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Voltage-gated sodium channels (NaV) are the main contributors to action

potential generation and essential players in establishing neuronal excitability.

NaV channels have been widely studied in pain pathologies, including those

that develop during diabetes. Diabetic sensory neuropathy (DSN) is one of

the most common complications of the disease. DSN is the result of sensory

nerve damage by the hyperglycemic state, resulting in a number of debilitating

symptoms that have a significant negative impact in the quality of life of

diabetic patients. Among those symptoms are tingling and numbness of hands

and feet, as well as exacerbated pain responses to noxious and non-noxious

stimuli. DSN is also a major contributor to the development of diabetic foot,

which may lead to lower limb amputations in long-term diabetic patients.

Unfortunately, current treatments fail to reverse or successfully manage DSN.

In the current review we provide an updated report on NaV channels including

structure/function and contribution to DSN. Furthermore, we summarize

current research on the therapeutic potential of targeting NaV channels in

pain pathologies, including DSN.

KEYWORDS

diabetic neuropathy (painful), Nav channels, modulation, therapeutics, sensory
neurons

Introduction

Diabetic neuropathies are amongst the most common chronic complications of
diabetes, affecting approximately 50–60% of diabetic patients (Boulton et al., 2005; Zakin
et al., 2019). Neuropathy results from diabetes-induced damage to peripheral nerves,
and up to 30% of those patients develop a sensory form of neuropathy (diabetic sensory
neuropathy or DSN) (Boulton et al., 2005; Tesfaye et al., 2013). DSN can present with
a wide spectrum of clinical symptoms from tingling, numbness, weakness, and sensory
loss, to exacerbated pain perception (Callaghan et al., 2012; Kobayashi and Zochodne,
2018). Patients suffering from DSN can display one or more types of stimulus-evoked
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pain, such as exacerbated responses to noxious (hyperalgesia) or
innocuous (allodynia) stimuli (Hong et al., 2004; Tesfaye et al.,
2010). DSN involves sensory abnormalities that most commonly
manifest in a symmetrical “stocking-and-glove” distribution,
being experienced in the distal extremities (e.g., hands and
feet) and progresses proximally towards the torso over the
course of diabetes (Callaghan et al., 2012). Consequently, DSN
patients are at a higher risk of developing “diabetic foot,”
a condition characterized by the development of unhealing
foot ulcers, which can eventually contribute to lower limb
amputations (Callaghan et al., 2012; Kobayashi and Zochodne,
2018). Ultimately, pathological damage to the peripheral
nerves in DSN is debilitating, resulting in a considerable
reduction in patient quality of life. Despite a strong relationship
between blood glucose levels and neuropathy, the underlying
mechanisms contributing to the pathology of DSN remain
unclear. Unfortunately, no therapeutic strategy has succeeded in
halting, reversing or preventing the development of DSN (Dyck
et al., 1999; Callaghan et al., 2012; Kobayashi and Zochodne,
2018).

Some symptoms characteristic of DSN, such as numbness
and hyposensitivity, are usually associated with long-standing
diabetes and the progressive degeneration of peripheral nerves
and loss peripheral innervation (Chantelau, 2015). Although
painful symptoms are also consequence of nerve damage
and inflammation, they have been linked to biochemical
changes affecting membrane proteins and signaling pathways
in sensory neurons. Amongst the many proteins that may
contribute to the development and/or progression of DSN,
voltage-gated sodium channels (NaV ) have been particularly
considered. NaV channels are essential for the initiation and
propagation of action potentials, and thus, are responsible
for electrical signaling (Bagal et al., 2015). Activation of
NaV channels carry the increase in sodium conductance
during action potentials, allowing the movement of sodium
ions down their electrochemical gradient and into the cell
following local depolarization (Catterall, 1992; De Lera Ruiz and
Kraus, 2015). This large influx of sodium ions causes further
depolarization, which activates more NaV channels triggering
a positive feedback leading ultimately to the rising phase of
the action potential (Chong and Ruben, 2008). Various NaV

channels participate in pain perception, which has made them
subjects of extensive investigation into the pathophysiology of
pain, including their contribution to pain symptoms in DSN
(Dib-Hajj et al., 2010).

