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Abstract 

 
The Weibull-inverse exponential-loglogistic distribution which is abbreviated as (Weibull-IE-loglogistc) is a 

member of the neotric T- inverse exponential family introduced previously by the authors. Properties of this 

distribution such as (mode, quantile function, median, hazard function, survival function, moments, order 

statistics and Shannon’s entropy) are derived, and maximum likelihood estimates of its parameters are 

obtained. The usefulness of this neoteric distribution in analyzing data is illustrated. A simulation study is 

conducted to evaluate the performance of this distribution. 

 

 

Keywords: Quantile function; Shannon's entropy; T-IE family; T-X[Y]; Weibull-inverse exponential 

[loglogistic] distribution. 
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1 Introduction 

 
Processes generating data are becoming complex and complicated resulting in data that are diversified in all 

aspects and shapes. This diversification in data requires new statistical distribution to accommodate this 

continuous diversification in data. The number of new families of distributions introduced in the literature since 

the 1980’s is overwhelming. However, it does not meet all the requirements for this invasion of data types. To 

get a better fit for data analysis, many researchers have recently expressed an interest in expanding the 

generating family. Some of the well-known generating families are; 

 

 beta-G, [1] used the beta distribution as a generator function. The cumulative distribution function cdf of 

the beta generated distribution is defined as; 

   
 
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,
                                                                                                                 (1)

                    

 

where, F is the cdf of any random variable, say X, and  b  is the pdf of beta distirbution. The pdf of beta 

generated distribution is given by; 
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where,   ,B  is the beta function. To produce beta distributions, several researchers used various F in (2). 

 

 Kumaraswamy-G [2] and [3] used Kumaraswamy distribution as a generator function instead of beta 

distribution. 

 The transformed transformers family (T-X family) [4], which enables the use of any continuous pdf as a 

generator instead of beta or Kumaraswamy distribution, was proposed as a general technique for 

producing families of distributions. This technique is based on three functions   ,and,, WFR  with R 

and F serving as the cdfs of two random variables   .and XT   W  is a real value function from 

 1,0  into the support of T. The cdf and pdf of T-X family of distributions is given as, respectively; 

   
  
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xFW

c

dttrxG

 

    ,xFWR
                                                                                            (3) 

 

where, R is the cdf of the generated random variable T and r is the pdf of T. 
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                                                                                                   (4) 

 Marshal-Oklin Weibull generated family introduced by [5] based on combining Marshal-Oklin 

transformation with T-X family. 

 T-X[Y] family of distributions [6] have been proposed. Substituting the quantile function of a random 

variable Y for  W  in the T-X family. The T-X[Y] approach is based on 3 functions      ,       and 

Q(Y), with       and       serving as the cdfs of two random variables T and X, Q(Y) is the quantile 

function of some variable Y . The cdf and pdf of T-X[Y] family of distributions is provided respectively 

as; 

 

              
         

 
                                                                                                       (5) 

 

And 
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                                                                                                                       (6) 

 

Several new distributions have been suggested by many researchers and statisticians; among them the beta-

Gumbel [7], the beta- generalized Pareto [8], the gamma-Pareto distribution [9], the exponentiated generalized 

class of distributions [10], the exponentiated Kumaraswamy distribution [11], the Pareto-Weibull [generalized 

lambda] distribution [12], the Lomax-Gumbel Fréchet distribution [13], the Weibull-Lomax [log-logistic] 

distribution [14], the inverse power logistic exponential [15], the logistic-exponential [16], the Weibull-

exponential [17], have been proposed. 

