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Abstract

The author presents a simple approach which can be used to tackle some well-known Diophantine
problems. A self-contained argument is used to furnish a novel proof of one such result first
stated by Pierre de Fermat in the 1630s.
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1 Introduction

Define n to be any integer such that n > 1. Suppose that a, b, c each constitute a general set of all
positive integers satisfying

cn = an − bn, (1.1)

where a > b > c. It is easily established that

an − bn = (a− b)(an−1 + an−2b+ . . .+ bn−1). (1.2)

Some special cases of the insolubility of (1.1) have been examined in both [1] and [2]. Up until now,
the proof of Fermat’s Last Theorem has been regarded as being a consequence of the modularity
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theorem for semistable elliptic curves which was proved in [3] and [4] by Wiles and Taylor, both
of whom had paved the way for the proof of the full modularity theorem (in [5], [6] and [7])
which settled a longstanding conjecture formulated by Taniyama, Shimura and Weil. However,
these profound accomplishments have acquired such a great deal of admiration that they have
significantly strengthened the prevailing belief that any proof of Fermat’s Last Theorem lies far
beyond the scope of more direct elementary methods. A new proof showing that (1.1) is insoluble
for n ≥ 3 is provided in the subsequent section. The following lemma is a very simple yet stunningly
powerful result, as it asserts that if (1.1) holds then n must be strictly bounded from above by c.

2 Analysis

Lemma 1. Suppose that n ≥ c. Then (1.1) has no solution.

Proof. Let
M = (an−1 + an−2b+ . . .+ bn−1). (2.1)

By using the fact that a > b > c and that there are n terms on the right hand side of (2.1),
it can be deduced that M > ncn−1. Since n ≥ c, it follows that M > cn. This leads to a
contradiction, because it is evident from (1.1), (1.2) and (2.1) that M ≤ cn. The statement of the
lemma follows.

The next lemma is a very basic result which is included for the sake of completeness.

Lemma 2. Suppose that x, y, z are any distinct positive integers such that

zν = xν + yν , (2.2)

where x < y < z and ν is some integer strictly greater than 1. Then ν is a unique integer.

Proof. Suppose that m is some nonzero integer such that

zν+m = xν+m + yν+m. (2.3)

By multiplying both sides of (2.2) by zm, it is clear that

zν+m = xν+m ·
( z

x

)m

+ yν+m ·
(
z

y

)m

. (2.4)

Since x < z and y < z, the right hand side of (2.4) is either larger or smaller than that of (2.3) if
m > 0 or m < 0, respectively. However, the left hand sides of both (2.3) and (2.4) are equal to each
other. This contradiction negates the assumption that there exists some nonzero integer m. The
statement of the lemma follows easily.

Theorem 1. Suppose that n ≥ 3. Then (1.1) has no solution.

Proof. Recall that the triple (a, b, c) is regarded as being a general solution of (1.1) for any integer
n greater than or equal to 2. Consider a distinct solution of (1.1) so that (a, b, c) = (a1, b1, c1) in
this special case, where a1, b1, c1 are each distinct positive integers. By considering Lemma 1, it
is evident that 1 < n < c. By considering that 1 < n < c, where n and c are each represented
by a subset of integers, and that a1, b1, c1 may share any common factor greater than 1, it follows
that c = f1(u1, . . . , ui), where f1 is a function exclusively represented by one or more possible
positive integer-valued functions of necessarily all of the positive indeterminates u1, . . . , ui and
i ≥ 1. For example, in the case when n = 2, it is well-known [8] that a = u1(u

2
2 + u2

3) and
{b, c} ∈

{
u1(u

2
2 − u2

3), u1(2u2u3)
}
such that b > c, where u1, u2, u3 are all positive integers. (Note
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that if n = 1 was considered, then this would imply that c = f1(u1) = u1, where i = 1, so that c
could be any positive integer, b could be any integer strictly greater than c such that b ≥ 2, and a is
equal to the sum of b and c such that a ≥ 3 by using (1.1). It is clear that c cannot be any positive
integer for n ≥ 2 since a > b > c ≥ 3 from an application of Lemma 1. For all n ≥ 2 satisfying
(1.1), it follows that c is equal to a function of u1, . . . , ui which is different from what it would be
for n = 1. Similar arguments apply for a and b. Hence the case where n = 1 can be disregarded.)
Since n and c are each represented by a subset of integers such that 1 < n < c, it is possible to
distinguish two separate cases which characterize n. In the first case, n can be expressed by some
function f2 of indeterminates which (since 1 < n < c) in fact are all also used in f1 to determine c,
so that n = f2(u1, . . . , ui). In the second case, n is independent of u1, . . . , ui such that it is given
by a positive number of fixed integers which are strictly greater than 1 and strictly less than c.
Suppose that p is any given prime. It can then be determined from (1.1) that the value of n is
identical for both the special solutions (a1, b1, c1) and (a1 · p, b1 · p, c1 · p). Assume that n can be
written as n = f2(u1, . . . , ui). The last two statements imply that n is expressible (in terms of one
or more of u1, . . . , ui with no other unknowns) as an improper fraction in which no summand from
either the numerator or denominator is a unique nonzero integer constant, because, by considering
that f1(u1, . . . , ui) = c1 · p in the case of the special solution given by (a1 · p, b1 · p, c1 · p) and
that for 1 ≤ r ≤ i every ur can be replaced by p · ur, the same power of p can be factored out
of both the numerator and denominator of this top-heavy fraction representing n. It follows that
the denominator of this improper fraction expressing n is given by g(u1, . . . , ui), where g is some
function of necessarily all of u1, . . . , ui. Since n is an integer, this implies that the corresponding
numerator of the same improper fraction is given by n · g(u1, · · · , ui). Then

n =
n · g(u1, . . . , ui)

g(u1, . . . , ui)
. (2.5)

By substituting the right hand side of (2.5) into n on the right hand side of (2.5) and then cancelling
common terms, it is apparent that n need not be a function of u1, . . . , ui. This contradicts the
assumption made earlier that n can be expressed by some function of indeterminates. Hence n is
given by one or more fixed integers strictly less than c, and n is independent of u1, . . . , ui. Since
c = f1(u1, . . . , ui), it follows that n need not be expressed as a function which contains c. Similarly,
by replacing c with a and b in the preceding arguments (except in the reasoning used earlier to
disregard the case where n = 1 in which a and b are already considered) involving f1 respectively,
it is evident that n need not be expressed as a function of a, b, c, i.e. n is independent of a, b, c.
Recall that it has been established that n need not be expressed by any function of indeterminates.
By considering (1.1) with the last two sentences and by applying Lemma 2, it is easily seen that n
must be a unique integer which is strictly less than c, regardless of the permissible values of (a, b, c).
Recall that it may be assumed without loss of generality that n > 1. By noting it was mentioned
earlier that (1.1) can hold if n = 2 and i = 3, the desired result follows as a consequence of the last
two statements.

3 Conclusion

Fermat’s Last Theorem has been established by using an elementary proof. The reasoning invol-
ved is accessible to the general public, and it was motivated by the fundamental inequality in
Lemma 1.
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