal blend of agricultural products 
 
Cognitive computing allows recommendations to 
farmers on the simplest choice of crops and seeds 
based on multiple parameters such as soil 
condition, weather outlook, type of seeds, 

infestation around a certain area. The advice is 
further customised based on the farm's demand, 
local circumstances, and past achievements. 
External variables may also be taken into account 
by artificial intelligence, such as industry dynamics, 
costs or customer needs. 
 

2.7.6 Plant health monitoring 

 
In order to build crop metrics across thousands of 
acres, remote sensing techniques alongside hyper 
spectral imaging and 3D laser scanning are 
necessary. It could usher in a groundbreaking shift 
in terms of how farmers track croplands in terms of 
time and resources. This technology will monitor 
crops during their entire life-cycle and produce 
reports, if any, to detect anomalies. 
 
An AI-sowing app was created by ICRISAT. The 
app is powered by Intelligence Suite and Power 
Business Intelligence from Microsoft Cortana. The 
Cortana Intelligence Suite includes technology 
which, by translating it into readily actionable forms, 
helps to increase the value of data. Using this 
technology, the app will more accurately forecast 
and inform local farmers on when they should plant 
their seeds by using weather models and data on 
local crop yield and rainfall. 

 

 
 

 
 

Chart 1. Flow chart showing how the app helps farmer to increase yield 
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2.8 Improving Crop Productivity  
 

Climate change has resulted in outdated 
conventional agricultural know-how, especially in 
predicting weather patterns that decide seasonal 
farming practises. For farmers, the use of 
predictive analysis with the assistance of AI 
could be extremely helpful. It could help to 
identify suitable crops for growing on productive 
terrain in a favourable climate and sowing 
technique to increase productivity and lower 
costs. 
 

2.9 Soil Quality Monitoring  
 

Soil health, consisting of a sufficient level of 
moisture and nutrients, is the secret to achieving 
the best yield, along with favourable weather 
conditions. To take corrective measures to 
restore soil health, distributed soil monitoring 
performed through image recognition and deep 
learning models can be used. Historical monsoon 
data, local farm snapshots, crop-output 
information, soil health history, and more serve 
as inputs for the development of AI models. 
These models provide essential farmland 
information, assist farmers in planning activities 
related to soil regeneration, crop development, 
watering of farms, etc. 
 

2.10 Water Management 
 

Efficient agricultural water management can 
have a major effect on the looming issue of water 
scarcity. Using thermal imaging cameras that 
continuously track whether crops are getting 
enough water, the use of water in agriculture can 
be optimised. When used in agriculture, AI, 
combined with appropriate image classification 
models, can result in improved yield 
performance, reduced manual involvement, and 
decreased instances of crop disease. 
 

2.11 Weather Data Forecasted 
 

In an advanced way, AI helps farmers stay up-to-
date with weather forecasting info. The projected 
data allows farmers to increase yields and 
income without risking the crop. By 
understanding and learning with AI, the analysis 
of the produced data allows the farmer to take 
precautions. By enforcing such procedure, a 
smart decision can be made on time. 
 

2.12 Crop and Soil Quality Monitoring 
 

The use of AI is an important way of performing 
or tracking the detection of potential soil defects 

and nutrient deficiencies. AI detects potential 
faults with the image recognition method by 
images collected by the camera. Analysis of flora 
patterns in agriculture is developed with the aid 
of Al deep learning framework. In understanding 
soil defects, plant pests, and diseases, these AI-
enabled applications are helpful. 
 

2.13 Diminish the Use of Pesticides 
 
By integrating computer vision, robotics, and 
machine learning, farmers may use AI to control 
weeds. With the aid of the AI, information is 
collected to keep a check on the weed that only 
allows farmers to spray chemicals where the 
weeds are. This directly decreased the use of an 
entire field for chemical spraying. As a 
consequence, AI decreases the use of herbicides 
in the field compared to the amount of chemicals 
usually sprayed. 
 
2.14 AI Bots for Agriculture 
 
AI-enabled agricultural bots help farmers find 
ways to protect their crops from weeds more 
effectively. This also helps to solve the difficulty 
of labour. In the agricultural sector, AI bots can 
harvest plants more frequently and at a faster 
pace than workers. It assists in monitoring and 
spraying the weed with computer vision. Farmers 
can also find effective ways of defending their 
crops against weeds by using artificial 
intelligence. 