 

Mahmoud et al. [18] used the  YXT -  approach to form the T-inverse exponential  Y    YIET -  family of 

distributions, with X following the inverse exponential distribution. Substituting       [cdf of variable X ] and 

      [pdf of variable X] in Equation (5) and (6) by the cdf of inverse exponential distribution and pdf of 

inverse exponential distribution. The cdf and pdf  of T-IE[Y] family of distributions are given by; 

 

              
    

  
 
  

 
         

  
 

                                                                                             (7) 

 

And 

 

      
 

  
   

 

  
       

  
 
   

       
  
 
   

                                                                                                                  (8) 

 

A new three parameter distribution based on the  YIET -  family will be studied in this article. The rest of the 

paper is settled out accordingly; In Section 2 a neoteric distribution is presented. In Section 3 some basic 

characteristics of Weibull-IE-loglogistc distribution are studied. In Section 4 the estimation of parameters is 

investigated by maximum likelihood method. In Section 5 Weibull-IE-loglogistic application along with other 

distributions are fitted to a real data. Simulation study is performed in Section 6. Section 7 ends with some 

concluding remarks on our study. 

 

2 A Neoteric Distribution 

 
We will display in here the formation of the cdf for Weibull-IE-loglogistic. Also, the pdf, survival function and 

hazard function are derived. In addition, plots of all of those functions at specific values of the parameters are 

displayed. The distribution function of Weibull-IE-loglogistic distribution cdf  0for z  is given by;  
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where   is scale parameter and  ,  are shape parameters. The associated probability denisty function pdf can 

be written as follow; 
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Fig. 1. Weibull- IE -loglogistic distribution cdfs for different parameter values 

 

 
 

Fig. 2. Weibull- IE -loglogistic distribution pdfs for different parameter values 

 

The survival function and hazard function are provided as; 
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and
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Fig. 3. Weibull- IE -loglogistic distribution hazard function for different parameter values 
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Plots of the cdf, pdf and hazard function for some values of  ,  and   are given in Figs. 1-3 respectivly. The 

hazard function can be monotonically decreasing, increasing or an upside-down bathtub depending on the values 

of its parameters. 

 

3 Basic Statistical Characteristics 

 
Several general properties are found in this section concerning Weibull-IE-loglogistc distribution, including 

quantile function, median, skewness, kurtosis, mode, Shannon entropy, moments and order statistics. 
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3.1 Median 

 

The median of the Weibull-IE-loglogistic distribution computation can be made by puting 5.0u  in  uQ z  

(Equation (13)) as follow: 
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                                                                                              (14) 

 

3.2 Skewness and Kurtosis 

 
Quartile function can be used as an alternative to moments if one does not have enough information about the 

mean, mode, and standard deviation to compute skweness and kurtosis (see [19]). The Bowley skewness  BS  

and Moors kurtosis  MK  definitions are given as; 
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where,  Q  denotes the quantile function. Skweness and kurtosis for Weibull-IE-loglogistic distribution are 

calculated for ,1  ,1  and ,2  the result of skweness and kurtosis are; 229207.0BS  and 

.30617.1MK
 

 

3.3 Shannon’s entropy 

 
Entropy is a widely used term as a measure of uncertainty in social science. Thus, in this section, Shannon’s 

entropy  x  for a random variable X with PDF  xf  will be formed as    .ln xfEx   Weibull-IE-

loglogistic distribution Shannon’s entropy is obtained as; 
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       









z
EzEz

1
ln2lnln      .

1

1ln1




































z

z
z

e

e
EeE

   (15) 

 

 
 

Fig. 4. Weibull-IE-loglogistic distribution skewness 

 

 
 

Fig. 5. Weibull-IE-loglogistic distribution kurtosis 
 

3.4 Mode 

 
Mahmoud et al. [18] obtained an equation to get the mode of the T-IE [log-logistic] sub family, which is; 
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where  Tf  is the pdf of a random variable T, and in this paper the variable T follows Weibull distribution. 

