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Amah Séna d’Almeida1∗ and Kokou Anani Agosseme1
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Abstract

Existence and boundedness of the solutions of the boundary value problem for the four velocity
two dimensional Broadwell model for bounded boundary conditions is proved and exact analytic
solutions are built. An application to the determination of the accommodation coefficients on the
boundaries of a flow in a box is performed.
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1 Introduction

A discrete velocity model replaces the nonlinear integro-differential Boltzmann equation by a set
of semi-linear hyperbolic partial differential equations which leads to quantitative and qualitative
interesting results in the study of several problems of gas dynamics [1, 2, 3, 4]. An advantage of
discrete kinetic theory is the possibility to find exact analytic solutions. Various exact solutions
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have been built for discrete velocity models in the one dimensional case [5, 6, 7, 8]. The situation
is quite different for two dimensional problems even in the steady case. In the pioneering work
[9] the problem of existence of a solution for the two dimensional four velocity Broadwell model
is investigated and the existence of solution proved. In this work, we prove the existence and the
boundedness of the solutions of the boundary value problem and build exact analytic solutions.
The solutions are not unique in general. The paper is organized as follows. In the section 2 we
briefly describe the model, state the boundary value problem and present the main result of the
paper which is proved in section 3. The exact analytic solution are presented in the section 4 and
an application to the determination of accommodation coefficients is performed for a gas flow in a
box in section 5.

2 Statement of the Problem

The steady flow of a gas in a rectangular box is a problem of gas dynamics the modelling of which
can lead to the boundary value problem.

We choose the origin O of the orthonormal reference (O, e⃗1, e⃗2) of R2 so that the edges of the box
are located on the lines x = 0, x = a, y = 0 and y = b, 0 < b ≤ a. The velocities of the Broadwell
model in the basis (e⃗1, e⃗2) are: u⃗1 = c(1, 0), u⃗3 = c(0, 1), u⃗i+1 = −u⃗i, i = 1, 3 where c is an arbitrary
positive constant. We denote by Ni(t

′, x′, y′) the number density of particles of velocity u⃗i in point
M(x′, y′) at time t′. The Ni are continuous functions of t′, x′ and y′. The kinetic equations for this
model [10] are:



∂N1

∂t′
+ c

∂N1

∂x′ = cs (N3N4 −N1N2) = Q′(N)

∂N2

∂t′
− c

∂N2

∂x′ = Q′(N)

∂N3

∂t′
+ c

∂N3

∂y′ = −Q′(N)

∂N4

∂t′
− c

∂N4

∂y′ = −Q′(N)

(2.1)

where s is the gas particles collision cross section.

For a steady flow, the boundary value problem has the form:

∂N1

∂x′ = s (N3N4 −N1N2) = Q′(N)

∂N2

∂x′ = −Q′(N)

∂N3

∂y′ = −Q′(N)

∂N4

∂y′ = Q′(N)

N1(0, y
′) = ϕ′

1(y
′)

N2(a, y
′) = ϕ′

2(y
′)

N3(x
′, 0) = ϕ′

3(x
′)

N4(x
′, b) = ϕ′

4(x
′)

(2.2)

The functions ϕ′
k, k = 1, 2, 3, 4 are non negative.

The main result of the paper is:

Theorem 2.1. The problem (2.2) has bounded solution N = (N1, N2, N3, N4) for bounded boundary
data ϕ′

k, k = 1, 2, 3, 4 .
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3 Existence and Boundedness of the Solution

Let N = (N1, N2, N3, N4) the total macroscopic density, ρ+(N) = N1 +N2 and ρ−(N) = N3 +N4

the partial densities of particles whose velocities have non zero component respectively on the (O, e⃗1)
and (O, e⃗2) axes. We consider for σ > 0 the following problem:

∂N1

∂x′ + σN1ρ
+(N) = Q(N) + σN1ρ

+(N) = Qσ
1 (N)

∂N2

∂x′ + σN2ρ
+(N) = −Q(N) + σN2ρ

+(N) = Qσ
2 (N)

∂N3

∂y′ + σN3ρ
−(N) = −Q(N) + σN3ρ

−(N) = Qσ
3 (N)

∂N4

∂y′ + σN4ρ
−(N) = Q(N) + σN4ρ

−(N) = Qσ
4 (N)

N1(0, y
′) = ϕ′

1(y
′)

N2(a, y
′) = ϕ′

2(y
′)

N3(x
′, 0) = ϕ′

3(x
′)

N4(x
′, b) = ϕ′

4(x
′)

(3.1)

Proposition 3.1. The problem (3.1)is equivalent to problem (2.2).

Proof. The system (3.1) is obtained from system (2.2) by adding σNiρ
±(N) to the two members

of the kinetic equation for Ni so the proof is obvious.

3.1 Existence of solutions of (3.1)

Let J = [0, a]× [0, b]. We denote by C the set of continuous functions defined on J , and by C+ its
subset of non negative functions. C4 and C4

+ respectively denote their cartesian products.

