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A flexible speller based on
time-space frequency conversion
SSVEP stimulation paradigm under
dry electrode

Ze Zhang, Dandan Li*, Yao Zhao, Zhihao Fan, Jie Xiang,
Xuedong Wang and Xiaohong Cui

College of Information and Computer, Taiyuan University of Technology, Taiyuan, China

Introduction: Speller is the best way to express the performance of the brain-
computer interface (BCI) paradigm. Due to its advantages of short analysis time
and high accuracy, the SSVEP paradigm has been widely used in the BCI speller
system based on the wet electrode. It is widely known that the wet electrode
operation is cumbersome and that the subjects have a poor experience. In addition,
in the asynchronous SSVEP system based on threshold analysis, the system flickers
continuously from the beginning to the end of the experiment, which leads to
visual fatigue. The dry electrode has a simple operation and provides a comfortable
experience for subjects. The EOG signal can avoid the stimulation of SSVEP for a long
time, thus reducing fatigue.

Methods: This study first designed the brain-controlled switch based on continuous
blinking EOG signal and SSVEP signal to improve the flexibility of the BCI speller.
Second, in order to increase the number of speller instructions, we designed the time-
space frequency conversion (TSFC) SSVEP stimulus paradigm by constantly changing
the time and space frequency of SSVEP sub-stimulus blocks, and designed a speller
in a dry electrode environment.

Results: Seven subjects participated and completed the experiments. The results
showed that the accuracy of the brain-controlled switch designed in this study was
up to 94.64%, and all the subjects could use the speller flexibly. The designed 60-
character speller based on the TSFC-SSVEP stimulus paradigm has an accuracy rate
of 90.18% and an information transmission rate (ITR) of 117.05 bits/min. All subjects
can output the specified characters in a short time.

Discussion: This study designed and implemented a multi-instruction SSVEP speller
based on dry electrode. Through the combination of EOG and SSVEP signals,
the speller can be flexibly controlled. The frequency of SSVEP stimulation sub-
block is recoded in time and space by TSFC-SSVEP stimulation paradigm, which
greatly improves the number of output instructions of BCI system in dry electrode
environment. This work only uses FBCCA algorithm to test the stimulus paradigm,
which requires a long stimulus time. In the future, we will use trained algorithms to
study stimulus paradigm to improve its overall performance.

KEYWORDS

brain-computer interface (BCI), time-space frequency conversion (TSFC) SSVEP,
brain-controlled switch, electrooculography (EOG), dry electrode
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1. Introduction

Brain-computer interface (BCI) is currently a research hotspot in
the multidisciplinary cross-field (Abiri et al., 2019; Mcfarland, 2020;
Pan et al., 2020), which aims to establish a direct communication
channel between the brain and external devices without relying on
peripheral nerve and muscle tissue (Zhou et al., 2014; Edelman et al.,
2019; Li et al., 2019; Jin et al., 2020; Lu et al., 2020; Ge et al., 2021).
At present, the BCI system is widely used in medical rehabilitation,
mechanical control, speller, etc. BCI speller is the best way to express
the performance of the BCI paradigm (Kapgate et al., 2020; Li
et al., 2021a). Many researchers have attempted to implement multi-
instruction BCI spellers to improve the information transmission rate
(ITR) of the BCI system (Rezeika et al., 2018; Xu et al., 2020; Li et al.,
2021a; Kundu and Ari, 2022). Therefore, it is of great significance for
the development of BCI to study the speller that outputs multiple
instructions in a short time. However, considering the actual use of
patients with motion disorders, the system design should improve the
convenience of patients while ensuring the accuracy of instructions.

The BCI speller is a typical visual application of the BCI and
was among the earliest implementations of the concept. Steady-state
visual-evoked potential (SSVEP) (Zhang and Chen, 2022) is often
used to design spellers because of its stable evoked characteristics and
high signal-to-noise ratio. Nakanishi et al. proposed an SSVEP speller
based on an FPHC paradigm to design the speller (Nakanishi et al.,
2014). Xu et al. designed a 108 characters speller based on the hybrid
paradigm of P300 and SSVEP in 2020 (Xu et al., 2020). In 2021, Ge
et al. designed a 48-instruction speller based on the dual frequency
SSVEP-biased coding paradigm (Ge et al., 2021). Although there
are many speller studies on SSVEP, those speller systems can only
be completed in the laboratory environment using wet electrodes,
which are cumbersome and inflexible, and the subject experience
is poor.