Therefore, the mode of Weibull-IE-loglogistic distribution is the solution of this Equation; 
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3.5 Order statistics 

 
If      nZZZ  21  denote the ordered observations in a data set from Weibull-IE-loglogistic 

distribution given by equation (8) and equation (9), then the PDF  zg
nrv :

 of the ith order statistic  iz  is; 
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Applying Equation 9, and 10 in Equation 17, then we have the pdf of Weibull-IE-loglogistic distribution order 

statistics; 
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3.6 Moments 

 
Moments are important to know the characteristics of a distribution. We derived the moments of a random 

variable z which has the Weibull-IE-loglogistic distribution. 

 

Applying [18] moments formula for T-IE[log-logistic] subfamily, the Weibull-IE-loglogistic distribution 

moments can be formed as follow; 
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where ijP ,  is a constant and can be computed like that; 
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4 Estimation of Weibull-IE-LogLogistic Parameters 

 
In this section the maximum likelihood method is used to obtain the unknown parameters of Weibull-IE-

loglogistic distribution based on complete samples. Let nzzz ...,,, 21  be a random sample from pdf (10) with 

set of parameters   .,,   The likelihood function, denoted by   ,; zL  is given by; 
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The natural logarithm of the likelihood function denoted by   ,,;ln zL  is given by; 
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The maximum likelihood estimate ̂  of   is obtained by solving the system 
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The resulting equations above can not be solved analytically, so we usually use some software’s like 

Mathematica to solve them numerically. 

 

The information matrix is given by 
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The common used formula for Fisher information matrix is what is usually referred to as the observed Fisher 

information given by 
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we can use equation (26) to make interval estimation of the distribution parameters. 

 

Table 1. AIC, HQC, BIC and Log-likelihood measures for the data 

 

Distribution AIC HQC BIC Log-likelihood 

Weibull-IE-LogLogistic 128.629 126.410 133.208 –61.314 

Fréchet 137.240 135.021 141.819 –65.619 

Inverse power logistic exponential 137.240 135.021 141.819 –65.619 

Weibull-Lomax-loglogistic 133.800 131.581 138.379 –63.900 

Weibull-exponential 135.800 132.841 141.905 –63.900 

Logistic-exponential 131.800 130.321 134.853 –63.900 

 

5 An Application 

 
In this section, the usefulness of Weibull-IE-loglogistic distribution for modelling reliability data is illustrated. 

The flexibility of Weibull-IE-loglogistic is clarified by the use of a real data set. 34 observations of vinyl 

chloride data in mg/L obtained from clean up gradient ground-water monitoring wells provided by [20] is used. 

A differentiation is made between Weibull-IE-loglogistic distribution and a number of other distributions such 

as (inverse power logistic exponential [15], Weibull-exponential [17], logistic-exponential [16], Weibull-

Lomaxloglogistic) [14], and Fréchet) using Akaike information criterion (AIC), Hannan-Quinn information 

criterion (HQIC), Bayesian information criterion (BIC), and loglikelihood value. The better model, on the other 

hand, has the lowest loglikelihood, AIC, HQIC and BIC values. Distribution parameters are estimated using the 

maximum likelihood estimation method.  

 

Table 1 includes the values of AIC, HQIC, BIC and log-likelihood. The figures in Table 1 show that among the 

listed models, the Weibull-IE-loglogistic distribution is the most closely matches data. The results in this section 

are obtained using the Mathematica 12 program. 
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Table 2. Results of the Weibull-IE-loglogistic simulation using MLE for a few values of  ,  and   

 

 Acutal value   mean   RBias   RMSE  

ß 
   n ß 

   ß 
   ß 

   

