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Glioblastoma (GBM) is the most common and malignant form of primary brain tumor
with a median survival time of 14–16 months in GBM patients. Surgical treatment with
chemotherapy and radiotherapy may help increase survival by removing GBM from the
brain. However, complete surgical resection to eliminate GBM is almost impossible
due to its high invasiveness. When GBM cells migrate to the brain, they interact with
various cells, including astrocytes, neurons, endothelial cells, and the extracellular matrix
(ECM). They can also make their cell body shrink to infiltrate into narrow spaces in
the brain; thereby, they can invade regions of the brain and escape from surgery.
Brain tumor cells create an appropriate microenvironment for migration and invasion
by modifying and degrading the ECM. During those processes, the Ca2+ signaling
pathway and other signaling cascades mediated by various ion channels contribute
mainly to gene expression, motility, and invasion of GBM cells. Furthermore, GBM cells
release glutamate, affecting migration via activation of ionotropic glutamate receptors in
an autocrine manner. This review focuses on the cellular mechanisms of glioblastoma
invasion and motility related to ECM, Ca2+ signaling, and glutamate. Finally, we discuss
possible therapeutic interventions to inhibit invasion by GBM cells.

Keywords: glioblastoma, invasion, extracellular matrix, Ca2+, glutamate, ion channels

INTRODUCTION

Gliomas are a common type of primary central nervous system tumors derived from non-neuronal
glial cells and include astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are classified
into grades I–IV by the World Health Organization (WHO) based on specific pathological features,
treatment strategies, and malignancy state (Louis et al., 2007). The higher the WHO grade, the
more aggressive the tumor. Glioblastoma (GBM) is a grade IV glioma and the most aggressive
and deadliest of primary brain cancers; it arises from astrocytes. The main symptoms of GBM are
advancing neurological deficits, persistent headaches, loss of appetite, double or blurred vision,
vomiting, and seizures. Of the patients diagnosed with glioma and analyzed in the United States
between 2000 and 2014, 61.5% had glioblastomas (Ostrom et al., 2018). The overall survival rate
of GBM patients is 39.7% at 1 year and 5.5% at 5 years (Ostrom et al., 2017). Even with medical
treatments such as radiation, temozolomide administration, and surgery, the median survival for
patients with diagnosed GBM is still only 12–18 months (Stupp et al., 2005; Wen and Kesari, 2008).
The highly infiltrative behavior of GBM cells makes it impossible to completely remove the tumor
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by surgical intervention, causing treatments to be less effective.
Furthermore, the invasive nature of GBM results in the
destruction of normal brain structures and functions.

Less than 2% of glioblastoma cells migrate beyond the brain
(Beauchesne, 2011; Lun et al., 2011; Hamilton et al., 2014), with
most GBM cells infiltrating into healthy brain tissue through
the perivascular space around blood vessels and the brain
parenchyma space that contains neuron and glial cells (Cuddapah
et al., 2014). For glioma cells to penetrate, changes in several
key factors are needed: energy metabolism (Horing et al., 2012;
Kathagen-Buhmann et al., 2016), ion channels (Thompson and
Sontheimer, 2016), neurotransmitters, proteases (Demuth and
Berens, 2004), cytoskeleton, cell adhesion, and remodeling of
the extracellular matrix (ECM) (Cuddapah et al., 2014). The
brain ECM is critically involved in various cellular processes,
including migration and invasion of glioma cells associated with
altering microenvironmental composition (Giese and Westphal,
1996; Charles et al., 2012). Furthermore, intracellular Ca2+

signaling through inositol 1,4,5- triphosphate receptors (IP3Rs),
store-operated channels (SOCs), transient receptor potential
(TRP) channels, voltage-gated Ca2+ channels (VGCCs), P2 × 7
receptors, and ionotropic glutamate receptors contribute to the
motility of glioma cells. This review describes a cellular invasion
mechanism of glioblastoma cells that is associated with the ECM
and Ca2+ signaling.