We introduce the following norms:

If z = (x′, y′) ∈ J and M = (M1, . . . , M4) ∈ C4 then ∥z∥ = |x′|+ |y′|, ∥Mi∥ = sup∥z∥≤a+b |Mi(z)|
and ∥M∥ = supi∈Λ ∥Mi∥, with Λ = {1, 2, 3, 4}.

Theorem 3.1. The problem (3.1) has a solution which belongs to C4
+ for sufficiently large σ.

For the proof, consider for M ∈ C4
+, the following boundary value problem:

∂N1

∂x′ + σN1ρ
+(M) = Q(M) + σM1ρ

+(M) = Qσ
1 (M)

∂N2

∂x′ + σN2ρ
+(M) = −Q(M) + σM2ρ

+(M) = Qσ
2 (M)

∂N3

∂y′ + σN3ρ
−(M) = −Q(M) + σM3ρ

−(M) = Qσ
3 (M)

∂N4

∂y′ + σN4ρ
−(M) = Q(M) + σM4ρ

−(M) = Qσ
4 (M)

N1(0, y
′) = ϕ′

1(y
′)

N2(a, y
′) = ϕ′

2(y
′)

N3(x
′, 0) = ϕ′

3(x
′)

N4(x
′, b) = ϕ′

4(x
′)

(3.2)

Lemma 3.2. The problem (3.2) has for given M ∈ C4
+ an unique solution which belongs to C4

+ for
sufficiently large σ..
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Proof. The problem (3.2) is a linear problem associated with (3.1) and it is solved by splitting it
into the two following boundary value problems:



∂N1

∂x′ + σN1ρ
+(M) = Qσ

1 (M)

∂N2

∂x′ + σN2ρ
+(M) = Qσ

2 (M)

Ñ1(0, y
′) = ϕ′

1(y
′)

Ñ2(a, y
′) = ϕ′

2(y
′)

(3.3)

and 

∂N3

∂y′ + σN3ρ
−(M) = Qσ

3 (M)

∂N4

∂y′ + σN4ρ
−(M) = Qσ

4 (M)

N3(x
′, 0) = ϕ′

3(x
′)

N4(x
′, b) = ϕ′

4(x
′)

(3.4)

the unique solution of (3.2) is given by:

N1(x
′, y′) = ϕ′

1 (y
′) g+(x, y) +

∫ x′

0

Qσ
1 (M)(s, y′)f+(x′ − s, y′)ds,

N2(x
′, y′) = ϕ′

2 (y
′) f+(x′ − a, y′)−

∫ a

x′
Qσ

2 (M)(s, y′)f+(x′ − s, y′)ds,

N3(x
′, y′) = ϕ′

3 (x
′) g−(x′, y′) +

∫ y′

0

Qσ
3 (M)(s, y′)f−(x′, y′ − s)ds,

N4(x
′, y′) = ϕ′

4 (x
′) f−(x′, y′ − b)−

∫ b

y

Q̃σ
4 (M)(x′, s)f−(x′, y′ − s)ds.

(3.5)

with:

g+(x′, y′) = exp
(
−σ
∫ x′

0
ρ+(M)(a, y′)da

)
, g−(x′, y′) = exp

(
−σ
∫ y′

0
ρ−(M)(x′, a)da

)
f+(x′ − a, y′) =

g+(x′, y′)

g+(a, y′)
, f−(x′, y′ − a) =

g−(x′, y′)

g−(x′, a)

(3.6)

For sufficiently large σ, Qσ
i is positive ∀i ∈ Λ. Hence as ϕ′

i is positive ∀i ∈ Λ, Ni(x
′, y′) > 0, i = 1, 3,

∀(x′, y′) ∈ J and Ni(x
′, y′) > 0, i = 2, 4 ∀(x′, y′) ∈ J if and only if:

ϕ′
2 (y

′) >

∫ a

x′ Q
σ
2 (M)(s, y′)f+(x′ − s, y′)ds

f+(x′ − a, y′)
=

∫ a

x′
Qσ

2 (M)(s, y′)f+(a− s, y′)ds,

ϕ′
4 (x

′) >

∫ b

y′ Q
σ
4 (M)(x′, s)f−(x′, y′ − s)ds

f−(x′, y′ − b)
=

∫ b

y′
Qσ

4 (M)(x′, s)f−(x′, b− s)ds.

(3.7)

As 0 < f+(a− s, y′) < 1, ∀(s, y′) ∈ J and 0 < f−(x′, b− s) < 1, ∀(x′, s) ∈ J we have∫ a

x′ Q
σ
2 (M)(s, y′)f+(a− s, y′)ds ≤ a sup(x′,y′)∈J Qσ

2 (M)∫ b

y′ Q
σ
4 (M)(x′, s)f−(x′, b− s)ds ≤ b sup(x′,y′)∈J Qσ

4 (M)
(3.8)

and it sufficient that ϕ′
2 > a sup(x′,y′)∈J Qσ

2 (M) and ϕ′
4 > b sup(x′,y′)∈J Qσ

4 (M) to have N ∈ C4
+.

