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ABSTRACT 
 

A spherical cap harmonic analysis (SCHA) model has been used to derive a high resolution 
regional model of the geomagnetic field in the southwest Pacific region over the past 400 years. 
Two different methods, a self-consistent and the gufm1 dipole method, have been used to fill in 
gaps in the available data. The data used in the analysis were largely measurements of the 
magnetic field recorded in ships logs on voyages of exploration in the region.  The method chosen 
for the investigation used a spherical cap of radius �0= 50° centered at co-latitude and longitude of 
(115°,160°). The results of each method used for SCHA are presented as contour plots of 
magnetic field declination, inclination and intensity and are compared with similar plots for a global 
model, gufm1. The root mean square misfit of the self- consistent and gufm1 dipole model to the 
actual data were around 2900 nT and 23000 nT respectively.  Overall, the results suggest that the 
self-consistent model produces a more reliable model of the geomagnetic field within the area of 
interest than does the gufm1 dipole model. With more data included the self-consistent model 
could be further improved and used to develop a high resolution mathematical model of the 
geomagnetic field in the southwest Pacific region. 
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1. INTRODUCTION 
 
William Gilbert was the first person who 
identified, in his book De Magnete, that the 
Earth’s magnetic field is a property of the Earth 
itself. It originates from an active, self-sustaining 
dynamo operating in the liquid outer core of 
metallic composition [1]. The Earth’s                
magnetic field can be approximated by a 
magnetic dipole tilted at an angle of about 11 
degrees from the Earth’s rotational axis. Such a 
dipole accounts for roughly 90% of the present 
day geomagnetic field at any point on the Earth’s 
surface. The measured field shows that the 
dipole is oriented towards the south rotation pole, 
so that the field has an upward component in the 
southern hemisphere and a downward 
component in the northern hemisphere. The 
remaining approximately 10% of the field is 
termed the non-dipole field. Both the dipole and 
the non-dipole fields contribute to the overall 
pattern of the Earth’s magnetic field and they 
both vary with time [2]. The Earth’s magnetic field 
at any location on the surface of the Earth is a 
vector which can be represented in terms of 
“three parameters: Declination “D”, Inclination “I” 
and Intensity “F”.” as shown in Fig. 1, which 
comes from [2]. 

 
The declination is the angle between the 
horizontal component of the magnetic field and 
true north, the inclination is the angle the field 
makes with the horizontal and F is the intensity 
or magnitude of the field. Inclination is 90º            
at the north magnetic Pole and -90º at the south 
magnetic pole. Due to the changing non-dipole 
field, the north and south magnetic poles move 
around independently of each other and they are 
not directly opposite each other.  Maxwell’s 
equations of electromagnetism can be used to 
obtain a mathematical model to describe the 
geomagnetic field. Two reasonable assumptions 
are that the atmosphere is an insulator and             
that it is non-magnetic. As a result, the 
geomagnetic field is normally measured in a 
region, between the surface of the Earth and the 
ionosphere, in which there are no electric 
currents and no magnetic sources. In this region, 
where there are no currents or sources of                 
the magnetic field, the field can be expressed as 
the gradient of a scalar magnetic potential (U), 
such that; 

 
� =  − ∇ U                                                   (1) 

 
The Maxwell equation, stating that;  

div B = 0                                                     (2)     
 

therefore, implies that the scalar magnetic 
potential obeys Laplace’s equation at the surface 
of the Earth. 