   50 31.880 4.567 31.960 0.601 0.7716 0.7710 0.085 0.109 12 0.109 13 

80 20 140 70 36.539 5.830 40.800 0.543 0.7084 0.7085 0.064 0.084 68 0.084 69 

   100 40.926 7.108 49.751 0.488 0.6445 0.6446 0.048 0.06445 0.064 46 

   50 31.918 2.288 17.148 0.601 0.771 0.771 0.084 0.109 06 0.109 08 

80 10 75 70 36.610 2.924 21.927 0.542 0.707 0.707 0.064 0.084 56 0.084 57 

   100 41.304 3.611 27.079 0.483 0.6388 0.6389 0.048 0.063 88 0.063 89 

   50 25.059 1.936 11.609 0.642 0.8063 0.8065 0.090 0.11403 0.11405 

70 10 60 70 29.069 2.552 15.307 0.584 0.7447 0.7448 0.069 0.089 01 0.089 02 

   100 32.976 3.170 19.015 0.528 0.6829 0.6830 0.052 0.068 29 0.068 30 

   50 25.585 2.036 10.175 0.634 0.7963 0.7964 0.089 0.11262 0.11264 

70 10 50 70 28.688 2.494 12.468 0.590 0.7505 0.7506 0.070 0.089 70 0.089 71 

   100 32.856 3.150 15.748 0.530 0.6849 0.6850 0.053 0.068 49 0.068 50 

   50 18.577 1.589 7.940 0.690 0.8410 0.8411 0.097 0.11894 0.11896 

60 10 50 70 21.592 2.088 10.439 0.640 0.7911 0.7912 0.076 0.094 55 0.094 56 

   100 24.884 2.651 13.253. 0.585 0.7348 0.7349 0.058 0.073 48 0.073 49 

   50 12.661 1.237 6.181 0.746 0.8762 0.8763 0.105 0.123 92 0.123 93 

50 10 50 70 14.857 1.616 8.079 0.702 0.8383 0.8384 0.084 0.100 19 0.100 20 

   100 17.417 2.094 10.467 0.651 0.7905 0.7906 0.065 0.079 05 0.079 06 

   50 6.591 0.700 3.500 0.835 0.9299 0.9299 0.118 0.13151 0.131 52 

40 10 50 70 8.217 0.988 4.940 0.749 0.9011 0.9012 0.094 0.107 70 0.10771 

   100 10.284 1.398 6.989 0.742 0.8601 0.8602 0.074 0.086 81 0.086 02 

   50 6.757 2.116 3.526 0.831 0.9294 0.9295 0.117 0.131 44 0.131 45 

40 30 50 70 8.564 3.162 5.269 0.785 0.8945 0.8946 0.093 0.106 92 0.106 93 

   100 10.811 4.534 7.556 0.729 0.8487 0.8488 0.072 0.084 87 0.084 88 
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Fig. 6. The dataset's histogram and fitted PDFs 
 

6 A Simulation Study 
 

A simulation study is carried out to assess the performance of the MLEs of the Weibull-IE-loglogistic 

distribution. The process is carried out as follow: 

 

 The process is replicated one hundered times each with sample size 70,50n  and 100 from equation 

(9). 

 Initial values for the parameters are selected as shown in Table 2. 

 Compute the MLEs for the one hundered samples, say   ˆ,ˆ,ˆ  for .100...,,2,1i  

 

The figures in Table 2 shows that, the absolute value of relative bias (RBias) and the root of mean square error 

(RMSE) decreases as the sample size increases. The actual values for  ,  and   ,75,10,80  respectively, 

has the lowest RBias and RMSE values for sample size 50, 70 and 100. The RBais and RMSE values for sample 

size 50 are considered suitable to be used. 

 

7 Summary and Conclusion 
 
The three-parameter Weibull-IE-loglogistic distribution is defined in this paper as a member of the T-IE family 

of distributions. A number of properties are introduced, such as mode, quantile function, median, hazard 

function, survival function, moments, order statistics, and Shannon’s entropy. The parameters of the new 

distribution were estimated using the maximum likelihood method using a real data set and a numerical 

simulation study. The Weibull-IE-logistic distribution provides a better fit for the real data used in the study 

than the inverse power logistic exponential, Weibull-exponential, logistic-exponential, Weibull-Lomax-

loglogistic, and Fréchet distributions. 
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