The dry electrode (Li et al., 2021b) based on high comfort
and good portability has become the research focus of various BCI
systems. In 2016, Chi Chun Lo et al. designed a new non-contact
12-instruction SSVEP control system, allowing disabled patients to
activate the nurse emergency call system and adjust other equipment
(Lo et al., 2016). In 2018, Xiao et al. used claw-shaped flexible dry
electrodes to design and implement a speller with 12 targets (Xing
et al., 2018), with an average accuracy of 93.2%, which is convenient
for the subjects to complete character output in any environment. At
present, although there are studies based on dry electrode SSVEP, the
research is not mature enough and there are few output instructions.

In recent years, many researchers have begun to design and
implement BCI systems based on asynchronous SSVEP (Pfurtscheller
et al., 2010; Diez et al., 2011) in order to improve the flexibility of
the system. Some studies use the threshold value of the stimulus
flicker as the standard (Pan et al., 2013; Zhou et al., 2020). When the
stimulus flickers continuously since the beginning of the experiment
(including the control and idle state), the long-time flicker will make
the subjects feel strong fatigue. Because the EOG signal is easy to be
detected, it is widely concerned. Some studies combine EOG with MI
to reflect the intention of the subjects and send commands to external
devices. In 2017, He et al. proposed a hybrid BCI based on MI and
EOG signals to operate web browsers (He et al., 2017). In 2019, Huang
et al. used EOG for button selection and MI for direction control
to integrate the control of the wheelchair robot arm system (Huang
et al., 2019). Although EOG performs well in the MI paradigm, there

are few studies that combine EOG with SSVEP and even fewer studies
that use EOG to improve the flexibility of the SSVEP system.

This study designed and implemented a speller that can output
multiple instructions flexibly. We designed a brain-controlled switch
based on EOG and SSVEP. By using the brain-controlled switch to
wake up and turn off the flashing stimulus, no external stimulus
is needed in the idle state, which reduces the visual fatigue caused
by flashing and is more consistent with the perception of the
idle state. In addition, this study designed a time-space frequency
conversion (TSFC) SSVEP stimulation paradigm based on the
Neuracle 24-channel dry electrode and increased the number of
output instructions within the limited frequency range by constantly
changing the frequency of SSVEP sub-stimulation block space in two
stages. First, we divided the stimulus interface into eight stimulus
regions, which can accurately identify the target stimulus region in
a short time. Second, the spatial local flicker designed to reduce
the influence of irrelevant stimulus blocks as much as possible and
effectively improve the accuracy of stimulus block recognition. The
speller system based on our proposed TSFC-SSVEP paradigm can
output 60 characters accurately. The main contribution of this study
is to design a flexible speller combined with a brain-controlled switch,
which provides flexibility and comfort. This study proposed the
TSFC-SSVEP stimulation paradigm that can make speller output
multiple instructions under the dry electrode. The study provides a
new idea for the speller based on the brain-controlled system.

2. Methods

2.1. Participants

In this study, seven healthy subjects (aged 25.14 ± 0.98 years)
volunteered to participate in offline and online experiments, and all
subjects had normal vision or corrected vision. The experiment was
conducted in a quiet laboratory. In addition, before each experiment,
the experimenter informed the subjects of SSVEP-related theoretical
knowledge and precautions for looking at the screen. All subjects
had informed consent to the experimental study, and the study
was approved by the Ethics Committee of the Taiyuan University
of Technology.

2.2. Data acquisition

The dry electrode experiment part of this study uses the Neuracle
24-channel dry electrode, which is designed as a claw-like structure.
The electrode tip is coated with a silver/silver chloride mixture of
conductive ink to improve the electrochemical performance. The
structure and material characteristics make it lightweight and wear-
resistant. The wet electrode experiment part uses the Brain Products
GmbH 32 moisture-conducting electrode made in Germany. The dry
electrode can pass through the hair and contact the scalp well, and
the correlation with the wet electrode signal is>90%.

The EEG signal sampling rate is 300 Hz. Six electrodes in the
parietal occipital region (P3, P4, T5, T6, O1, and O2) and four
electrodes in the frontal lobe (Fp1, Fp2, F7, and F8) were recorded.
The reference electrode is located at the top of the head (PFz), and
the grounding electrodes are the A1 and A2 of the earlobe. The
impedance of all electrodes is<50 k�.
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FIGURE 1

Experimental technology roadmap.