 
∇� � = 0                                                     (3)              

                                       
Solving Laplace’s equation in spherical polar 
coordinates (r, θ, φ) gives a method of modeling 
the magnetic scalar potential of the                   
Earth’s magnetic field. Although this is only 
strictly applicable in the region between the 
surface and the ionosphere, it is often also 
applied within the Earth, for example to look at 
the field on the core-mantle boundary. This 
involves the assumption that the mantle can be 
treated as an insulator. Solving Laplace’s 
equation can also, provide a way of modeling the                         
vector field on a restricted area on the surface of 
the earth. The main field of the Earth is entirely of 
internal origin and the solution of Laplace’s 
equation in spherical polar coordinates, known 
as a Spherical Harmonic Analysis (SHA) is in the 
form; 

 

� (�, �, ∅)  = � �
���  

∞

�
� ��

�

 (
�

�
)��� 

(��
� ��� �ф + ℎ�

� sin �ф)��
� (����)           (4) 

 
where r is the distance of the observational point 
from the center of the Earth and �, ∅ are the 
colatitude and longitude of the observational 
point, respectively, a is the radius of the Earth, 
and ��

�  and ℎ�
�  have the same dimensions as B 

(i.e. SI units are Tesla) and are referred to as 
Gauss coefficients. The ��

�  (cos�) are Schmidt-
normalized associated Legendre polynomials, 
and divide the meridian, or longitudinal line, into 
l-m+1 zones of alternate signs. The cos ��   or 
sin ��   terms divide the longitudinal line into 2m 
longitudinal sectors of alternate signs at equal 
intervals π/m. The product of the Legendre 
polynomials with the cos ��   or sin   terms 
divide up the surface of the sphere into regions 
created by the latitude zones and longitude 
sectors. It also gives surface spherical   
harmonics which vary with � and � with degree l 
and order m and show the symmetry of the 
various contributions to the geomagnetic field at 
the surface of the Earth [3]. Each harmonic is 
equivalent to a particular arrangement of 
magnetic poles at the center of the Earth. The 
lowest degree of Gauss coefficient is ��

� which 
would correspond to l=0 and m=0, i.e. a 
monopole.  
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Fig. 1. The geomagnetic field elements, The Inclination, I, shows the inclined angle of the field 
below the horizontal, the declination, D, is the angle between geomagnetic north and true 

north and the intensity magnitude of the field, F 
 

As div B = 0 implies that isolated magnetic 
monopoles do not exist, this term does not 
appear in Equation 4 in which the summation 
starts at l=1. The next three coefficients ��

�, ��
� 

and ℎ�
� define the direction and magnitude of the 

geocentric dipole, which is equivalent to two 
opposing charges brought close together [3]. 
These terms give the first approximation to the 
observed geomagnetic field. The spherical 
harmonic terms with l=2 describes the best fitting 
geocentric quadrupole, which is equivalent to two 
dipoles brought together, and the terms with l =3 
describe the best fitting geocentric octupole and 
so on for higher degree terms [2]. Gradual 
changes of the Earth’s magnetic field on a time 
scale of a year or more are referred to as 
geomagnetic secular variation. The variations of 
the magnetic field on a time scale shorter than 
about a year are caused by sources of external 
origin, largely due to the changing intensity of     
the solar wind. The longer time scale variations 
are of internal origin due to the continual motion 
of the Earth’s fluid outer core [4]. Secular 
variation can be described by continuous 
changes of small amplitude with periodicities 
ranging from a year to 100,000 years. However, 
the polarity of the main dipole reverses on time 
scales from hundreds of thousands to a million 
years, changing the north pole to the south pole 
and the south pole to the north pole [2,3]. Henry 
Gellibrand was the first to note the fact that the 
geomagnetic field is not constant. He found            
that the declination in London had decreased 
from 11.3°E to 4.1°E between 1580 and 1634. 
The historical dataset describes secular variation 
in terms of three phenomena. First, a steady 
decay in the magnetic moment of the dipole, 

which is described by the derivative 
���

�

��
,

���
�

��
 and 

���
�

��
 . Second, an overall westward drift of the 

non-dipole field with a drift rate estimated by 
Bullard (1950) of about 0.18° / yr. Third, a slow 
westward movement of the geomagnetic poles, 