THE INTERACTION BETWEEN THE
EXTRACELLULAR MATRIX AND
BINDING PROTEINS FOR MIGRATION

The brain ECM forms a physical barrier but actively interacts
with the environment through the signaling behavior of a
variety of ligands (Miyata and Kitagawa, 2017). Cell migration
requires a coordinated process including adhesion of the cell
and attachment to and detachment from the ECM (Ridley
et al., 2003). The ECM is a highly organized structural network
providing structural support and allowing cellular growth,
survival, maturation, differentiation, and migration (Theocharis
et al., 2016). Glioblastoma cells continuously interact with the
ECM, experiencing remodeling for migration and infiltration.
Several of the ECM molecules involved in migration are
proteoglycans and their binding partners, including hyaluronan,
tenascins, glycoproteins, galectins, laminin, and fibrous proteins.

Proteoglycans are heavily glycosylated proteins consisting of
core proteins covalently linked to glycosaminoglycan (GAG).
Proteoglycans such as heparin sulfate proteoglycan (HSPG)
and chondroitin sulfate proteoglycan (CSPG) regulate cellular
movement through a variety of signaling pathways. It has been
reported that proteoglycan mRNA expression in human GBM is
altered compared to that in normal human brain tissue. A subset
of GBM highly express CD44, PTPRZ1, and CSPG4/NG2 of
the membrane-associated proteoglycans (Wade et al., 2013).
CD44 is up-regulated in a GBM dependent on variant form
six of the CD44/AKT signaling pathway (Jijiwa et al., 2011).
Overexpression of NG2 produces properties similar to those of
GBM patients, and knockdown of NG2 using shRNA reduces

tumor growth and angiogenesis (Wang et al., 2011). Blocking of
PTPRZ1 expression suppresses GBM growth in vivo (Ulbricht
et al., 2006). One of the most up-regulated ECM constituents
is Versican (VCAN), a member of a family of large aggregating
CSPGs. The expression level of the VCAN isoform is altered in
brain tumor and has been associated with metastasis of gliomas
(Paulus et al., 1996). VCAN mediates glioma migration via TGF-
β2 signaling, which induces the malignant property of brain
tumors (Arslan et al., 2007). Also, VCAN was substantially up-
regulated in a cerebral cortex lesion (Asher et al., 2002). Brevican,
a major proteoglycan in the adult human brain, is overexpressed
in glioma cells and correlates with late-stage tumor metastasis
(Dwyer et al., 2014). Brevican promotes glioma cell motility
after proteolytic cleavage by ADAMTS4 and the up-regulation of
integrin (Held-Feindt et al., 2006; Hu et al., 2008; Lu et al., 2012).

Hyaluronan (HA) is the principal GAG of brain ECM and
contains glucuronic acid and N-acetyl glucosamine (Park et al.,
2008; Amorim et al., 2021). Hyaluronan concentration is high
in invasive cancer cells and mediates tumor cell proliferation,
migration, and invasion by interacting with CD44 and Receptor
for HA-Mediated Motility (RHAMM) receptors (Lokeshwar
et al., 1997; Toole, 2004; Lokeshwar et al., 2014). Hyaluronan
also facilitates invasion of human glioma cells and the secretion
of matrix metalloproteinase (MMP) and plasminogen activator
(PA) while not affecting proliferation (Nakagawa et al., 1996).
MMP is responsible for invasion and progression through
the degradation of ECM components, and MMP-2, MMP-9,
MT-MMP levels are significantly increased in human gliomas
(Chintala et al., 1999). One of the HA receptors, CD44, binds
HA in the extracellular space and cytoskeletal components in the
intracellular area, acting as a cell membrane glycoprotein and
is involved in numerous cellular processes (Tsukita et al., 1994;
Misra et al., 2015; Naor, 2016). CD44 expression is increased
in GBM, and it elevates the invasion and proliferation of GBM
(Kuppner et al., 1992; Breyer et al., 2000; Anido et al., 2010).
CD44-specific antisense oligonucleotide, which prevents CD44
expression, substantially inhibits invasion of glioma cells (Merzak
et al., 1994). Inhibition of the interaction between HA and
CD44 reduces glioblastoma invasion in hydrogels lacking matrix-
bound HA, suggesting of production of HA in GBM cells (Chen
et al., 2017). Hyaluronan is synthesized in extracellular region
and degraded into different size. Glioblastoma invasiveness is
directly affected by HA polymer molecular weight within a
methacrylamide-functionalized gelatin (GelMA) hydrogel (Chen
et al., 2018). Consistent with these results, the CD44 expression
level is higher in severe grade glioma cells, and the anti-CD44
antibody effectively reduces the migration of GBM (Yoshida
et al., 2012). Epidermal growth factor stimulation promotes
CD44 mRNA expression, which results in glioma cell invasion
(Monaghan et al., 2000). The other HA-binding protein is
Receptor for HA-Mediated Motility (RHAMM), which has
increased expression in higher grade glioma cells, and RHAMM
soluble peptide suppresses cell proliferation (Akiyama et al.,
2001). Overall, HA interactions with CD44 and RHAMM are
critical for tumorigenesis and brain tumor invasion.