FIGURE 2

Schematic diagram of the brain-controlled switch.

2.3. Paradigms design

As shown in Figure 1, this paradigm is divided into two
stages. First, the brain-controlled switch is designed to control
the system flexibly. Second, the design is based on the TSFC-
SSVEP stimulation paradigm to increase the number of BCI
instruction codes in the dry electrode environment. Finally, the

two are integrated to design a flexible and comfortable speller for
the subjects.

2.3.1. Design of brain-controlled switch
The brain-controlled switch is composed of EOG and SSVEP.

The EOG in the brain-controlled switch is used to wake up stimulus
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FIGURE 3

TSFC-SSVEP stimulation paradigm timeline.

FIGURE 4

Schematic diagram of the first stage of TSFC-SSVEP stimulation paradigm.

because the EOG is easy to detect. EOG is the depolarization and
hyperpolarization between the retina and cornea caused by different
eye movements, which forms a potential difference between the
retina and cornea, and its amplitude is greater than that of EEG
and background physiological signals (Crea et al., 2018; Huang et al.,
2019; Zhu et al., 2020). Therefore, EOG can be easily and accurately

detected by using several electrodes around the eyes. When the
subject blinks continuously, we consider that the subject intends to
wake up the stimulus. The SSVEP in the brain-controlled switch is
used to turn off system stimulation. When the subjects are looking
at the “Stop” SSVEP stimulus block in the stimulation keyboard, the
stimulation can be turned off.
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FIGURE 5

Schematic diagram of the second stage of the TSFC-SSVEP stimulation paradigm.

TABLE 1 Classification accuracy of the brain-controlled switch experiment.

Subject EOG (Wake up stimulus) Accuracy SSVEP (Turn o� stimulus) Accuracy

O	ine (%) Online (%) O	ine (%) Online (%)

S1 90.00 87.50 96.65 97.50

S2 100.00 98.75 90.00 90.00

S3 100.00 95.00 90.40 92.50

S4 100.00 100.00 83.75 90.00

S5 85.00 88.75 91.65 90.00

S6 98.75 92.50 90.85 95.00

S7 97.50 100.00 87.93 90.00

Mean± SD 95.89± 5.53 94.64± 4.85 90.18± 3.60 92.14± 2.81

As shown in Figure 2, the system will first enter the switch mark
background, which lasts for 1 s. This background is a sign to prompt
the subject to open the stimulus. Then, the system will switch to
a static background, with a duration of 3 s. Within 3 s, the subject
can complete the operation of whether to wake up the stimulus
according to their own intentions. If the subject blinks three times
or more, the system switches to the stimulation keyboard interface,
and vice versa. The three blinks here are the thresholds we set,
mainly because the normal blinking of the subjects is excluded. Under
normal conditions, the subjects also have a high probability of having
1–3 physiological blinks in a 3-s period (Zhu et al., 2020). Finally, after
the subject wakes up the stimulation keyboard, he/she can output
the required characters according to his/her intention. When all
characters are output, the subject looks at the “Stop” SSVEP stimulus
block on the stimulation keyboard to close the stimulation keyboard,
and the system will switch to the background of the switch mark.

2.3.2. Design of TSFC-SSVEP stimulation paradigm
As shown in Figure 3, the stimulation time of the TSFC-SSVEP

paradigm in this study is 2 s. In the offline experiment, the character
cue time is 0.5 s (the red square is marked with prompted characters),
the stimulus shift time is 0.5 s, and the character feedback time
is 0.5 s, with a total of 3.5 s. In the online experiment, the time
of stimulus shift was 0.5 s and the time of character feedback was
0.5 s, with a total of 3 s. The specific stimulation is divided into two
stages. The duration of the first stage stimulation is 1 s. As shown in
Figure 4, the stimulation interface is divided into eight large modules
corresponding to the frequency ranging from 10 to 17 Hz of the sine
wave. The reasons for the selection of the 10–17 Hz range are specified
in the results section. The spatial range of the subjects’ gaze can be
determined by analyzing the frequency of the modules within 1 s.
The 1–1.5 s is the stimulus conversion process, which feeds back the
spatial position analyzed in the first stage to the interface and transfers
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to the second stage of the stimulus interface. As shown in Figure 5,
the 1.5–2.5 s is the second-stage stimulus. The stimulus is frequency
coded again in each module of the first stage. The stimulus process
is only carried out within the scope of the first-stage analysis, and
other modules remain unchanged. As shown in Figure 3, the gray
area is that selected by the subject in the first stage. Among them,
compared with medium frequency (15–30 Hz) and high frequency
(>30 Hz) stimuli, medium and low frequency (about 15 Hz) stimuli
can induce stronger SSVEP responses. Therefore, in this paradigm,
the stimulation frequency range of the stimulation flicker block is
selected as the medium- and low-frequency band.