Thus for σ > 0 the operator Tσ defined by Tσ(M) = N where N is the unique solution of (3.2) is
well defined and satisfies:

Lemma 3.3. Tσ is continuous and compact on J .
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Proof. We have Tσ(M) = N if and only if N is given by the relations (3.6) from which we deduce:

|N1(x
′, y′)| 6 |ϕ′

1 (y
′)|
∣∣g+(x′, y′)

∣∣+ ∣∣∣∫ x′

0
Qσ

1 (M)(s, y′)f+(x′ − s, y′)ds
∣∣∣ ,

|N2(x
′, y′)| 6 |ϕ′

2 (y
′)|
∣∣f+(x′ − a, y′)

∣∣+ ∣∣∣∫ x′

a
Qσ

2 (M)(s, y′)f+(x′ − s, y′)ds
∣∣∣ ,

|N3(x
′, y′)| 6 |ϕ′

3 (x
′)|
∣∣g−(x′, y′)

∣∣+ ∣∣∣∫ y′

0
Qσ

3 (M)(x′, s)f−(x′, y′ − s)ds
∣∣∣ ,

|N4(x
′, y′)| 6 |ϕ′

4 (x
′)|
∣∣f−(x′, y′ − b)

∣∣+ ∣∣∣∫ y′

b
Qσ

4 (M)(x′, s)f−(x′, y′ − s)ds
∣∣∣ .

(3.9)

In one hand using the Generalized Mean Value Theorem, as g+ and g− are strictly positive functions,
we can find c1 ∈ ]0, x′[, c2 ∈ ]x′, a[, c3 ∈ ]0, y′[ and c4 ∈ ]y′, b[ such that

∫ x′

0
Qσ

1 (M)(s, y′)f+(x′ − s, y′)ds = Qσ
1 (M)(c1, y

′)
∫ x′

0
f+(x′ − s, y′)ds,∫ a

x′ Q
σ
2 (M)(s, y′)f+(x′ − s, y′)ds = Qσ

2 (M)(c2, y
′)
∫ a

x′ f
+(x′ − s, y′)ds,∫ y′

0
Qσ

3 (M)(x′, s)f−(x′, y′ − s)ds = Qσ
3 (M)(x′, c3)

∫ y′

0
f−(x′, y′ − s)ds,∫ b

y′ Q
σ
4 (M)(x′, s)f−(x′, y′ − s)ds = Qσ

4 (M)(x′, c4)
∫ b

y′ f
−(x′, y′ − s)ds

(3.10)

In the other hand in accordance with the Mean Value Theorem we can find d1 ∈ ]0, x′[, d2 ∈ ]x′, a[,
d3 ∈ ]0, y′[ and d4 ∈ ]y′, b[ such that:∫ x′

0
f+(x′ − s, y′)ds = x′f+(x′ − d1, y

′),∫ a

x′ f
+(x′ − s, y′)ds = (a− x′)f+(x′ − d2, y

′),∫ y′

0
f−(x′, y′ − s)ds = y′f−(x′, y′ − d3),∫ b

y′ f
−(x′, y′ − s)ds = (b− y′)f−(x′, y′ − d4)

(3.11)

Hence letting A+(y′) = exp
(
σ
∫ a

0
ρ+(M)(s− a, y′)ds

)
, A−(x′) = exp

(
σ
∫ b

0
ρ−(M)(x′, s− b)ds

)
we

get:

|N1(x
′, y′)| 6 |ϕ′

1 (y
′)|+ |Qσ

1 (M)(c1, y
′)| ,

|N2(x
′, y′)| 6 |ϕ′

2 (y
′)|
∣∣A+ (y′)

∣∣+ |Qσ
2 (M)(c2, y

′)| ,
|N3(x

′, y′)| 6 |ϕ′
3 (x

′)|+ |Qσ
3 (M)(x′, c3)| ,

|N4(x
′, y′)| 6 |ϕ′

4 (x
′)|
∣∣A− (x′)

∣∣+ |Qσ
4 (M)(x′, c4)|

(3.12)

since
∣∣g±(x′, y′)

∣∣ < 1 . From which we infer

∥Tσ(M)∥ ≤ max
(
∥ϕ′

1∥, ∥ϕ′
2∥∥A+∥, ∥ϕ′

3∥, ∥ϕ′
4∥∥A−∥

)
+ ∥Qσ(M)∥ (3.13)

Thus Tσ is continuous and bounded since A±, ϕ′
i and Qσ

i , i ∈ Λ are continuous and bounded. Hence
if M is bounded then N = Tσ(M) is bounded since ∥Tσ(M)∥ ≤ ∥Tσ∥ · ∥M∥.