Tenascins are large multimeric glycoproteins that
are differentially expressed in adults, during embryonic

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 663092

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-663092 May 27, 2021 Time: 18:40 # 3

So et al. Invasion in Glioblastoma

development, and in normal and cancer cells (Latijnhouwers
et al., 2000; Orend and Chiquet-Ehrismann, 2006). They are
thought to have important roles in the migration and invasion
of glioma. Tenascin-C (TN-C) near blood vessels is more highly
concentrated in glioblastomas than in low-grade astrocytic
tumors (Kim et al., 2000) and is expressed in human glioma
in vivo (Brosicke et al., 2013). Overexpression of interleukin-33,
induced by inflammation, increases invasion of GBM and
is associated with elevated TN-C expression via the PI3K
and NF-κB signaling pathways (Zhang J. F. et al., 2019).
Moreover, TN-C triggers glioma invasiveness through MMP-12
(Sarkar et al., 2006). Additionally, TNIIIA2, a synthetic TN-C
peptide, positively regulates the adhesion and migration of
cells interacting with integrin (Saito et al., 2007). In the tumor
microenvironment, TN-C increases glioblastoma invasion and
negatively regulates proliferation (Xia et al., 2016). Tenascin-C
also promotes invasion of brain tumor-initiating cells, which is
regulated by metalloproteinase ADAM-9 (Sarkar et al., 2015).
Consistently, shRNA designed for targeting TN-C impairs
glioma cell motility in wound-scratch assay (Angel et al., 2020).
It has been suggested that Tenascin-R (TN-R) and Tenascin-W
(TN-W), as members of the tenascin family, may be associated
with progression and malignancy of glioma cells; however, that
hypothesis remains to be elucidated.

Integrins, binding proteins with functions in the infiltration
of glioma, stimulate cell adhesion and interact with the ECM
as transmembrane heterodimeric receptors composed of α and
β chains. In particular, specific antibodies against the αv and β1
integrins (Friedlander et al., 1996) and the treatment of integrin
inhibitors (Ishida et al., 2014) suppress glioma cell migration.
Inconsistently, it has been suggested that blocking the αv integrin
subunit could enhance invasion of glioma in non-migratory
glioma (Treasurywala and Berens, 1998). To diagnosis GBM,
integrin αvβ3 can be targeted by using hydrocyanines to detect
the presence of reactive oxygen species (Zhang L. et al., 2019).
Moreover, α3β1 integrins, specific receptors of laminin-5, are
highly expressed and have a critical role in the motility and
invasion of glioma cells (Fukushima et al., 1998; Zhou et al.,
2015). It has also been reported that α3 integrins are critical for
the invasiveness of glioma stem-like cells and act through the
ERK1/2 pathway (Nakada et al., 2013). Furthermore, signaling
mediated by integrins can modulate the activities of MMP and
PA to degrade the ECM and allow glioma to invade. Taken
together, through their interactions with the ECM, integrins
are critically involved in glioma pathogenesis, migration, and
infiltration (Figure 1A).