The frequency conversion combination of SSVEP stimuli in time
and space is carried out according to the above two stages, which can
encode different instructions, greatly improving the performance of
the SSVEP paradigm. Moreover, the signal-to-noise ratio of feature
signals is high, and the requirement for display is low, which is
convenient for target recognition.

2.4. Signal processing

In this article, the features extracted by the speller are divided
into two categories, one is EOG features, and the other is the SSVEP
feature of EEG. Among them, the EOG feature extraction is divided
into three steps. First, we use 0.5–10 Hz band-pass filtering for
preprocessing. Then, the data of the four channels (Fp1, Fp2, F7, and
F8) are averaged. Finally, the peak value above the 0.07 mV threshold
is extracted by using the signal-peak search algorithm. In the signal-
peak search algorithm, a peak or local maximum is defined as any
sample whose two direct neighbors have a smaller amplitude. When
the number of peaks is >3, it can be judged as conscious blinking,
otherwise, it is normal. In addition, the feature extraction of SSVEP in
EEG is divided into two steps. The first is preprocessing, i.e., 10–90 Hz
band-pass filtering, 50 Hz notch processing, and ICA artifact removal.
The second is to classify the filter bank canonical correlation analysis
(FBCCA) (Chen et al., 2015a). First, the FBCCA is used to analyze the
stimulus block region that the subject is currently looking at, then the
FBCCA is used to analyze the specific stimulus block of the subject’s
gaze region, and finally, the feature fusion analysis is performed to
obtain the final character output result.

Filter bank analysis uses multiple filters with different passbands
for sub-band decomposition. A zero-phase Chebyshev I infinite pulse
filter is used to extract the sub-band componentXSBn (n = 1, 2, . . . , N)
from the original EEG signal X. After the filter bank analysis, the
standard Canonical Correlation Analysis (CCA) (Lin et al., 2007; Bin
et al., 2009; Chen et al., 2014) process is applied to each sub-band
component, respectively, and the correlation values between the sub-
band component and the predefined reference signals corresponding
to all stimulus frequencies Yfk are obtained. For the kth reference
signal, a correlation vector ρk composed of N correlation values is
defined as follows:


ρ1

k
ρ2

k
...
ρN

k

 =

ρ[XT

SB1
WX(XSB1 Yfk), YTWY (XSB1 Yfk)]

ρ[XT
SB2

WX(XSB2 Yfk), YTWY (XSB2 Yfk)]
...

ρ[XT
SBN

WX(XSBN Yfk), YTWY (XSBN Yfk)]

 (1)

In formula (1), ρ(x, y) represents the correlation coefficient
between x and y. The weighted sum of squares of the correlation
values of all corresponding sub-band components is calculated
as follows:

ρ̃k =

N∑
n=1

ω(n)(ρn
k )2 (2)

In formula (2), n represents the index of the sub-band; ω(n) is
the weight of the sub-band component, and the calculation formula
is given as follows:

ω(n) = n−a
+ b, n ∈ [1, N] (3)

In formula (3), a and b are constants that maximize the
classification performance, which can be determined by using
the grid search method in offline analysis. For all stimulus
frequencies(ρ̃1, ρ̃2, . . . , ρ̃N ), ρ̃k is used to determine the frequency of
SSVEP. When ρ̃k is the maximum, the frequency of the reference
signal is the frequency of SSVEP.

Compared with standard CCA, the filter group analysis in
FBCCA can decompose SSVEP into multiple sub-band components,
so as to extract the discriminant information in the harmonic
components of SSVEP. Therefore, FBCCA provides richer and more
robust harmonic information for SSVEP target recognition and has a
better recognition effect.