Otherwise if N is the solution of (3.2) then ∀ i ∈ Λ,
∂Ni

∂x′ + σNiρ
+(M) = Qσ

i (M), i = 1, 2

∂Ni

∂y′ + σNiρ
−(M) = Qσ

i (M), i = 3, 4

Thus 
∂Ni

∂x′ = Qσ
i (M)− σNiρ

+(M), i = 1, 2

∂Ni

∂y′ = Qσ
i (M)− σNiρ

+(M) i = 3, 4

5
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And 
∣∣∣∣∂Ni

∂x′

∣∣∣∣ 6 Qσ
i (M) + σNiρ

+(M) i = 1, 2∣∣∣∣∂Ni

∂y′

∣∣∣∣ 6 Qσ
i (M) + σNiρ

+(M) i = 3, 4

Thus if M is bounded,
∂Ni

∂x′ and
∂Ni

∂y′ are uniformly bounded and it exists α and β such that∣∣∣∣∂Ni

∂x′

∣∣∣∣ < α in [0, a]

and ∣∣∣∣∂Ni

∂y′

∣∣∣∣ < β in [0, b]

Given z1 = (x′
1, y

′
1) ∈ J and z2 = (x′

2, y
′
2) ∈ J . We deduce from the Mean Value Theorem, that it

exists z0 = (x′
0, y

′
0) ∈ [z1, z2] ⊂ J such that

Ni(z1)−Ni(z2) = dNi(z0)(z1 − z2)

with
[z1, z2] =

{
z ∈ R2/z = t(z1 − z2) + z2, t ∈ [0, 1]

}
and

dNi(z0)(h) =
∂Ni

∂x′ (z0)h1 +
∂Ni

∂y′ (z0)h2 ∀h = (h1, h2) ∈ R2

Hence

|Ni(z1)−Ni(z2)| = |dNi(z0)(z1 − z2)|
≤ ∥dNi(z0)∥∥z1 − z2∥

with

∥dNi(z0)∥ = sup∥h∥≤1

|dNi(z0)|
∥h∥

= sup∥h∥≤1

∣∣∣∣∂Ni

∂x′ (z0)h1 +
∂Ni

∂y′ (z0)h2

∣∣∣∣
|h1|+ |h2|

But ∣∣∣∣∂Ni

∂x′ (z0)h1 +
∂Ni

∂y′ (z0)h2

∣∣∣∣ ≤
∣∣∣∣∂Ni

∂x′ (z0)

∣∣∣∣ |h1|+
∣∣∣∣∂Ni

∂y′ (z0)

∣∣∣∣ |h2|

≤ max

(∣∣∣∣∂Ni

∂x′ (z0)

∣∣∣∣ , ∣∣∣∣∂Ni

∂y′ (z0)

∣∣∣∣) (|h1|+ |h2|)

Thus

∣∣∣∣∂Ni

∂x′ (z0)h1 +
∂Ni

∂y′ (z0)h2

∣∣∣∣
|h1|+ |h2|

≤ max

(∣∣∣∣∂Ni

∂x′ (z0)

∣∣∣∣ , ∣∣∣∣∂Ni

∂y′ (z0)

∣∣∣∣)
≤ max(α, β)

That is ∥dNi(z0)∥ ≤ max(α, β). Then |Ni(z1)−Ni(z2)| ≤ max(α, β)∥z1 − z2∥. It is sufficient that

∥z1 − z2∥ <
ϵ

max(α, β)
to have |Ni(z1)−Ni(z2)| < ϵ for all i ∈ Λ.

6
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We prove that for all solution N of (3.2):

∀ϵ > 0, ∃ξ > 0, ∥z1 − z2∥ < ξ ⇒ |Ni(z1)−Ni(z2)| < ϵ ∀ z1, z2 ∈ J

The set of the solutions of (3.2) is thus equicontinuous so Tσ is compact on every bounded subset
of C4

+.

Lemma 3.4. Every solution of the equation N = λTσ(N), 0 < λ < 1, is bounded.

Proof. N is a solution of N = λTσ(N) if and only if

∂N1

∂x′ + σN1ρ
+(N) = λQσ

1 (N) (3.14.1)

∂N2

∂x′ + σN2ρ
+(N) = λQσ

2 (N) (3.14.2)

∂N3

∂y′ + σN3ρ
−(N) = λQσ

3 (N) (3.14.3)

∂N4

∂y′ + σN4ρ
−(N) = λQσ

4 (N) (3.14.4)

N1(0, y
′) = λϕ′

1(y
′) (3.14.5)

N2(a, y
′) = λϕ′

2(y
′) (3.14.6)

N3(x
′, 0) = λϕ′

3(x
′) (3.14.7)

N4(x
′, b) = λϕ′

4(x
′) (3.14.8)

(3.14)

As the partial macroscopic densities ρ+(N) and ρ−(N) are conserved for the Broadwell model,
making the sums (3.14.1) + (3.14.2) and (3.14.3) + (3.14.4) , we obtain for their determination the
following system of partial differential equations:


∂[ρ+(N)]

∂x′ + (1− λ)σ
[
ρ+ (N)

]2
= 0 (3.15.1)

∂[ρ−(N)]
∂y′ + (1− λ)σ

[
ρ− (N)

]2
= 0 (3.15.2)

(3.15)

The unique solution of the system (3.15) is obviously
ρ+(x′, y′) =

1

(1− λ)σx′ + h+(y′)

ρ−(x′, y′) =
1

(1− λ)σy′ + h−(x′)