which is described by 
���

�

��
. The magnitude of the 

secular variation is also observed to be generally 
smaller over the Pacific hemisphere and the non-
dipole field weaker [3]. The standard 
mathematical model of the geomagnetic field, 
called the International Geomagnetic Reference 
Field (IGRF), is revised every five years and is 
based on Spherical Harmonic Analysis (SHA),            
which is described in more detail in geomagnetic 
field analysis is and description. This study 
concerns the southwest Pacific region and           
deals with developing a mathematical model of 
the geomagnetic field specific to this area.             
Models of the Earth’s magnetic field from SHA 
using only observations in the southwest            
Pacific are of low accuracy, while models 
determined using SHA with a full global data are 
of low resolution in the southwest Pacific [5]. 
Therefore, a Spherical Cap Harmonic Analysis 
(SCHA), which is a technique specifically 
designed to produce a model only for a local 
region  will be used. Over small or large areas 
from a few to many millions of square kilometer, 
SCHA is preferable to SHA for modeling the 
magnetic field in a restricted region [6].  

 
2. MATERIALS AND METHODS 
 

2.1 Study Design and Site 
 
The spherical cap in this study chosen covers  
the southwest Pacific region has a radius of 50°  
and is centered on latitude 25°S, longitude 
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160°E. This cap covers New Zealand, Australia 
and a significant portion of the Antarctica region. 
 

2.2 Data Collection 
 
The data used in determining the regional model 
of the magnetic field, which is applicable only for 
the southwest Pacific region, was also used in 
the gufm1 model which is based on a large 
amount of historical magnetic field observational 
data from 1590 to 1990 [7]. 
 

2.3 Geomagnetic Field Analysis and 
Description 

 
2.3.1 Spherical harmonic analysis  

 
Spherical Harmonic Analysis (SHA) is a method 
used to study any quantity that varies upon the 
surface of the sphere [8]. Spherical Harmonic 
Analysis has been applied to various                
types of data. The SHA technique is                  
normally used to determine the magnetic 
potential when data are available over the whole 
earth. 
 

2.3.2 Spherical cap harmonic analysis  
 

SCHA gives a regional model designed to 
represent the magnetic field in a particular 
portion of the earth’s surface – either when a 
high proportion of the observations are in a 
particular region, or because of special interest to 
study the field over a certain area [9]. SCHA is 
also used in modeling other applications like 
regional secular variation [10] the crustal 
magnetic anomaly field and in modeling sea level 
data [11]. 
 

2.3.3 Method of solution 
 

To calculate the Gauss coefficients of the SCHA 
models, the magnetic field components must be 
fit over the spherical cap. Expressions for Bx, By 
and Bz at each site location are dependent on �T 
��� ∅T, the latitude and longitude respectively, of 
the site, the Gauss coefficients, and the ratio of a 
to r. As all data had been measured on the 
surface of the Earth then a=r, and so the radial 
dependence cancels out. A MATLAB computer 
program has been used to calculate a least 
squares best fit to the input data.  
 

                            (5) 
 
2.3.3.1 Cap reference frame 
 
where the �X��

�
(�,∅)s, �y��

�
(�,∅)s , �z��

�
(�,∅)s ,  �Xℎ�

�
(�,∅)s ,�yℎ�

�
(�,∅)s and �zℎ�

�
(�,∅)s are the spatial terms of 

the l degree and m order. The g’s and h’s are the calculated Gauss coefficients at the measurement 
site (�, ∅) s. The “�x (�, ∅), �y (�, ∅), �z (�, ∅)” are the magnetic field measurements. 
 
2.3.3.2 Geographic reference frame 
 
To calculate the Gauss coefficients from this matrix inversion, all historical data recorded in terms of 
declination, inclination and intensity should be converted to Bx, By and By first. From Fig. 1 we can find 
that: 
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�� =  �  cos �  cos � 

�� = �  cos �  sin �  

�� =  �  ��� �           

                                   (6)               

                                                                 

The matrix inversion was carried out using 
MATLAB a program sc2ver2.m written by 
Ingham [12] which takes as input the latitude, 
longitude of each site and Bx, By and Bz at the 
site in geographic coordinates, does the 
coordinate and field transformations, calculates 
the SCHA and then converts back into 
geographic coordinates. 
 