Based on previous research (Chen et al., 2015a), this article selects
the best M3 sub-band division FBCCA method. The specific process
is as follows:

Step 1: Divide the effective frequency band (10–90 Hz) of the
signal into 10 segments (10–90, 18–90, 26–90, 34–90, 42–90, 50–90,
58–90, 66–90, 74–90, and 82–90 Hz);

Step 2: Pass the collected EEG signals through the above 10
band-pass filters, respectively;

Step 3: Substitute the 10 groups of EEG signals into the
10 standard CCAs, and then calculate the maximum correlation
coefficient sum through the weight adjustment formula. The
frequency corresponding to the maximum correlation coefficient
sum is recorded as the prediction frequency.

3. Results

3.1. Brain-controlled switch experiment
classification results

Brain-controlled switch experiment is divided into the offline
experiment and the online experiment. In the experiment on EOG
signal wake-up system stimulation, the online experiment and offline
experiment were divided into four rounds, each round had 10
consecutive blinks and 10 normal states. Through the analysis and
processing of the data obtained from the offline experiment, we
set the corresponding signal peak threshold to 0.07 mV and the
peak frequency threshold to 3 times. As shown in Table 1, seven
subjects conducted offline online experiments. Among them, the
accuracy rate of three subjects in the offline experiment was as
high as 100.00%, and the accuracy rate of only one subject was
85.00%, with an average accuracy rate of 95.89%. Under the threshold

Frontiers in Computational Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2023.1101726
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2023.1101726

FIGURE 6

Dry and wet electrodes: (A) time domain comparison diagram and (B) frequency domain comparison diagram.

TABLE 2 Recognition accuracy of dry electrodes in di�erent time windows experiment.

Subject Accuracy (%) on
0.4s

Accuracy (%) on
0.6s

Accuracy (%) on
0.8s

Accuracy (%) on
1s

S1 91.70 98.30 96.70 100.00

S2 73.30 75.00 85.00 90.00

S3 81.70 91.70 96.70 100.00

S4 96.70 98.30 100.00 100.00

S5 56.70 88.30 96.70 93.30

S6 70.80 84.15 92.50 93.30

S7 72.08 87.08 90.08 92.70

Mean± SD 77.57± 12.61 88.98± 7.60 93.95± 4.73 95.61± 3.94

determined by the offline experiment, the two subjects performed
well in the online experiment, with an accuracy rate of 100.00% and
an average accuracy rate of 94.64%, which fully conforms to our
expected experimental hypothesis. In the experiment for the SSVEP
signal to turn off the system stimulus, we selected the accuracy of
seven subjects in 60 stimulus blocks of the entire stimulate keyboard
(refer to the “TSFC-SSVEP Speller Classification Results” section for
the specific experiment process). The seven subjects can complete
the switching operation of the system stimulus according to their
own intentions, which also conforms to our expected experimental
hypothesis. The main purpose of the brain-controlled switch is
to make the subject more autonomous in the process of SSVEP
stimulation. In addition, the brain-controlled switch can avoid the
visual fatigue of the subject caused by the long-time flicker after the
SSVEP stimulation is turned on.

3.2. Determination of SSVEP characteristic
frequency and time window

In this experiment, dry and wet electrodes were compared in
the time domain and frequency domain, respectively. As shown

in Figure 6A, in the time domain, after the dry electrode and wet
electrode occipital leads are superposed and averaged, respectively,
the signals are processed by 10–50 Hz band-pass filtering, and the
two signals can be basically matched. As shown in Figure 6B, on the
power spectrum, after the dry electrode and wet electrode pillow leads
are superposed and averaged, respectively, the signals are Fourier
transformed. The characteristics of both signals at the fundamental
frequency signal and the harmonic signal are obvious. In conclusion,
the dry electrode conditions used in this experiment basically meet
the experimental requirements, and subsequent experiments are
carried out based on dry electrodes.

Table 2 shows the recognition accuracy of seven subjects using
dry electrodes for eight categories of SSVEP (8–15 Hz) at different
time windows. Among them, the accuracy rate of only two subjects in
0.4 s was more than 90.00%, while in 1 s, all subjects reached 90.00%,
and the average accuracy rate was 95.61%. The results in Table 2 show
that the recognition accuracy increases with the increase of the time
window, that is, the larger the time window is. It can achieve good
results for the eight classification results in ∼1 s, which provides a
reliable experimental basis for the TSFC-SSVEP experiment.

In the process of frequency selection, we designed the online
experiment of TSFC-SSVEP in the 8–15 Hz frequency band, but
the experimental results were not ideal. According to the feedback
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TABLE 3 Online results of TSFC-SSVEP stimulation paradigm at two
di�erent frequencies.