(3.16)

The problem (3.14) is a two point boundary value problem and only a part of the data are given
at each boundary namely N1(0, y

′) on the line x′ = 0, N2(a, y
′) on the line x′ = a, N3(x

′, 0) on the
line y′ = 0 and N4(x

′, b) on the line y′ = b. We thus introduce the positive functions of y′, α+
k and

the positive functions of x′, α−
k , k = 0, 1 such that

N2 (0, y
′) = α+

0 (y
′)N1(0, y

′)
N1 (a, y

′) = α+
1 (y

′)N2(a, y
′)

N4 (x
′, 0) = α−

0 (x
′)N3(x

′, 0)
N3 (x

′, b) = α−
1 (x

′)N4(x
′, b)

(3.17)

We emphazise the fact that the relations (3.17) are by no means reflection laws and are obtained
merely by comparing functions of the same variables at the boundaries of the rectangle J and
consequently are general. In the particular case of impermeable boundaries , the vanishing of the
normal velocity on each boundary yields the relations

N2 (0, y
′) = N1(0, y

′) at x′ = 0 ∀y′ ∈ [0, b] ,
N1 (a, y

′) = N2(a, y
′) at x′ = a ∀y′ ∈ [0, b] ,

N4 (x
′, 0) = N3(x

′, 0) at y′ = 0 ∀x′ ∈ [0, a] ,
N3 (x

′, b) = N4(x
′, b) at y′ = b ∀x′ ∈ [0, a] .

(3.18)

7
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which amount to take α+
k (y

′) = 1 and α−
k (x

′) = 1 ∀(x′, y′) ∈ J , k = 0, 1.

With the relations (3.17) we can compute the values of ρ± at the boundaries from which we get:

h+ (y′) =
1[

1 + α+
0 (y

′)
]
λϕ′

1(y
′)

=
1[

1 + α+
1 (y

′)
]
λϕ′

2(y
′)

+ σ(λ− 1)

h− (x′) =
1[

1 + α−
0 (x

′)
]
λϕ′

3(x
′)

=
1[

1 + α−
1 (x

′)
]
λϕ′

4(x
′)

+ σ(λ− 1)
(3.19)

from the systems (3.16) and (3.19) we deduce

ρ+ (x′, y′) =
1

(1− λ)σx′ +
1[

1 + α+
0 (y

′)
]
λϕ′

1(y
′)

ρ− (x′, y′) =
1

(1− λ)σy′ +
1[

1 + α−
0 (x

′)
]
λϕ′

3(x
′)

(3.20)

Thus for 0 < λ < 1 , ρ+ and ρ− are continuous and bounded as ϕ′
i, i = 1, 3 and α±

k , k = 0, 1. The
mean density is thus bounded and so are the number densities Ni,∀i ∈ Λ.

We point out the fact that for λ = 1 the solutions ρ+ and ρ− of (3.20) are not singular and moreover
satisfy the conservation equations of the partial macroscopic densities. Accordingly they depend
upon one variable.

Finally we conclude to the existence of solution of problem (3.1) by using the fixed point theorem
of Schaefer [11]:

Theorem 3.5. Let T be a continuous and compact mapping of a Banach space X into itself, such
that the set {x′ ∈ X ′, x′ = λT (x′)} is bounded ∀λ, 0 < λ < 1. Then T has a fixed point.

4 Exact Solutions of (3.1)

For λ = 1, the densities (3.20) are solutions of the conservation equations of the partial mean
densities ρ± of the model . Hence ρ+ and ρ− are known and we have:

ρ+ (N) (y′) = (N1 +N2) (y
′), ρ− (N) (x′) = (N3 +N4) (x

′).

Then {
N2(x

′, y′) = ρ+(y′)−N1(x
′, y′)

N4(x
′, y′) = ρ−(x′)−N3(x

′, y′)
(4.1)

and the system (3.1) becomes:

∂N1

∂x′ = s

[(
N1 −

ρ+

2

)2

−
(
N3 −

ρ−

2

)2

+
ρ−

2 − ρ+
2

4

]
= Q1(N)

∂N3

∂y′ = −s

[(
N1 −

ρ+

2

)2

−
(
N3 −

ρ−

2

)2

+
ρ−

2 − ρ+
2

4

]
= −Q1(N)

N2(x
′, y′) = ρ+(y′)−N1(x

′, y′)
N4(x

′, y′) = ρ−(x′)−N3(x
′, y′)

N1(0, y
′) = ϕ′

1(y
′)

N2(a, y
′) = ϕ′

2(y
′)

N3(x
′, 0) = ϕ′

3(x
′)

N4(x
′, b) = ϕ′

4(x
′)

(4.2)
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The boundary value problem for the microscopic densities Ni, i = 1, 3 is thus:

∂N1

∂x′ = −∂N3

∂y′ = s

[(
N1 −

ρ+

2

)2

−
(
N3 −

ρ−

2

)2

+
ρ−

2 − ρ+
2

4

]
= Q1(N)

N1(0, y
′) = ϕ′

1(y
′)