Glioma cells infiltrate the brain area using cell-ECM
interactions and the associated dynamics. Proteoglycans,
hyaluronan, and tenascins have major roles in the brain
ECM during invasion, and the associated binding partners,
including CD44, RHAMM, and integrins, also have critical
roles. Furthermore, ECM molecules including laminins, reelin,
heparin-binding growth-associated molecule, tenascin-R,
tenascin-C, and CSPG have been suggested in synaptic plasticity
and neuronal activity (Dityatev and Schachner, 2003). Interaction
of various ECM components with cell surface recognition
molecules, receptors, and ion channels affects synaptic plasticity

by regulating Ca2 + influx, signaling in endocytic zones, small
GTPases, and ECM remodeling (Dityatev and Schachner, 2003).
In C6 glioma cell implanted rats, synaptic plasticity is impaired
and neuronal activity is abnormally changed (Wang et al., 2011).
Probably, abnormal interaction between ECM and its binding
partners could cause long-term memory deficit, one of the
symptoms in GBM patients, which could be further tested.

CALCIUM SIGNALING IN
GLIOBLASTOMA IS RELATED TO
MIGRATION AND INVASION

An accumulation of evidence demonstrates that Ca2+ is critical
for tumorigenesis in GBM and is related to proliferation, motility,
and invasiveness. GBM cells express various receptor tyrosine
kinase (RTK) and G protein-coupled receptors (GPCRs) that
contribute to Ca2+ release from the endoplasmic reticulum
(ER). Various agonists for RTK and GPCR increase Ca2+ release
from the ER via the activation of inositol 1,4,5-trisphosphate
receptors (IP3Rs) in GBM cells (Kang et al., 2010). Blocking of
IP3R-mediated Ca2+ release by caffeine was shown to inhibit
GBM invasion and extend survival in a skin xenograft model
injected with GBM cells (Kang et al., 2010). On the other
hand, trifluoperazine (TFP) inhibits proliferation, motility, and
invasion by largely increasing IP3R-mediated Ca2+ from the
ER in GBM cells (Kang et al., 2017). These results suggest
that abnormal responses the either increase or decrease Ca2+

release can suppress glioma cell migration and invasion. Overall,
appropriate Ca2+ dynamics mediated by IP3Rs are responsible
for the inhibition of metastasis of GBM cells (Figure 1B).

In addition, Ca2+ entry from the extracellular region is
associated with a cytosolic Ca2+ increase, which leads to diverse
intracellular signaling and motility in glioma. Store-operated
channels (SOCs), Ca2+-permeable transient receptor potential
(TRP) channels, voltage-gated Ca2+ channels (VGCCs), and
P2× 7 receptors mainly contribute to Ca2+ influx in glioma cells.
SOCs are activated by depleting Ca2+ from the ER, sensed by
STIM1, and SOC inhibition reduces proliferation and increases
apoptosis of GBM cells (Liu et al., 2011). Furthermore, the
expression levels of STIM1 and Orai1 are significantly higher in
GBM cells than in primary astrocytes, and silencing of STIM1 and
Orai1 decreases GBM invasion (Motiani et al., 2013). Besides, the
expression of Orai2 is elevated in high-grade glioma, which is an
indication of poor survival in GBM patients (Yuan et al., 2019).
Consistently, suppression of Ca2+ entry by SOCs inhibits glioma
cell motility through the actions of proline-rich tyrosine kinase 2
(Pyk2) (Zhu et al., 2014; Zhu et al., 2020), suggesting that Ca2+

entry is significantly associated with the metastatic characteristics
of GBM cells (Figure 1B).

Previously, it has been reported that TRP channels including
TRPC1, TRPC6, TRPM2, TRPM3, TRPM7, TRPM8, TRPV1,
and TRPV2 are overexpressed in GBM patients, implying the
contribution of TRP channels in the progression of GBM
(Alptekin et al., 2015). TRP-canonical1 (TRPC1) is associated
with cell proliferation, tumor size, and regulation of Cl− channels
during changes to the volume of glioma cells for migration
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FIGURE 1 | ECM, Ca2+ signaling, and glutamate mediates invasion and migration in glioma cells. (A) Extracellular matrix and their binding partners regulate invasion
and motility in GBM cells. (B) Intracellular Ca2+ elevation from ER and extracellular region affects glioma cell migration and invasion. Ca2+ influx through TRP
channels, P2 × 7Rs, and t-type Ca2+ channels are critically involved in glioma cell infiltration. (C) Glioma cells release glutamate through a cysteine-glutamate
exchanger (system xC