NaV function is intimately linked to
channel structure and tissue
distribution

NaV channels are heteromeric complexes composed of a
pore-forming α subunit and at least one associated β subunit

(Bagal et al., 2015; O’Malley and Isom, 2015). The α subunit
family members (NaV 1.1 - 1.9) are highly homologous in amino
acid sequence and display tissue specificity throughout the body
(De Lera Ruiz and Kraus, 2015). They are encoded by the
genes SCN1A-SCN5A and SCN8A-SCN11A (Hoeijmakers et al.,
2015). These subunits are large single polypeptide chains of
approximately 260 kDa, composed of 4 homologous domains
each containing a voltage sensor, a pore region, and a selectivity
filter (De Lera Ruiz and Kraus, 2015).

NaV channels are commonly characterized by their
differential sensitivity to tetrodotoxin (TTX), NaV 1.1–1.4, 1.6,
and 1.7 are inhibited by this toxin with an IC50 in the low
nanomolar concentration range, and thus are considered TTX-
sensitive (TTX-S) (Baer et al., 1976; De Lera Ruiz and Kraus,
2015). TTX-S channels carry faster activating and inactivating
currents (Wang et al., 2011; Yin et al., 2016). Meanwhile, NaV

1.5, 1.8, and 1.9 are inhibited by TTX with an IC50 in the
micromolar range, and hence are considered as TTX-resistant
(TTX-R) (Baer et al., 1976; De Lera Ruiz and Kraus, 2015). TTX-
R currents show slower activation and inactivation kinetics
(Wang et al., 2011; Yin et al., 2016). NaV 1.1 and 1.3 are expressed
in both the central (CNS) and the peripheral (PNS) nervous
systems (Cummins and Rush, 2007; Bagal et al., 2015). NaV 1.1
expression in peripheral dorsal root ganglion (DRG) neurons is
high in large-diameter neurons, moderate in medium-diameter
neurons, and low in small diameter neurons. A small portion
of NaV 1.1-positive neurons co-express isolectin B4 (IB4), a
marker for nociceptive neurons, suggesting this isoform may
play some role in pain transmission (Wang et al., 2011). NaV 1.3
expression in DRGs is highest in the embryonic period of
development, and downregulates postnatally (Cummins and
Rush, 2007; Bennett et al., 2019). NaV 1.2, on the other hand,
is highly expressed in the CNS. It is predominantly found
in dendrites, unmyelinated axons, and pre-myelinated axons
(Wang et al., 2011) predominantly in the embryonic period
(Wang et al., 2011; Bennett et al., 2019). Other NaV subunits
are almost exclusively expressed in embryonic muscle (Bennett
et al., 2019), NaV 1.4 in skeletal (Cummins and Rush, 2007) and
Nav 1.5 in the cardiac muscle (Rogers et al., 2006; Cummins and
Rush, 2007).

The rest of the NaV isoforms (Nav 1.6–1.9) are expressed
within the DRGs and play important roles in nociception (Rush
et al., 2007; Chen et al., 2018). NaV 1.6 expression in DRG,
as well as in motor neurons, is preferentially targeted to the
nodes of Ranvier in myelinated fibers and along unmyelinated
C- fiber (Wittmack et al., 2005; Bennett et al., 2019). Nav1.7
is the most expressed TTX-S isoform, mostly found in small
diameter Aδ and C-fibers (Black et al., 1996; Toledo-Aral
et al., 1997; Berta et al., 2008; Dib-Hajj et al., 2010, 2013; Ho
and O’Leary, 2011), including 85% of functionally identified
nociceptors (Djouhri et al., 2003). Nav1.8 and Nav1.9, are
also highly expressed in nociceptive neurons (Akopian et al.,
1997; Dib-Hajj et al., 1998; Bennett et al., 2019). NaV 1.8
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is the major contributor to the rising phase of the action
potential; carrying 80–90% of the inward sodium current
during the upstroke of the action potential (Renganathan et al.,
2001), and its ability to rapidly recover from inactivation
allows for repetitive, high frequency firing (Waxman, 2012).
NaV 1.9 is almost exclusively expressed in the PNS (Cummins
and Rush, 2007), particularly in C-fiber nociceptors and
with moderated expression in medium diameter (Aδ-fibers)
and low in large diameter (Aβ-fibers) (Rogers et al., 2006;
Priest and Kaczorowski, 2007). NaV 1.9 contribute to the
amplification of subthreshold inputs, but do not contribute
to the upstroke or amplitude of the action potential (Bennett
et al., 2019). These are considered threshold channels due
to their activation at hyperpolarized potentials (near the
resting membrane potential), where other NaV channels remain
inactive (De Lera Ruiz and Kraus, 2015; Bennett et al.,
2019).