N1(a, y
′) = ρ+(y′)− ϕ′

2(y
′)

N3(x
′, 0) = ϕ′

3(x
′)

N3(x
′, b) = ρ−(x′)− ϕ′

4(x
′)

(4.3)

Letting F1(x
′, y′) = N1(x

′, y′)− ρ+

2
(y′), F3(x

′, y′) = N3(x
′, y′)− ρ−

2
(x′) the system (4.3) take the

form: 

∂F1

∂x′ = −∂F3

∂y′ = s

(
F 2
1 − F 2

3 +
ρ−

2 − ρ+
2

4

)
= Q1(F )

F1(0, y
′) =

ρ+

2
(y′)− ϕ′

1(y
′)

F1(a, y
′) = ϕ′

2(y
′)− ρ+(y′)

2

F3(x
′, 0) =

ρ−(x′)

2
− ϕ′

3(x
′)

F3(x
′, b) = ϕ′

4(x
′)− ρ−(x′)

2

(4.4)

The system (4.4) has a simpler form but its exact resolution is complicated. However it permits to
find exact solutions of the problem (4.2) in particular cases.

4.1 Maxwellian solutions

An obvious solution of system (4.4) is F1(x
′, y′) =

ρ+(y′)

2
and F3(x

′, y′) =
ρ−(x′)

2
which leads to

ϕ′
1(y

′) = ρ+(y′), ϕ′
3(x

′) = ρ−(x′), Q1(F ) = 0 and ϕ′
2 = ϕ′

4 = 0. Hence the microscopic densities
N2 and N4 are zero and the model is reduced to a two velocity model. This solution is clearly
unphysical.

The solution F1(x
′, y′) =

1

2

√
ρ+2(y′)− 4c1, F3(x

′, y′) =
1

2

√
ρ−2(x′)− 4c1 for c1 > 0 is also a

maxwellian solution. Hence:

N1(x
′, y′) =

ρ+(y′)

2
+

1

2

√
ρ+2(y′)− 4c1

N2(x
′, y′) =

ρ+(y′)

2
− 1

2

√
ρ+2(y′)− 4c1

N3(x
′, y′) =

ρ−(x′)

2
+

1

2

√
ρ−2(x′)− 4c1

N4(x
′, y′) =

ρ−(x′)

2
− 1

2

√
ρ−2(x′)− 4c1

(4.5)

Taking into account the boundary conditions, we get:

ρ+(y′) = ϕ′
1(y

′) + ϕ′
2(y

′)
ρ−(x′) = ϕ′

3(x
′) + ϕ′

4(x
′)

c1 = ϕ′
1(y

′)ϕ′
2(y

′) = ϕ′
3(x

′)ϕ′
4(x

′)
(4.6)

The validity of the third relation (4.6) imposes the dependence of the boundary data in the form:

ϕ′
2(y

′) = c1
ϕ′
1(y

′)

ϕ′
4(x

′) = c1
ϕ′
3(x

′)

(4.7)

9
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The Maxwellian solutions are thus:

N1(x
′, y′) = ϕ′

1(y
′)

N2(x
′, y′) = c1

ϕ′
1(y

′)

N3(x
′, y′) = ϕ′

3(x
′)

N4(x
′, y′) = c1

ϕ′
3(x

′)

ϕ′
1
2
> c1 , ϕ′

3
2
> c1

(4.8)

The solutions (4.8) are associated to the macroscopic variables:

ρ = ϕ′
1 + ϕ′

3 +
c1
ϕ′
1
+ c1

ϕ′
3

ρU = c(ϕ′
1 − c1

ϕ′
1
)

ρV = c(ϕ′
3 − c1

ϕ′
3
)

(4.9)

So they are merely particular expressions of the unique maxwellian solutions of the model associated
to the macroscopic variables ρ, U and V defined by:

N1M =
ρ

4
(1 + u+ v) (1 + u− v)

N2M =
ρ

4
(1− u− v) (1− u+ v)

N3M =
ρ

4
(1 + u+ v) (1− u+ v)

N4M =
ρ

4
(1− u− v) (1 + u− v)

u =
U

c
, v =

V

c

(4.10)

4.2 Non maxwellian solutions

For ρ+, ρ−, k and l constant such that kρ− − lρ+ ̸= 0 a solution of (4.2) is given by:

N1(x
′, y′) =

k

M(x′, y′)

N3(x
′, y′) =

l

M(x′, y′)

M(x′, y′) = c0 exp

[
2s
(
kρ− − lρ+

)(x′

k
− y′

l

)]
+

k2 − l2

kρ− − lρ+

(4.11)

This solution is non maxwellian whatever ρ+, ρ−, k and l when kρ− − lρ+ ̸= 0 as c0 is a non zero
scaling parameter. Moreover when ρ+ = ρ− = ρ constant we have a solution given by:

N1(x
′, y′) =

ρ

2
+

c2c3
2s (c22 − c23)

[−c2 + c3 tanh (c1 + c2x
′ + c3y

′)]

N3(x
′, y′) =

ρ

2
+

c2c3
2s (c22 − c23)

[c3 − c2 tanh (c1 + c2x
′ + c3y

′)]
(4.12)

The fact that we have a maxwellian and two non maxwellian solutions for constant ρ+ and ρ−

shows the non uniqueness of the solutions of the system (4.2) in general.