−). Released glutamate from glioma cells activates Ca2+-permeable AMPARs and NMDARs and affects migration and invasion. Sustained
Ca2+ influx causes excitotoxic death of surrounding cells to make microenvironment for invasion.
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(Bomben and Sontheimer, 2010; Cuddapah et al., 2013). TRPC6,
another TRPC family member, regulates hypoxylation and
stability of hypoxia-inducible factor-1 (HIF-1) in human glioma
cells under hypoxic conditions (Li et al., 2015). In human glioma
cells, attenuation of TRPC6 activity inhibits cell growth and
arrests the cell cycle (Ding et al., 2010). Additionally, TRPC4
activation results in a large Ca2+ influx and enhancement of
cell migration in medulloblastoma, a brain cancer arising from
cerebellar precursor cells (Wei et al., 2017).

Another family of TRP channels is also directly associated
with glioma progression, including migration and invasion
of GBM cells. TRP-melastatin7 (TRPM7) promotes migration
and invasion of glioma via activation of STAT3 and Notch
signaling pathways (Liu et al., 2014), while glioma invasion was
reduced in cells transfected with a TRPM7 mutant (Wan et al.,
2019). Pharmacological inhibition or siRNA for TRPM7 also
reduces migration and invasion in human glioma cells (Leng
et al., 2015) and antagonist for TRPM7 reduces various cellular
functions such as proliferation, viability, migration, and invasion
in both U251/U87 cells (Wong et al., 2020). Furthermore, a
TRPM8 agonist increases cytosolic Ca2+, subsequently leading
to activation of Ca2+-activated K+ channels that induce glioma
cell migration (Wondergem and Bartley, 2009). Consistently, it
has been suggested that blocking of TRPM8 can reduce migration
and survival in GBM cells (Klumpp et al., 2017). The expression
level of TRPM8 is markedly correlated with the invasiveness of
glioma cells (Zeng et al., 2019). TRP-vanilloid 4 (TRPV4), another
TRP channel subfamily, is abnormally up-regulated in glioma,
promoting migration and invasion through AKT/Rac1 signaling

(Ou-Yang et al., 2018). Stimulation of TRPV4 increases migration
and invasion through the Cdc42/N-wasp axis by regulating
cellular protrusions (Yang et al., 2020). Study of various
proteins interacting with TRPV2 in GBM may provide possible
biomarkers for GBM diagnosis and lead to novel therapeutics
(Donate-Macian et al., 2018). Overall, Ca2+ entry through TRP
channels is associated with cell survival, proliferation, migration,
and invasion of brain tumor cells (Figure 1B).

Voltage-gated Ca2+ channels (VGCCs) are classified as
having high voltage-activated (P/ Q-, N-, L-type), intermediate
voltage-activated (R-type), or low voltage-activated (T-type)
channels. Blocking of T-type VGCCs by endostatin reduces
cell proliferation and migration in human GBM cells (Zhang
et al., 2012). Another pharmacological blockade using mibefradil
and siRNA-mediated knockdown of T-type VGCC reduces cell
survival and induces apoptosis through the mTOR/Akt pathway
in GBM (Valerie et al., 2013) and GBM stem-like cells (Zhang
et al., 2017). In another study, decreased expression of T-type
VGCC reduced the proliferation of glioma cells (Panner et al.,
2005). More recently, it was shown that mibefradil treatment and
silencing of T-type VGCC by shRNA reduces GBM cell survival
by apoptosis (Visa et al., 2019). Blocking of P/Q- and N-type
VGCC affects glioma progression by inhibiting proliferation
and viability in glioma cell lines and increasing astrocytes and
microglia in the near tumor region in vivo and in vitro (Nicoletti
et al., 2017) (Figure 1B).