Subject Accuracy (%) of
8–15Hz

Accuracy (%) of
10–17Hz

S1 91.67 98.33

S2 83.33 91.67

S3 86.67 93.33

S4 76.67 85.00

S5 88.33 96.67

S6 86.67 95.00

S7 80.00 90.00

Mean± SD 84.76± 4.75 92.86± 4.15

results of the subjects after the experiment, we made further analysis.
The pixel size of 60 stimulus blocks is much smaller than that of
8 stimulus blocks, which results in reducing the induced SSVEP
characteristics. In addition, the subjects found that higher frequency
(>10 Hz) stimuli could attract the subjects’ attention. This led to
the involuntary transfer of subjects’ attention from a low-frequency
stimulus to a high-frequency stimulus when they looked at the
stimulus block in the second stage, which affected the experimental
results. Hence, we designed online experiments to screen the
frequencies from 10 to 20 Hz, respectively, and 7 subjects focused on
60 stimulus blocks, and finally, 10–17 Hz is determined as a better
frequency range. Table 3 shows the classification results of the TSFC-
SSVEP online experiment of 7 subjects in 8–15 and 10–17 Hz bands,
respectively. In this experiment, in order to avoid the influence of the
time window on the experimental results, we used a 2-s stimulation
time window in both stimulation stages. The results showed that the
performance of the seven subjects under the stimulation paradigm of
TSFC-SSVEP realized in the higher frequency band was higher than
that in the lower frequency band. Therefore, we determined that the
frequency range of TSFC-SSVEP was 10-17 Hz.

3.3. TSFC-SSVEP speller classification results

The data from 7 healthy subjects were collected in this
experiment. In the offline experiment, each subject selects 60
characters in each round, that is, 60 trials and the duration of a
trial is 3.5 s. During the online experiment, 10 random characters
specified by the experimenter shall prevail, that is, 10 trials, with a
trial duration of 3 s. Each subject conducted 4 rounds of experiments
offline and online, namely, 4 blocks, and the final result was the
average of offline and online results. Table 4 shows the accuracy and
ITR of 7 subjects using the FBCCA classification algorithm under
the TSFC-SSVEP stimulation paradigm. It can be seen from Table 4
that the accuracy of most subjects in the offline experiment is more
than 90.00%, the average accuracy of the offline experiment is 90.18%,
while the average accuracy of the online experiment is 92.14%, with
a difference of 2.00%. We analyzed the reasons and combined them
with the feedback information of the subjects, mainly because the
number of 60 stimulus targets in a round was large, and the long-
term stimulus flickering led to visual fatigue of the subjects, which
ultimately affected the experimental results.

3.4. Di�erent paradigms comparison results

In this experiment, the TSFC-SSVEP paradigm and the current
popular Joint Frequency Phase Modulation (JFPM)-SSVEP (Chen
et al., 2015b) paradigm were analyzed and compared offline under
the same time window for the same subjects. Table 5 shows the offline
accuracy of character recognition of 7 subjects using the FBCCA
algorithm under 2 different paradigms. JFPM-SSVEP is not as
effective as it is in a wet electrode environment. The accuracy rate of
the 2 subjects was lower than 80.00%, and there was a large difference
between different subjects. The TSFC-SSVEP proposed in this article
has a stable effect in the dry electrode environment. Only two
subjects have a result lower than 90.00%, and there is less difference
between different subjects. The results showed that compared with
the JFPM-SSVEP paradigm, the TSFC-SSVEP stimulus paradigm had
more advantages in the case of more instructions in the dry electrode
environment, and its stability, accuracy, and ITR were higher than
those of JFPM-SSVEP.

4. Discussion

This study designed and implemented a multi-instruction SSVEP
speller based on dry electrodes. At the same time, through the
combination of EOG and SSVEP signals in BCI, the speller can be
flexibly controlled. The TSFC-SSVEP stimulation paradigm proposed
in this study recodes the frequency of SSVEP stimulus sub-blocks in
time and space, reduces the influence of surrounding stimulus blocks
by using local flicker, performs well under dry electrode testing, and
greatly improves the output command of the BCI system. Compared
with synchronous BCI, the system uses a brain-controlled switch
based on EOG and SSVEP to wake up or turn off stimulus flicker
to complete character output, which makes the system more flexible
and convenient.