2.3.3.3 The geomagnetic field model “gufm1” 
 

A brief description of the gufm1 model [13] is 
included as part of the analysis in this paper 
involves comparisons with this model.  The 
gufm1 model provides the most complete picture 
of the geomagnetic field evaluation from 16th 
century onwards. Jackson et al. [13] constructed 
a continuous time-space magnetic                          
field model with a global SHA model based on a 
large number, about 91000, of historical 
observations. From the magnetic potential 
equation;  
 

� (�, �, ∅)  = � ∑���  
� ∑� ��

�  (
�

�
)��� (��

�  (�) ��� �ф +

ℎ�
� (�) sin �ф)��

� (����)                                   (7)          
         

where  ��
�  (�)  and ℎ�

� (�)  are the Gauss 
coefficients as a function of time expanded to 
fourth order using B-spline basis functions  �n(t) 
such that        

 
��

�  (�) =  ∑ ��
��

� �� (�)                               (8)                                                                                           
 
ℎ�

�  (�) =  ∑ ℎ�
��

� �� (�)                               (9) 
                                                                                    
where the   �n � > 0   if the � ∊  |��, ����|  and zero 
otherwise. The magnetic field components 
therefore will be: 
 

��  =  ∑���  
∞ ∑� ��

�  (� + 1) (
�

�
)��� (��

�  (�) ��� �ф +

ℎ�
� (�) sin �ф)��

� (����)                               (10) 
 

��  = − ∑���  
∞ ∑� ��

�  (
�

�
)��� (��

�  (�) ��� �ф +

ℎ�
� (�) sin �ф)��

�   
���

�(����)

��
                             (11)   

         

�ф  =
�

����
∑���  

∞ ∑� ��
�  � (

�

�
)��� (��

�  (�) ��� �ф +

ℎ�
� (�) sin �ф)��

� (����)                                  (12)  
 

Jackson et al. [13] constructed this model to fit 
the input data smoothly in both time and space. 
Given the large number of declination 
observation before 1800, Jackson et al. used the 

decay of the dipole coefficients  ��
� (�) with time 

to estimate intensity values before 1800. 
Spherical harmonic expansions, equation; 
 

ф
�

=  ����� �
����� ��� (ф��ф�)

�����
�                     (13) 

 

As ����� produces angles from -90 to 90, 
Quadrant ∅� should be in according to the 
relative values of ∅� , ∅�, ∅� , ��� ∅�. 
 

Were truncated at l = 14 to obtain the smoothest 
model and give the best representation of the 
field. Two model norms are used in the gufm1 
model, one measuring the roughness in the 
spatial domain, based on Gubbins [14] and the 
other roughness in the time domain.       
 

2.4 Input Data 
 
The data used to calculate a mathematical model 
of the field are normally made up of 
measurements of declination, inclination and 
intensity at different latitude and longitude. The 
data used in this study are those recorded by the 
explorers and traders who sailed in the 
southwest Pacific. These cover a period of time 
extending from Abel Tasman’s discovery of Van 
Diemen's Land and New Zealand in the 17th 
century up to the Antarctic Explorations in the 
19th century [15]. Even though inclination was 
recognized around 1600 by “Robert Norman 
(Norman, 1720)”, few inclination data were 
recorded in the ships’ logs and most of these 
data were in the late 18th century and few before 
that as shown in Fig. 2. The reason for this was 
partly the difficulty of measuring inclination whilst 
on a ship, also, inclination was not used in 
navigation as declination was at that time [12]. 
Von Humboldt made relative intensity 
measurements in South America in 1798 and 
intensity data start to appear in the                
southwest Pacific about the same time as shown 
in Fig. 2. The method of measurement was by 
timing the oscillations of the ship’s dip needle 
[16]. Elisabeth Paul Edourd De Rossel made the 
first magnetic intensity measurements              
recorded in the southwest Pacific during 1791-
1794 [17]. He measured the magnetic field 
intensity as a relative intensity referenced to a 
set location. For instance, all intensities           
data measured on the D’Entrecasteaux 
expeditions in 1792 while sailing throughout the   
Pacific were referenced to the intensity 
measured in Paris [18]. In this study, all 
intensities have been converted to absolute 
intensity in nano-tesla.  
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2.4.1 Difficulties of study 
 