Most NaV channels contain associated β subunits; although
they were traditionally considered as “auxiliary,” growing
evidence suggests they are critical for channel function. The β

subunits promote channel trafficking (Schmidt and Catterall,
1986; Chen et al., 2002), and modulate channel biophysical
properties (Calhoun and Isom, 2014). The 4 known β subunits
(β1- β4) (Qin et al., 2003; Brackenbury and Isom, 2011) are
encoded by genes SCN1B-SCN4B. Mutations in these genes,
as well as changes in expression levels, have been linked to
the development of many isoform-specific pathologies such as
epilepsy, Huntington’s disease, cardiac arrhythmias, and various
neuropathies (Meadows et al., 2002; Lucas et al., 2005; Oyama
et al., 2006; Medeiros-Domingo et al., 2007; Brackenbury and
Isom, 2011; Alsaloum et al., 2019). These subunits have a
much smaller molecular weights than their α counterparts (30–
40 kDa, Priest and Kaczorowski, 2007), and are members of
the immunoglobulin superfamily of cell adhesion molecules
(De Lera Ruiz and Kraus, 2015). β1 and β3 noncovalently
bind to the α-subunit, while β2 and β4 covalently attach to
the α-subunit via disulfide bonds (Namadurai et al., 2015).
The immunoglobulin domain modulates expression and gating
properties of α subunits, while the transmembrane domain
influences their voltage dependence (Rogers et al., 2006; De Lera
Ruiz and Kraus, 2015). β subunits are found in the CNS, PNS,
heart, and skeletal muscle (excepting β2) (Isom et al., 1992;
Brackenbury and Isom, 2011). β1 and β4 can modulate channel
kinetics by enhancing the rate of inactivation and recovery from
inactivation (Namadurai et al., 2015). β4 is the promoter of the
resurgent current, which flows through channels that reopen in
response to negative voltage changes due to the decay of the
macroscopic sodium current, but when the inactivation gates
have yet to close (Raman and Bean, 1997). In contrast, β3
is mostly expressed in heart muscle (Brackenbury and Isom,
2011) and has been linked to cardiac arrhythmias and cardiac
conduction problems (O’Malley and Isom, 2015).

Contribution of NaV channels to
diabetic sensory neuropathy

The induction of experimental diabetes in rodents using
streptozotocin (STZ), a pancreatic β-cell-specific cytotoxin,
results in hyperglycemia due to lack of insulin production (Islam
and Loots, 2009). STZ-induced diabetic animals develop painful
neuropathy accompanied by a typical increase in NaV 1.3, 1.6,
and 1.7 expression (Cummins et al., 1998, 2001; Herzog et al.,
2003; Hong et al., 2004) and DRG neuron hyperexcitability
(Hirade et al., 1999). The pivotal role of NaV 1.7 in nociception
(Black et al., 1996; Toledo-Aral et al., 1997; Berta et al., 2008;
Ho and O’Leary, 2011; Dib-Hajj et al., 2013) has been well
documented, particularly by the effects of mutations. While
gain-of-function mutations in the NaV 1.7 subunit lead to
hereditary pain disorders, such as primary erythromelalgia,
paroxysmal extreme pain disorder and small fiber neuralgia
(De Lera Ruiz and Kraus, 2015; Tibbs et al., 2016), loss-of-
function mutations lead to congenital insensitivity to pain (De
Lera Ruiz and Kraus, 2015). In the DRG of diabetic rodents,
Nav1.7 channel expression increased robustly and triggered
evoked pain symptoms of thermal hyperalgesia and mechanical
allodynia (Hong et al., 2004). Consistently, symptoms of
thermal hyperalgesia and mechanical allodynia in these animals
were attenuated by the miRNA-mediated knockdown of the
Nav1.7 α subunit (Chattopadhyay et al., 2012). Furthermore,
electrophysiological studies in DRG neurons from diabetic rats
revealed that the TTX-S current showed an increased current
density, a negatively shifted voltage-dependent activation, and
delayed inactivation kinetics (Hong and Wiley, 2006). The latter
are consistent with expression and function changes reported
in NaV 1.7, which is the predominant TTX-S isoform expressed
in DRG neurons (Black et al., 1996; Toledo-Aral et al., 1997;
Berta et al., 2008; Ho and O’Leary, 2011; Dib-Hajj et al.,
2013).