As for asynchronous BCI systems, the previous research on
asynchronous SSVEP-based BCI mainly uses traditional threshold
methods to distinguish between the control state and the idle state
(Pfurtscheller et al., 2010). In these studies, even if the subject is
in an idle state, the stimulus in the stimulus interface will flicker
continuously from the beginning of the experiment, which is easy
to cause visual fatigue in the subject. Several researchers designed
novel methods to improve the performance of the asynchronous
SSVEP-based BCI. Pfurtscheller et al. used an MI-based brain
switch to achieve the self-paced operation of an SSVEP-based
orthosis control system. Tomita et al. proposed a bimodal BCI
using simultaneously NIRS and EEG signals to estimate whether
the subject is in idle or active mode (Tomita et al., 2014). In
this study, we used EOG in combination with SSVEP to awaken
or turn off systemic stimuli. The subject wakes up or closes the
asynchronous operation based on the TSFC-SVEP speller according
to their intention. Compared with asynchronous systems using
threshold criteria, BCI systems based on EOG and SSVEP do not
need to continuous flashing in idle state. In the idle state, no
stimulation can alleviate the visual fatigue of the subjects. In addition,
compared to MI-based switches, brain-controlled switches based on
EOG and SSVEP have the advantage of short response time, which
can accurately distinguish between the control state and idle state
in a short time, and effectively improve system performance. But
the brain-controlled switch based on EOG and SSVEP also has its
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TABLE 4 Classification results based on TSFC-SSVEP in FBCCA algorithm.

Subject Accuracy (%) ITR (bits/min)

O	ine Online O	ine Online

S1 96.65 97.50 131.96 134.19

S2 90.00 90.00 116.39 116.39

S3 90.40 92.50 117.26 121.95

S4 83.75 90.00 103.46 116.39

S5 91.65 90.00 120.03 116.39

S6 90.85 95.00 118.25 127.83

S7 87.93 90.00 111.97 116.39

Mean± SD 90.18± 3.60 92.14± 2.81 117.05± 7.96 121.36± 6.61

TABLE 5 Classification results of FBCCA algorithm under di�erent stimulus paradigms.

Subject JFPM
Accuracy (%)

TSFC
Accuracy (%)

JFPM
ITR (bits/min)

TSFC
ITR (bits/min)

S1 95.00 96.65 114.51 131.96

S2 92.50 90.00 108.99 116.39

S3 90.00 90.40 103.78 117.26

S4 67.50 83.75 66.66 103.46

S5 77.50 91.65 80.72 120.03

S6 82.50 90.85 89.47 118.25

S7 87.50 87.93 98.82 111.97

Mean± SD 84.64± 8.91 90.18± 3.60 94.71± 15.60 117.05± 7.96

limitations. For different subjects, the main challenge is that the
system needs to collect a round of subjects’ blink data in advance
because different subjects have different blink ranges. Therefore,
future work needs to design a more robust algorithm to classify the
blinks of different subjects.

For the BCI classification based on TSFC-SSVEP, we have
only tested the FBCCA algorithm. However, relying on FBCCA
no-training algorithm analysis requires a time window of at least 1 s,
which limits the performance of the stimulus paradigm. According
to recent research, TRCA (Jin et al., 2021; Bian and Wu, 2022) and
FBDNN (Bassi and Attux, 2022) can shorten the time window of
stimulus data to 0.5 s, which will better improve the performance
of the stimulus paradigm. We will also study the corresponding
algorithm in the future.

5. Conclusion

In this article, a speller based on the brain-controlled switch and
TSFC-SVEP stimulation paradigm is designed using a dry electrode.
The brain-controlled switch controls the wake-up or turn off of
the system stimulus by capturing the blink state of the subject
and whether the subject looks at the “Stop” SSVEP stimulus block
in the stimulus keyboard, which greatly improves the flexibility
of the system. At the same time, the TSFC-SSVEP experimental
stimulation paradigm proposed in this article greatly increases the
number of instructions in the stimulation paradigm by combining
SSVEP sub-stimulation modules in time and space and uses the

idea of local stimulus block flashing to avoid irrelevant influence,
which improves the recognition accuracy in a short time. The results
show that the EOG recognition accuracy of the brain-controlled
switch designed in this study is as high as 94.64%, and all subjects
can flexibly use the speller. The speller based on TSFC-SSVEP can
output 60 characters with an accuracy rate of 90.18%, It opens the
way for the portable and comfortable dry electrode BCI system in
the future.
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