There were several problems that cause errors 
and uncertainties in taking measurements of 
magnetic data. These problems include the 
disturbance of the ship’s iron on the magnetic 
instruments. This was accounted for by taking 
measurements in different places upon the ship 
with different magnetic instruments while in a 
port with a land-based measurement for 
comparison. Most of the voyages at this time 
also carried supplementary dip needles for 
inclination and intensity measurements in order 
to avoid error arising from any damage to an 
instrument during the voyage. The difficulty of 
determining the absolute position of a ship in the 
open ocean had been one of the major problems 
since the 16

th
 century.      

 
Fig.  2 shows the temporal distribution of the 
observed data (declination, inclination                     
and intensity) used for the time interval 1600 to 
1910.  
 
Most of the data in the earliest epoch were 
declination-only data and were collected by Abel 
Tasman on his journey to discover the Van 
Diemen's Land and New Zealand in 1642 [19]. 
The distribution of the data in southwest Pacific 
is inhomogeneous, so to visualize the number of 
the data centered on various times in the interval 
1600 to 1910, the spatial distribution of the data 
in each period of time has been mapped as 

shown in Fig. 3.  The data have been divided up 
into different time intervals centered on the dates 
shown in the figure. Thus (a) in the figure is 
centered on 1633 and contains 113 
observational data from 1606 to 1643. All these 
data are declination only and most of them are 
concentrated south and east of Australia, north of 
New Zealand, and some north of Papua New 
Guinea. Fig. 3(b) is centered on 1700 and 
contains 88 data from 1685 to 1710. Again all are 
declination. These data are confined southwest 
of Australia and few in the Pacific Ocean. Fig. 
3(c) is centered on 1773 and contains 226 
declination and 3 inclination data from 1765 to 
1780. These data are mostly in the region north 
and east of Australia and around New Zealand. 
Fig. 3b(d) is for 1790 and it contains 491 
declinations, 3 inclinations and one intensity data 
from 1786 to 1793 from all around the              
Pacific Ocean in the study area. Fig. 3 (e) is 
centered on 1825 and contains 254 declinations, 
286 inclinations and 177 intensity data from 1805 
to 1849. These data are concentrated mostly 
south of Australia and north of New Zealand. Fig. 
3(f) is for 1875 and it contains 365 declinations, 
148 inclinations and 138 intensity data from 1850 
to 1890. These data are concentrated           
between Australia and New Zealand and                       
around the Papua New Guinea. Fig. 3(g) is for 
1900 and contains 44 declinations and 29 
inclinations data from 1900 to 1949, but mainly 
from 1900 to 1910. The majority of these data 
come from the magnetic survey of New Zealand.

      

 
 

Fig. 2. Histogram of the number of measurements and temporal distributions of data taken 
from ships’ logs. Blue represents declination data, red inclination data and green intensity 

data from 1600 to 1910 
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Fig. 3. Spatial distributions of the input data in the interval 1600 to 1910. + are data with 
declinations only, + are data with declinations and inclinations, * are data with inclinations 

only, * are data with inclinations and intensities, and + are data with declinations, inclinations 
and intensities. Projection is stereographic 

 
2.4.2 Methods of analysis 
 
The observational data are greatly biased 
towards declination measurements (Fig. 2) since 
before Gauss deduced his method of 
determining intensity in 1832 [7]. There are few 
intensity data in ships’ records. Although               
there are a few inclination and intensity 
measurements, they are not as common. A full 
SCHA needs Bx, By and Bz data therefore where 
there are gaps in the record, a sensible method 
of mathematical estimation is required to                    
fill the gaps. As the data distribution is not very              
even, this division has been chosen in a way that 
gives some consistency between amount of                 
data in each epoch of SCH models. Taking into 
account the number of input data for each              
epoch, the epochs are labeled as follows: 
 

1.  1633, which includes 113 observation data 
from 1606 to 1643. Fig. 3(a).  