Isoforms NaV 1.2, 1.3, and 1.9 are upregulated in the DRG
of STZ-induced diabetic rats (Hong and Wiley, 2006). The
detection of NaV 1.2 and 1.3 in adult diabetic rodents contrasts
with physiological expression levels of these subunits, since
they are normally higher in embryonic neurons (Cummins
and Rush, 2007; Wang et al., 2011; Bennett et al., 2019).
The latter suggest that the diabetic environment triggers a
pathological resurgence in the expression of these embryonic
channels. It has been reported that NaV 1.3 is upregulated
in the adult spinal cord of rats after peripheral nerve injury
(Black et al., 2004; Cummins and Rush, 2007) and in the DRG
after axotomy (Hains et al., 2003). And more importantly, the
knockdown of NaV 1.3 expression successfully reduced evoked
tactile allodynia and hyperexcitability in the dorsal horn neurons
of STZ-induced diabetic rats (Tan et al., 2015). These findings
suggest that NaV 1.3 could be a suitable therapeutic target in the
treatment of DSN.
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Contrasting with other NaV s, the expression levels of
NaV 1.6 and 1.8 decreased in DRG homogenates from diabetic
rats (Hong et al., 2004). Although the mechanisms for this
downregulation is still unclear, it has been reported that
reactive oxygen species (ROS) reduced NaV 1.8 peak current
in DRG neurons (Schink et al., 2016). This finding is
consistent with the well documented generation of ROS in
diabetes from mitochondria as well as by enzymatic and
non-enzymatic glucose oxidation, and constitute the most
explored hypothesis for the effects of diabetes on the nervous
system (Russell et al., 2002; Vincent et al., 2005; Tomlinson and
Gardiner, 2008; Campanucci et al., 2010; Chandna et al., 2015;
Lam et al., 2018; Momeni et al., 2021).

Much less, however, is known about the possible
contribution of β subunits to DSN. Genetic analysis of the
β2 subunit gene from a diabetic patient, who presented
symptoms of painful neuropathy, revealed a gain-of-function
mutation of an aspartic acid substituted by asparagine
mutation, D109N. This point mutation lead to DRG neuron
hyperexcitability (Alsaloum et al., 2019). These findings
were in line with the increase in β2 subunit expression
in neuropathic pain models of injured and uninjured
DRG neurons (Pertin et al., 2005), highlighting this
subunit as a potential player in the development of varied
pain pathologies.

The therapeutic potential of NaV
channels

Table 1 summarizes the current knowledge on approved
therapeutic strategies for DSN targetting NaV channels, as
well as mechanisms with the potential to modulate NaV

function in DSN. Tricyclic antidepressants (TCAs), such as
amitriptyline, imipramine, nortriptyline, and duloxetine, are
Food and Drug Administration (FDA) approved drugs that
are effective for the treatment of painful forms of DSN
(Berger et al., 2005). A recent report (Horishita et al., 2017)
demonstrate that the analgesic effects of some of these drugs
in neuropathic pain pathology is mediated by the inhibition
of NaV channels. Particularly, they strongly inhibited NaV 1.7,
and NaV 1.8 in DRG, as well as upregulated NaV 1.3 in the
DRG of models of peripheral nerve injury (Lindia et al.,
2005; Fukuoka et al., 2008). These drugs also inhibited,
but in a weaker fashion, NaV channels highly expressed
in the CNS, such as NaV 1.6 and NaV 1.2 (Horishita et al.,
2017). Another therapeutic approach, not first considered as
targeting NaV channels, is the pungent ingredient in “hot”
chili peppers, capsaicin. Capsaicin is an agonist of the transient
receptor potential vanilloid 1 (TRPV1), a non-selective cation
channel (Caterina et al., 1997). TRPV1 plays a central role
in pain transduction, and its inhibition alleviates thermal