P2 × 7 receptor (P2 × 7R) is associated with ligand-
gated cation channels activated by extracellular ATP binding
and leading to intracellular Ca2+ mobilization. Ca2+ signaling

FIGURE 2 | Schematic linking mechanisms of ECM, Ca2+ signaling, and glutamate in GBM invasion. Summary of mechanisms of glioma invasion related to ECM,
Ca2+ signaling, and glutamate. Glutamate release from GBM cells activates Ca2+ permeable AMPARs and NMDARs in an autocrine manner, thereby cause an
intracellular Ca2+ increase in GBM cells. ECM and their binding partners affect GBM invasion by regulating Ca2+ signaling.
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mediated by P2 × 7R is related to the malignant characteristics
of glioma cells. P2 × 7R is functionally expressed in rat C6
glioma cells, and its activation increases pro-inflammatory factors
and cell mobility (Wei et al., 2008). In brains injected with
glioma cells, immunostaining of P2 × 7R shows co-localization
with tumor cells and microglia, and in a scratch-wound assay,
C6 glioma cell migration elevated by P2 × 7R activation is
completely blocked by an antagonist for the receptor (Ryu
et al., 2011). Consistent with those results, other groups have
reported that an agonist for P2 × 7R increases glioma cell
migration and proliferation, which is mediated by the MEK/ERK
signaling pathway (Ji et al., 2018). Furthermore, activation of
P2 × 7R enhances cell death in radiosensitive M059J human
glioma cells (Gehring et al., 2012) and GL261 mouse glioma
(Tamajusuku et al., 2010). Intriguingly, suppressing P2× 7R with
an antagonist or shRNA promotes cell growth through the up-
regulation of EGFR, p-EGFR, HIF-1α, and VEGF in glioma cells
(Fang et al., 2013).

Intracellular Ca2+ increase via various ion channels regulates
motility and invasion through Ca2+-activated K+ channels
upregulated in malignant glioma (Turner et al., 2014). TRAM-
34, a specific inhibitor for Ca2+-activated K+ channels, reduces
tumor infiltration of GBM cells implanted in the brain tissue of
mice (Ruggieri et al., 2012). Furthermore, calmodulin (CaM) as a
regulator of intracellular Ca2+ signaling affects GBM invasion by
invadopodia formation (Li et al., 2018).

Most of the research in the field of Ca2+ signaling of brain
tumor cells related to invasion and migration has been conducted
only in the past few years, suggesting that there are still many
questions to be solved. Ca2+ signaling, remodeling of Ca2+

signaling, and Ca2+-transporting proteins of GBM cells could be
all considered in future investigation.

GLUTAMATE SIGNALING FOR INVASION
IN GLIOMA CELLS

Glutamate, a major excitatory neurotransmitter in the nervous
system, has significant roles in the proliferation, growth, and
movement of brain tumor cells. Glioma cells have been shown to
produce a large amount of glutamate by glutaminase, an enzyme
that converts glutamate from glutamine (Yao et al., 2014), and
result in a P2× 7Rs-mediated intracellular Ca2+ increase (Strong
et al., 2018). Glutamate is released from glioma cells through
system xC

−, a cysteine-glutamate exchanger, whose expression
level is strongly correlated with brain tumor metastasis (de
Groot and Sontheimer, 2011; Takeuchi et al., 2013). Rather
than glutamate uptake, glioma cells release large amounts of
glutamate, subsequently elevating the extracellular glutamate
concentration, leading to excitotoxic death in surrounding
neurons; thereby generating a space for cell motility (Ye and
Sontheimer, 1999; Chung et al., 2005; Sontheimer, 2008; Noch
and Khalili, 2009). Furthermore, inhibition of glutamate release
using sulfasalazine, a system xC

− blocker, reduces glioma
invasion and tumor growth in vivo (Lyons et al., 2007).

Glutamate released from glioma cells activates the Ca2+-
permeable AMPA receptors (AMPARs) expressed in the same

cell or neighboring cells, and such releases can induce Ca2+

oscillations that are important for cell movement (Lyons et al.,
2007). AMPA receptors control glioma cell’s motility through Akt
activation and Ca2+ signaling, and activation of the Glutamate-
AMPAR-Akt pathway contributes to the invasive growth
characteristic of glioma (Ishiuchi et al., 2007). Another study
has shown that interactions between AMPARs and β1 integrin
induce focal adhesion kinase (FAK) autophosphorylation and
Rac activation, thereby facilitating glioma migration and invasion
(Piao et al., 2009). In addition, blocking of Ca2+-permeable
AMPARs inhibits migration, while overexpression of Ca2+-
permeable AMPARs promotes an increase in the number of
migratory cells (Ishiuchi et al., 2002). Propofol, a widely used
anesthetic, inhibits invasiveness by increasing surface expression
of GluA2-containing AMPARs and downregulating system xC