 
A vision-based technology for weed detection in 
natural lighting was developed by Tang et al. 
[66]. Using hereditary calculation to distinguish a 
locale for the detection of open air field weeds in 
Hue-Saturation-Intensity (HSI) shading space 
(GAHSI) was developed. It uses outrageous 
conditions such as radiant and shady, and these 
lightning conditions were mosaiced to discover 
the possibility of using GAHSI when these two 
boundaries are shown at the same time to find 
the position or areas in the field in shading 
space. They came about as the GAHSI gave 
evidence of the existence and severability of 
such a site. By comparing the GAHSI-portioned 
image and a comparable hand-sectioned 
reference image, the GAHSI execution was 
calculated. In this, comparable output was 
obtained by the GAHSI. It was suggested by 
Nørremark and Griepentrog [67] that weeding 
depends on the location and the number of 
weeds. By breaking the soil and the interface of 
roots by tillage, classical spring or duck foot tines 
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were used to conduct intra row weeding and thus 
encourage the witling of the weeds. Nakai and 
Yamada [68] revealed that, in the case of uneven 
fields in rice cultivation, the use of agricultural 
robots for the suppression of weeds and the 
creation of methods of regulating the postures of 
robots. 
 

2.15 Spraying of Crops 
 
Spoorthi et al. [69] also discovered that the 
UAVS, otherwise referred to as drones, is mainly 
focused on the inventions of sensors and 
microcontrollers, which are built especially with 
the aim of compensating for the pilot's non-
attendance and thus enabling unmanned 
vehicles to move and their independent actions. 
These drones have been used by farmers as 
material sprayers for many years now and are 
regarded as reliable and of great importance in 
cloudy climate situations and have also solved 
the issue of inaccessibility to a tall crop area [70]. 
Giles et al. [71] retrofitted an air-carrier plantation 
sprayer with a sprayer control system based on 
microcomputers. In view of the ultrasonic range 
transducers, a foliage volume estimation system 
was interfaced with a PC that controlled the 3-
nozzle manifolds on each side of the sprayer by 
using control calculations based on the amount 
of spray deposited. 
 

A low-volume sprayer for an unmanned 
helicopter was constructed by Huang and Reddy 
[72]. The helicopter used in this investigation has 
a maximum rotor length of 3 m and a maximum 
weight of 22.7 kg. For about 45 minutes, there 
was one gallon of gas involved. This 
methodology and the systematic findings of this 
methodology provide a precursor that could be 

used to build UAV flying application frameworks 
for higher yields with a higher target rate and 
greater droplet size for VMD. On planes M-18B 
and Thrush 510G, Zhang et al. [73] assessed 
good swath width and bead circulation of 
aeronautical showering frameworks. The 
powerful swath width and consistency of the 
droplet dispersion of two agricultural planes, M-
18B and Thrush 510G, which flew separately at 5 
m and 4 m tall, were evaluated in this test. The 
outcome of this analysis indicates that for both 
the farming planes, the flight stature induces the 
swath width distinction. The sprayer is the one 
that crumbles the sprayed liquid, which may be a 
suspension, an emulsion or a response into tiny 
drops, and starts it properly with negligible power 
to circulate it [74] [Fig. 3]. 
 
2.16 Crop Monitoring 
 
Farms use technologies to grow crops 
increasingly, from task-tracking systems that 
control watering and seeding to drones that 
capture aerial images. There is an estimation 
that the world will need to produce 50% more 
food by 2050 due to increase in the population. 
Based on the report, the most common 
agricultural AI applications fall into three major 
categories. 

 
2.17 Agricultural Robots 
 
Companies design and programmed 
autonomous robots to perform critical agricultural 
tasks at a higher volume and faster speed than 
humans, such as weed control, planting seeds, 
harvesting, environmental monitoring and soil 
analysis. 