hyperalgesia and mechanical allodynia in animal models of
peripheral nerve injury (Walker et al., 2003; Kasama et al.,
2007; Sugimoto et al., 2013). Interestingly, capsaicin can also
induce analgesia. In fact, the topical application of capsaicin
has been used for the treatment of localized pain (Deal
et al., 1991; Hersh et al., 1994; Gratton and Cusson, 1995;
Winocur et al., 2000; Melis et al., 2019), and the use of
capsaicin as a therapeutic approach for diabetic patients with
symptoms of painful neuropathy has been recently reviewed by
Dludla et al. (2022). It is well accepted that repeated exposure
to capsaicin induces a calcium-mediated desensitization of
TRPV1 channels (Jancsó et al., 1967; Hains et al., 2003).
However, the analgesic effects of capsaicin are mediated in
part by the inhibition of NaV channels through second
messengers, such as cAMP (Liu et al., 2001). Although, the
identity of the specific NaV isoforms modulated by capsaicin
remain to be explored. Another approach targetting NaV

channels in DSN is the use of the antithrombotic agent
cilostazol (Cheng et al., 2022). The interest on cilostazol
for DSN symptoms stems from its known protection of
human endothelial cells via activation of ERK1/2 and p38
MAPKs (MAPK) (Lim et al., 2009), and neuroprotection in
animal models of cerebral ischemia (Iwama et al., 2007).
When tested on diabetic rats, oral administration of cilostazol
successfully decreased withdrawal threshold to mechanical
stimuli and attenuated neuropathic pain symptoms. More
importantly, it reduced expression levels of multiple NaV

channels (NaV 1.1, 1.2, 1.6, and 1.7); and restored expression
levels of NaV 1.8, which was markedly reduced in STZ rats.
The anticonvulsant gabapentin, has also been testes to treat
DSN. Gabapentin induced analgesia in STZ-induced diabetic
rats, it successfully reverted mechanical allodynia and thermal
hyperalgesia in these animals, which correlated with reduced
expression of the NaV 1.7 isoform and phosphorylated ERK1/2
in DRG neurons (Zhang et al., 2013). Similar findings come
from pioglitazone, a proliferator-activated receptors (PPARs)
agonist usually prescribed to type 2 diabetic patients, and
ranolazine, an adjuvant in chronic angina medication (Elkholy
et al., 2020). Both drugs successfully reverted symptoms of
mechanical allodynia and thermal hyperalgesia in type 2
diabetic rats. Furthermore, these drugs individually reduced the
expression levels of NaV 1.7 in DRG neurons to control levels
(Elkholy et al., 2020).

Targeting signaling kinases such as those from the mitogen-
activated protein kinase (MAP) and protein kinase (PK) families
in the context of DSN, is supported by reports highlighting
their role regulating NaV expression and function in other
pain pathologies. For instance, in human painful neuromas,
multiple NaV isoforms (NaV 1.1 - 1.3, NaV 1.6 - 1.9) co-
localized with the activated MAPKs p38 and extracellular
signal-regulated kinases 1 and 2 (ERK1/2), suggesting these
signaling proteins could potentially modulate NaV channel
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TABLE 1 Modulation of NaV expression and channel function as treatment for DSN.

Effect DSN Findings Citation DOI or PMID

FDA drugs
TCAs Analgesia Y Stronger inhibition of DRG Nav1.3,

Nav1.7, and Nav1.8 in DRG, and weaker
inhibition of Nav1.2 and Nav1.2 in
Xenopus oocytes.

Horishita et al., 2017 10.1007/s00210-017-1424-x.

Capsaicin Analgesia Y cAMP-mediated inhibition of Nav
channel isoforms

Liu et al., 2001 10.1152/jn.2001.85.2.745

Cilostazol Analgesia Y In diabetic rats it decreased evoked pain
symptoms. Downregulation of Nav1.1,
1.2, 1.6 and 1.7; and restored expression
levels of Nav1.8, which was
downregulated in STZ rats.

Cheng et al., 2022 10.3389/FPHAR.2021.771271

Gabapentin Analgesia Y In STZ rats, it reverted evoked pain
symptoms and downregulated Nav1.7
and p-ERK1/2 in DRG neurons.