5 Steady Flow in Box

We investigate in this section the flow of a discrete gas in a box in order to compute accommodation
coefficients. In the statement of a flow problem, in contrast to the boundary value problem (2.2) in
which they are assumed known, the boundary conditions ϕ′

i depend upon the accommodation
coefficients which describe the interactions between the particles of the gas and those of the

10
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boundaries of the flow domain. The accommodation coefficients are unknowns of the problem and
classically one has to prescribe reflection laws to get additional relations for their determination
which is achieved only when the mathematical problem is solved [6, 12, 13].

We choose the reference quantities n0 = 2
√
c1 and a respectively for the densities and the lenghts

and introduce the following dimensionless variables and parameters:

x = x′

a
, y = y′

a
, ε = b

a
, Kn = (sn0a)

−1, Ñi =
Ni
n0

, ϕi =
ϕ′
i

n0
, Q̃ = Q

sn2
0
. (5.1)

The problem (2.2) is put in the nondimensional form:

∂Ñ1

∂x
= 2

Knε

(
Ñ3Ñ4 − Ñ1Ñ2

)
= Q̃(Ñ)

∂Ñ2

∂x
= −Q̃(Ñ)

∂Ñ3

∂y
= −εQ̃(Ñ)

∂Ñ4

∂y
= εQ̃(Ñ)

Ñ1(0, y) = ϕ1(y)

Ñ2(1, y) = ϕ2(y)

Ñ3(x, 0) = ϕ3(x)

Ñ4(x, ε) = ϕ4(x)

(5.2)

The dimensionless macroscopic variables of the flow are the mean density ρ, the tangential velocity
u and the transversal velocity v given by:

ρ = Ñ1 + Ñ2 + Ñ3 + Ñ4 = ρ+(y) + ρ−(x)

ρu = Ñ1 − Ñ2 = 2Ñ1 − ρ+(y)

ρv = Ñ3 − Ñ4 = 2Ñ3 − ρ−(x)

(5.3)

The Maxwellian densities of the model associated with the dimensionless macroscopic variables ρ,
u and v are:

Ñ1M =
ρ

4
(1 + u+ v) (1 + u− v)

Ñ2M =
ρ

4
(1− u− v) (1− u+ v)

Ñ3M =
ρ

4
(1 + u+ v) (1− u+ v)

Ñ4M =
ρ

4
(1− u− v) (1 + u− v)

(5.4)

The microscopic densities of the discrete gas in Maxwellian equilibrium with a wall are the maxwellian
densities associated with 1, the tangential and transversal velocities of the wall. Assume that the
macroscopic velocity of the box is U⃗w = (uw(x, y), vw(x, y)). The microscopic densities of the gas
in maxwellian equilibrium with the box are:

Ñ1M =
1

4
(1 + uw + vw) (1 + uw − vw)

Ñ2M =
1

4
(1− uw − vw) (1− uw + vw)

Ñ3M =
1

4
(1 + uw + vw) (1− uw + vw)

Ñ4M =
1

4
(1− uw − vw) (1 + uw − vw)

(5.5)

It is usually assumed when the exchanges of mass or energy of a gas and its surrounding only result
from the collisions of its particles with its boundaries that only the microscopic densities of the

11
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reflected particles are known near the walls [13]. We can compare these densities to those of the
fictituous gas in equlibrium with each wall and introduce the functions li(y), i = 1, 2 and lj(x),
j = 3, 4 such that:

Ñ1(0, y) =
l1(y)

4
(1 + uw(0, y) + vw(0, y)) (1 + uw(0, y)− vw(0, y))

Ñ2(1, y) =
l2(y)

4
(1− uw(1, y)− vw(1, y)) (1− uw(1, y) + vw(1, y))

Ñ3(x, 0) =
l3(x)

4
(1 + uw(x, 0) + vw(x, 0)) (1− uw(x, 0) + vw(x, 0))

Ñ4(x, ε) =
l4(x)

4
(1− uw(x, ε)− vw(x, ε)) (1 + uw(x, ε)− vw(x, ε))

(5.6)

Using the form (4.8) of the maxwellian solutions (4.5) we have:

Ñ1(0, y) = ϕ1(y)

Ñ2(1, y) =
1

4ϕ1(y)
Ñ3(x, 0) = ϕ3(x)

Ñ4(x, ε) =
1

4ϕ3(x)

(5.7)

We can thus explicitly determine the functions lk, k = 1, 3 which are given by:

l1(y) =
4ϕ1(y)

[1 + uw(0, y) + vw(0, y)] [1 + uw(0, y)− vw(0, y)]

l2(y) =
1

ϕ1(y) [1− uw(1, y)− vw(1, y)] [1− uw(1, y) + vw(1, y)]

l3(x) =
4ϕ3(x)