 

 
 

Fig. 3. Types of agricultural drones  
Source: modern agriculture drones [75] 
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2.18 Crop and Soil Monitoring  
 
To detect potential defects and nutrient 
shortages in the soil, businesses invest in 
computer vision and deep learning algorithms to 
process data collected by drones or by software-
based technology. 
 

2.19 Predictive Analytics 
 
Machine learning models are designed to control 
and forecast different environmental effects on 
crop yields, such as weather and climate change. 
 

The advanced sensors and imaging capabilities 
have created many new ways for farmers to 
improve yields and decrease crop damage. The 
feasibility of using a continuous kinematic (RTK) 
global situating system (GPS) to subsequently 
delineate the region of transplanted column 
crops was demonstrated by Sun et al. [76]. For 
field transplant mapping while planting, a 
transplant transplant for positive situation 
vegetable harvest, with RTK GPS receiver, plant, 
trend and odometry sensors and an on-board 
data lumberjack was used. Field test results 
showed that the mean error between the plant 
map areas anticipated by the planting data and 
the missed areas in the wake of planting was 2 
cm, with 95% of the plant areas anticipated being 
within 5.1 cm of their real areas. In order to direct 
soil and harvest for precision cultivation 
applications, Sonaa et al. [77] showed a multi-
spectral UAV overview. Agriculture has been 
addressing major problems such as lack of 
irrigation system, climate rise, groundwater 
density, food shortage and waste and much 
more. To a huge extent, the fate of cultivation 
depends on the acceptance of different cognitive 
solutions. Although research on a large scale is 
still ongoing and some applications are already 
available on the market, the industry is still highly 
underserved [78]. Farming is still at a nascent 
stage when it comes to handling practical 
problems faced by farmers and using automated 
decision making and predictive solutions to 
address them. Applications need to be more 
robust in order to explore the vast scope of AI in 
agriculture. 

 
3. CONCLUSIONS 
 
Farm management systems are transforming into 
real artificial intelligence systems by applying 
machine learning to sensor data, offering richer 
recommendations and observations for 
subsequent decisions and behaviour with the 

ultimate reach of improvement in output. In 
future, the use of Machine Learning (ML) models 
is expected to be much broader for this purpose, 
which will allow for integrated and applicable 
tools. Currently, both approaches concern 
individual approaches and strategies and are not 
sufficiently linked to the decision making process 
as seen in other fields of application. 

 
This incorporation of automated data recording, 
data processing, implementation of ML, and 
decision-making or support would provide 
realistic fees that are compatible with so-called 
knowledge-based agriculture to increase 
production levels and the quality of bio-products. 
With the assistance of GPS, various AI-driven 
techniques such as remote sensors for soil 
moisture content detection and automatic 
irrigation can be enhanced. The issue faced by 
farmers was that during the weeding process, 
precision weeding techniques resolve the large 
number of crops that are lost. These autonomous 
robots not only increase performance, they also 
reduce the need for pesticides and herbicides 
that are unnecessary. In addition, with the help of 
drones, farmers can spray pesticides and 
herbicides effectively on their farms, and plant 
monitoring is also no longer a burden. 

 
Agricultural industries face problems such as 
crop yields, soil and plant health, and artificial 
intelligence-driven technology can be used to 
combat weeds. Efficiency can also be 
significantly enhanced with the help of available 
equipment. Artificial intelligence in agriculture 
can also, to a large degree, solve problems such 
as resource scarcity as well as labour. Traditional 
techniques require work to acquire crop features 
such as plant height, leaf colour, leaf area index, 
chlorophyll content, biomass, and time-
consuming yield. Using various techniques, rapid 
and non-destructive high-performance 
phenotyping will take place with the benefit of 
versatile and convenient service, data access on 
demand and spatial resolution. 

 
The use of AI technology can help to forecast 
weather and other agricultural conditions, such 
as soil quality, groundwater, crop cycle, and 
identification of plant diseases, which are critical 
issues. However, agriculture cannot be totally 
dependent on AI as they cannot work outside of 
what they were programmed for. Also, farmers 
especially in rural areas lack the technical 
knowhow and awareness about the existence of 
such technologies. As more awareness is 
created and technologies become accessible to 
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the average farmer, there is a future where 
agriculture can be semi-autonomous with 
artificial intelligence leading the way. 
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