Zhang et al., 2013 10.1016/J.BRAINRES.2012.11.032

Ranolazine and
Pioglitazone

Analgesia Y Reversion of evoked pain symptoms in
T2D rats. Reduction of sciatic TNF-α and
1L-1b, and downregulation of Nav1.7
channels. Upregulation of PPAR-γ in
spinal cord.

Elkholy et al., 2020 10.1016/J.LFS.2020.117557

Kinases
p38 MAPK Increase N& Enhancement of TTX-R currents in

DRG, and increased Nav1.7 conductance.
Jin and Gereau, 2006; Black
et al., 2008; Nemoto et al., 2010

10.1523/JNEUROSCI.3858-05.2006;
10.1002/ANA.21527;
10.1016/J.EJPHAR.2010.04.048

p38, ERK1/2, JNK
MAPKs

Increase N& TNF-α mediated increase of TTX-R
currents, mostly Nav1.8 in DRG neurons
from a model of femoral artery occlusion.

Li et al., 2020 10.1152/AJPREGU.00338.2019

TNF-α and
p-NFκB

Increase Y Nav1.7 in the DRG on STZ-induced
diabetes

Huang et al., 2014 10.1016/J.NEUINT.2014.05.012

p38 MAPK and
PKC

Reduction Y δ-opioid receptor activation led to
reduced phosphorylation of p38 MAPK
and PKC and prevented Nav1.7
upregulation.

Chattopadhyay et al., 2008 10.1523/JNEUROSCI.5530-07.2008

Antibody
SVmab1 Reduction N Nav1.7 current inhibition in mouse and

human DRG.
Lee et al., 2014; Bang et al., 2018 10.1016/J.CELL.2014.03.064;

10.1007/S12264-018-0203-0

ECS
AJA Reduction N Inhibited Nav1.2 - 1.5, Nav1.7 - 1.8, and

β4 subunit-mediated resurgent currents
in Nav1.5 channels.

Foadi et al., 2014 10.1213/ANE.0000000000000188

AEA Reduction N& Inhibition of Nav 1.2, 1.6 - 1.8.
Inhibition of β4 subunit-mediated
resurgent currents in Nav1.7

Theile and Cummins, 2011;
Okura et al., 2014

10.1124/mol.111.072751;
10.1213/ANE.0000000000000070

AEA, AM 404 and
WIN 55,212-2,

Reduction N Direct inhibition of TTX-S currents. Nicholson et al., 2003 10.1016/S0006-8993(03)02808-7

THC Reduction N Reduction of Nav currents and
conductance in the nodes of Ranvier in
frogs.

Strichartz et al., 1978 310454

CBD Reduction N Inhibition of Nav1.1-1.7 in HEK-293
cells and iPSC neurons.
Inhibition of Nav1.4 in diaphragm
(muscle).
Inhibition of Nav1.7 and Nav1.8 in DRG
neurons.
The formation of the Nav-CBD complex
in Alphaproteobacteria inhibited Nav
functions.

Sula et al., 2017; Ghovanloo
et al., 2019; Ghovanloo et al.,
2021; Zhang and Bean, 2021;
Ghovanloo et al., 2022

10.1038/NCOMMS14205;
10.1074/jbc.RA118.004929;
10.1085/jgp.202012701;
10.1523/JNEUROSCI.3216-20.2021;
10.1111/bph.15833

CBD Cell protection N Restoration of Nav1.5 gating defect,
which causes cytotoxicity in epithelial
cells.

Fouda et al., 2020 10.1111/bph.15020

The table includes information about FDA approve drugs currently use in the treatment of DSN, signaling kinases, antibody therapy, and cannabinoids. DSN, diabetic sensory neuropathy;
T2D, type two diabetes; Y, yes, tested in diabetic patients or animal models of DSN; N, not tested in DSN; N& , not tested in DSN but in models of neuropathic pain.
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function in painful neuropathies (Black et al., 2008). In
fact, in chromaffin cells, p38 and ERK1/2 primed NaV 1.7
function and increased ion conductance (Nemoto et al., 2010).
Activation of the p38 MAPK pathway by tumor necrosis
factor-α (TNF-α) enhanced TTX-R currents in isolated DRG
neurons and induced mechanical hypersensitivity in mice,
which was prevented by the pharmacological inhibition of
p38 (Jin and Gereau, 2006). Similarly, in DRG neurons from
a model of femoral artery occlusion, TNF-α mediated the
increase of TTX-R currents, mostly through NaV 1.8; and
this effect was prevented by the pharmacological inhibition
of p38, ERK1/2, and c-Jun N-terminal kinases (JNKs)
(Li et al., 2020).