−

expression (Wang et al., 2017). Some researchers have suggested
that NMDARs are not functionally expressed in glioblastoma
cells (Lyons et al., 2007; Stepulak et al., 2009). However, several
studies recently demonstrated that stimulation of NMDARs
enhances invasion, whereas MK-801 treatment, an activity-
dependent antagonist for NMDARs, reduces invasion in human
GBM cells (Muller-Langle et al., 2019; Nandakumar et al., 2019).
Kynurenic acid, a non-selective antagonist of all ionotropic
glutamate receptors, reduces the migration of human GBM cells
(Walczak et al., 2014). Even though metabotropic glutamate
receptors 3 and 5 (mGluR3 and mGluR5) are expressed in glioma
cells (Condorelli et al., 1997; Stepulak et al., 2009), their roles in
cell mobility have not been elucidated. In addition to invasion
and migration, glutamate stimulates tumor growth, proliferation,
and survival of glioma cells through the EGFR-phospho-Akt
and PI3K/AKT pathways (Schunemann et al., 2010; Prickett and
Samuels, 2012). Overall, glioma cells release glutamate, which
directly affects migration and invasion through the functional
expressions of AMPARs and NMDARs in the cell (Figure 1C).

Glutamate and its receptors might be a therapeutic target
for the inhibition of GBM invasion through the interaction
between tumor cells and nearby cells. GBM cells release not
only glutamate but also various molecules including cytokines,
metabolites, and nucleic acids contributing to tumor cell
progression (Almiron Bonnin et al., 2018). Therefore, targeting
the secretory mechanisms could potentially develop therapeutics
to reduce GBM invasion.

CONCLUSION

Invasion is the main characteristic of malignant glioma and
one of the obstacles to radiotherapeutic, chemotherapeutic, and
surgical treatments. This review provides an overview of ECM,
Ca2+ signaling, and glutamate release and their associations
with glioma cell invasion and migration. These components are
linked with each other for invasion and migration in GBM
cells (Figure 2). Glutamate released from GBM cells activates
Ca2+-permeable AMPAR in an autocrine manner contributing to
intracellular Ca2+ increase for invasion and migration (Figure 2).

To date, current treatment for GBM patients is the surgery
to remove the brain tumor, followed by a combination of
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radiotherapy and temozolomide treatment (Stupp et al.,
2005). Other agent bevacizumab that received approval for
GBM treatment has shown only moderate effect (Kreisl
et al., 2009). In addition, therapeutic interventions targeting
ECM, Ca2+ signaling, and glutamate and aimed at blocking
invasion have not been very successful in GBM patients.
Mibefradil, a selective T-type Ca2+ channel blocker, followed
by temozolomide was given to high-grade glioma patients
(Holdhoff et al., 2017). A combination of radiation therapy
with cilengitide, an inhibitor for α V integrins, was tested
in GBM patients (Eisele et al., 2014). In preclinical studies,
matrix metalloproteinase (MMP) inhibitors were effective in
the reduction of glioma invasion, but not in clinical trials
(Tonn et al., 1999; Koutroulis et al., 2008). Several drugs
targeting the PI3K/Akt pathway were partially effective in
preclinical studies (Drappatz et al., 2009). Talampanel, the
allosteric inhibitor of AMPARs, is used in phase II trial with
chemotherapy or radiotherapy (Grossman et al., 2009; Iwamoto
et al., 2010).

However, these kinds of therapeutic approaches moderately
increase survival and tumor still recur in all cases. A combination
of those pharmacological approaches could be worthwhile to
attempt, but it remains a great challenge. Glioblastoma can move
into normal brain tissue escaping from surgery and radiotherapy

due to its high invasiveness. Therefore, better understanding the
cellular mechanism of GBM invasion could help to develop a new
treatment that suppresses invasion and migration. Furthermore,
the therapeutics based on mechanisms that only focus on
glioma cells still have limitations. Invasion and migration can
be achieved by the complex interplay between glioblastoma
and surrounding cells. Therefore, future studies should focus
not only on glioma cells but also on the interaction between
brain tumor cells and other surrounding cells, including neurons
and glial cells.
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