[1 + uw(x, 0) + vw(x, 0)] [1− uw(x, 0) + vw(x, 0)]

l4(x) =
1

ϕ3(x) [1− uw(x, ε)− vw(x, ε)] [1 + uw(x, ε)− vw(x, ε)]

(5.8)

We introduce now reflection laws. We prescribe that particles of opposite velocities are reflected
with the same accommodation coefficients. That is:

l1(y) = l2(y), ∀y ∈ [0, ε]
l3(x) = l4(x), ∀x ∈ [0, 1]

(5.9)

We infer from these additional relations:

ϕ1(y) =
1

2

√
{[1+uw(0,y)]2−vw(0,y)2}
{[1−uw(1,y)]2−vw(1,y)2}

ϕ3(x) =
1

2

√
{[1+vw(x,0)]2−uw(x,0)2}
{[1−vw(x,ε)]2−uw(x,ε)2}

l1(y) = 1√
{[1+uw(0,y)]2−vw(0,y)2}{[1−uw(1,y)]2−vw(1,y)2}

l3(x) = 1√
{[1+vw(x,0)]2−uw(x,0)2}{[1−vw(x,ε)]2−uw(x,ε)2}

.

(5.10)

The relations (5.11) give the boundary data ϕj in terms of the macroscopic variables of the box’s
walls. In fact the walls do not move freely as we assume in our computations. Thus when we take
into account the fact that for a solid box all the walls have the same constant velocity we have:

ϕ1 =
1

2

√
[1+uw+vw ][1+uw−vw ]
[1−uw−vw ][1−uw+vw ]

ϕ3 =
1

2

√
[1+uw+vw ][1−uw+vw ]
[1−uw−vw ][1+uw−vw ]

l1 = 1√
[1+uw+vw ][1+uw−vw ][1−uw−vw ][1−uw+vw ]

l3 = 1√
[1+uw+vw ][1−uw+vw ][1−uw−vw ][1+uw−vw ]

.

(5.11)
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The accommodation coefficients are equal although the boundary conditions are different in this
more realistic case. Hence the microscopic densities of the reflected particles at the wall are
proportional to the microscopic densities of the fictitous gas in equilibrium with the wall correspon-
ding to those particles. As the coefficient of proportionality is the same we have the diffuse reflection
law of interaction [6, 13].

6 Conclusions

We show that the boundary value problem for the two dimensional Broadwell model has a bounded
solution. Only positivity and boundedness are assumed for the data. The solution is not unique.
Some exact analytic solutions are built. An application to the determination of the accommodation
coefficients on the boundaries of a gas flow in a box is performed. Exact analytic expressions of the
accommodation coefficients are given and the diffuse reflection law is obtained in a particular case.
The method is simple and it will be interesting to check its applicability to more complex discrete
models.
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condensation. CRMécanique. 2008;336:612-615.

[3] d’Almeida A, Gatignol R. The half space problem in discrete kinetic theory. Mathematical
Models and Methods in Applied Sciences. 2003;13:99-119.

[4] Platkowski T, Illner R. Discrete velocity models of the Boltzmann equation: a survey on the
mathematical aspects of the theory. SIAM Review. 1988;213-255.

[5] d’Almeida A. Exact solutions for discrete velocity models. Mechanic Research Communications.
2007;34:405-409.

[6] d’Almeida A, Gatignol R. Boundary conditions for discrete models of gases and applications
to Couette flows. Computational Fluid Dynamics (Publisher: D. Leutloff, D. and Srivastava,
R. C.), Eds. Springer-Verlag. 1995;115-130.

[7] Cornille H, d’Almeida A. Temperature and pressure criteria for half- space discrete velocity
models. Eur. J. Mech. Fluids B. 2002;21:355-370.

[8] Natta T, Agosseme KA, d’Almeida A. Existence and uniqueness of solution of the ten discrete
velocity model C1. JAMCS. 2018;29:1-12.

[9] Cercignani C, Illner R, Shinbrot M. A boundary value problem for the two dimensional
broadwell model. Commun. Math. Phys. 1988;114:687-698.

[10] Cabannes H. The discrete boltzmann equation (Theory and applications). Lecture Notes,
Spring Quarter; 1980.

[11] Smart DR. Fixed point theorems. Cambridge University Press, New York; 1974.

13



d’Almeida and Agosseme; JAMCS, 34(4): 1-14, 2019; Article no.JAMCS.53058

[12] Gatignol R. Kinetic theory boundary conditions for discrete velocity gases. Phys. Fluids.
1977;20:2022-2030.

[13] Cercignani C. Mathematical methods in kinetic theory. Plenum Press; 1969.

——————————————————————————————————————————————–
c⃝2019 d’Almeida and Agosseme; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sdiarticle4.com/review-history/53058

14

http://creativecommons.org/licenses/by/4.0

	Introduction
	Statement of the Problem
	Existence and Boundedness of the Solution
	Existence of solutions of (3.1)

	Exact Solutions of (3.1)
	Maxwellian solutions
	Non maxwellian solutions

	Steady Flow in Box
	Conclusions
	REFERENCES