Consistently, in STZ-induced diabetic rats with symptoms
of DSN, the upregulation of NaV 1.7 in the DRGs was
prevented by inhibiting the synthesis or by blocking
the action of TNF-α and p-nucleus factor-kappa B (p-
NFκB)(Huang et al., 2014). In DRG neurons exposed
to hyperglycemic conditions in vitro, the enkephalin-
mediated activation of δ-opioid receptors prevented
NaV 1.7 upregulation. The later was accompanied by
reduction of phosphorylation of p38 MAPK and PKC
(Chattopadhyay et al., 2008).

A provocative new approach proposes the use of
monoclonal antibodies to inhibit NaV 1.7 channels. This
novel strategy revealed that the antibody SVmab1, selectively
inhibited NaV 1.7 currents in mouse and human DRG
neurons (Lee et al., 2014; Bang et al., 2018). Moreover,
the antibody effectively supressed inflammatory and
neuropathic pain in mouse models, and unveiled a
significant role of NaV 1.7 in itch sensation (Lee et al.,
2014), suggesting this strategy may be effective in the
management of chronic itch in humans (Bang et al.,
2018). Although, this antibody therapy has yet to be tested
in the context of DSN, the ability of SVmab1 to reduce
excitatory transmission in pain-sensitive neurons may relief
diabetes-related pain symptoms.

More recently, targeting NaV channels through the
endocannabinoid system (ECS) has been proposed as a
therapeutic tool in pain pathologies. The ECS is composed
of endocannabinoids, their receptors, and the enzymatic
pathways required for endocannabinoids’ synthesis. The
endocannabinoids, N arachidonoylethanolamine (AEA), and
2-arachidonoylglycerol (2-AG) bind to two well-characterized
G-protein coupled receptors cannabinoid receptors 1 and
2 (CB1) and 2 (CB2) (Howlett et al., 2004). Numerous
animal and clinical studies have shown the potential of
synthetic and naturally occurring cannabinoids to effectively
attenuate inflammatory and neuropathic pain, including
DSN pain (Howlett et al., 2004; Rahn and Hohmann, 2009).
Some of the beneficial effect of cannabinoids on DSN could
be explained by their action on NaV channel function.

The synthetic cannabinoid ajulemic acid (AJA), which has
been reported to induce analgesia in inflammatory pain
in humans (Burstein et al., 2004), inhibited NaV 1.2 - 1.5,
NaV 1.7 - 1.8 channels, as well the β4 subunit-mediated
resurgent currents in NaV 1.5 channels (Foadi et al., 2014).
Similarly, the endocannabinoid anandamide (AEA) has been
reported to inhibit β4 subunit-mediated resurgent currents
in NaV 1.7 (Theile and Cummins, 2011). Cannabinoids are
known to modulate presynaptic Ca2+ and K+ channels
(Nicholson et al., 2003), but also to inhibit NaV channels
either through CB1 receptor signaling or by their direct
action on the channel protein. AEA, as well as the synthetic
cannabinoids AM 404 and WIN 55,212-2, directly bound
to TTX-S NaV channels (Nicholson et al., 2003). Moreover,
AEA was reported to inhibit NaV 1.2, 1.6 - 1.8 (Okura et al.,
2014) by unknown mechanisms. The phytocannabinoid
19-tetrahydrocannabinol (THC), the principal psychoactive
constituent of cannabis, has previously been reported to
decrease peak Na+ current and conductance in the nodes
of Ranvier in frogs (Strichartz et al., 1978). Furthermore,
cannabidiol (CBD), a phytocannabinoid lacking psychoactive
effect, has been reported to block NaV channels. CBD inhibited
human NaV 1.1-1.7 currents expressed in human embryonic
kidney 293 (HEK-293) cells and in induced pluripotent stem
cell (iPSC)-derived neurons. The mechanisms of action of
CBD seemed to be indirect, mediated by its interaction with
membrane lipids resulting in loss of NaV channel activity
(Ghovanloo et al., 2019). Consistently, in DRG neurons, CBD
inhibited NaV 1.7 leading to reduced neuronal excitability
(Ghovanloo et al., 2022), a mechanisms with relevant potential
in pain pathologies. CBD also inhibited NaV 1.4 and 1.8 by
similar mechanisms. In muscle, CBD stabilized the inactivated
state of NaV 1.4 (Ghovanloo et al., 2021). In the DRGs,
CBD showed preferential binding to the slow inactivated
state of NaV 1.8, which directly inhibited repetitive firing
of nociceptors (Zhang and Bean, 2021). Moreover, CBD
was shown to block NaV currents by physically interacting
with the channels. The high-resolution crystal structure
of the NaV -CBD complex was studied in NaV channels
from M. marinus (Sula et al., 2017), which exhibits similar
function, sequence and structural homologies to mammalian
NaV channels (Sula and Wallace, 2017; Sula et al., 2017),
demonstrated that CBD interacts with the channel at a
novel site at the location of the central hydrophobic cavity
of the channel (Sait et al., 2020). Furthermore, CBD has
been shown to restore gating defects in NaV 1.5 caused
by reactive oxygen species in high glucose conditions,
which protected against high glucose-induced oxidative
stress and cytotoxicity in the Chinese hamster ovary (CHO)
epithelial cell line (Fouda et al., 2020). More importantly, the
beneficial effect of engaging the ECS has been documented in
patients with painful DSN. A randomized, double-blinded,
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FIGURE 1

Schematic representation summarizing the mechanisms modulating NaV channel function in DSN, and the effect of therapeutic agents.
Hyperglycemia, nerve injury, and inflammation activate the MAPK kinase pathway and generate reactive oxygen species (ROS). The p38, ERK1/2
and JNK MAPKs, as well as ROS, have been reported to mediate upregulation and enhancement of different NaV channel subunits. Furthermore,
MAPK signaling leads to PKC activation and expression NFkB. The latter supports the expression of interleukins and TNF-a further enhancing an
inflammatory environment in DSN. TRPV1 channels, which are upregulated by hyperglycemia, inflammatory mediators, and ROS (Lam et al.,
2018; Nair et al., 2021), depolarize DRG neurons and contribute to excitability in DSN (Jin et al., 2004; Hong and Wiley, 2005; Melli and Höke,
2009) by assisting the cell in reaching threshold voltage for activation of NaV channels. The use of FDA approved drugs for the treatment of DSN
such as TCA, gabapentin, ranolazine and pioglitazone, reduce the activation of the MAPK pathway, preventing the upregulation of some NaV
channels, such as NaV1.7. Furthermore, tonic (repeated) application of capsaicin prevents the upregulation of NaV channels by cAMP mediated
signaling pathways. Agonist of the ECS, such as AEA, THC, and CBD, can prevent NaV channel upregulation by actions through they receptors
(CB1, CB2), or by direct action on the NaV channel. Although these effects of cannabinoids have yet to be tested in the context of DSN, they do,
however, provide a mechanistic explanation of some of the beneficial effects of cannabinoid therapy in diabetic patients with symptoms of
DSN. TCAs, tricyclic antidepressants; ROS, reactive oxygen species; ECS, endocannabinoid system; AEA, N arachidonoylethanolamine, CBD,
cannabidiol; THC, 19-tetrahydrocannabinol; CB1, cannabinoid receptor 1; CB2, cannabinoid receptor 2.

placebo-controlled crossover study revealed improved
spontaneous and evoked pain scores between placebo and
patients receiving treatment (Wallace et al., 2015), which
may be mediated at least in part by the modulation of
NaV channels.

Conclusion

In the current review, we focused on NaV channels and their
role in DSN, not only due to their unequivocal relevance in

cell excitability, but also because several recent studies point at

NaV s as potential therapeutic targets in pain pathologies. Here

we discussed the important role that some NaV s play in DSN

and their yet largely potential for pain management in diabetes.

Novel strategies using NaV s as a therapeutic tool may involve

(1) FDA approved drugs with effects on NaV channel function;

(2) signaling kinases that regulate NaV expression/function; (3)

monoclonal antibody therapy; and (4) modulation by the ECS.

Figure 1 summarizes the therapeutic potential of NaV channels
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for the treatment of DSN symptoms, including strategies that
have yet to be tested in the context of diabetes.
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