2.  1700, which includes 88 observation data 
from 1685 to 1710. Fig. 3(b).  

3.  1773, which includes 284 observation data 
from 1765 to 1780. Fig. 3(c).  

4.   1790, which includes 446 observation 
data from 1786 to 1793. Fig. 3(d).  

5.  1825, which includes 717 observation data 
from 1805 to 1849. Fig. 3(e).  

6.  1875, which includes 655 observation data 
from 1850 to 1890 Fig. 3(f).  

7.  1900, which includes 44 observation data 
from 1900 to 1949. Fig. 3(g) with additional 
simulated measurement points added from 
the 1900 IGRF. 

 
Simulated measurements from the IGRF have 
also been used for 1950 and 2000 to calculate 
SCHA models. This dataset has been compiled 
using two methods. One method uses the dipole 
coefficients of the gufm1 model to estimate the 
unrecorded magnetic field components and it will 
be referred to as gufm1 dipole coefficients 
method. The other method depends only on the 
observational data and will be referred to as the 
self-consistent analysis method. Each of these 
techniques is used to produce a SCHA model of 
each epoch and the results of this method of 
SCHA are compared with what the SHA based 
gufm1 model itself gives for the field. 

 
3. RESULTS AND DISCUSSION  
 
3.1 Results of GUFM1 Dipole Model 
 
As the gufm1 model is the accepted global model 
representing the magnetic field since 17

th
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century, it makes sense to compare results of the 
gufm1 dipole model with it. In this study, nearly 
1484 data points with data gaps filled using 
gufm1 dipole data have been used with 343 
actual observational data, giving a total of 1827 
data in all. Results of the SCH models are                  
shown as a series of contour plots of            
declination, inclination and intensity for each 
period of time. 
 
3.1.1 Declination plots 
 
The declination plots for the gufm1 dipole and 
gufm1 model have been presented side by side 
to test the reliability of gufm1 dipole technique for 
the time from 1633 to 2000. The major points of 
comparison can be broken down into four main 
points, From “Fig. 4”: 
 

1. There is quite a good agreement between 
the gufm1 dipole and gufm1 models for the 
time 2000 to 1950, Fig. 4 [A, J and B, K]. 
This was expected because both models 
are based largely on the same, quite well 
distributed data- complete (IGRF). 

2. This agreement gets worse further back in 
time. An example of this is indeed the 
declination for 1700, Fig. 4 [H, R], and the 
reason for this is not only the small amount 
of data but also the complete lack of data 
around New Zealand for this epoch. For all 
the epochs prior to 1825 the declination 
plots tend to be similar where there is a 
reasonable distribution of data (e.g.  in 
1790 [F, O]) and dissimilar for 1773,1633 
[S, P-I, Q] respectively, where there is a 
poor distribution of data. 

3. The gufm1 gives much larger negative 
declinations south of Australia than does 
the gufm1 dipole model. 

4. The change in declination across            
Australia is very similar in both and the 
values vary between -5 to +15. These 
values are in agreement with values of 
radiocarbon age recorded in lake 
sediments at Keilambete lake, south east 
Australia [20]. 

 
The gufm1 is based on calculating time 
dependence of Gauss coefficients                  
which results in quite smoothly changing 
models from epoch to epoch. The way of 
modeling used in the gufm1 dipole                 
model does not guarantee the same 
smoothness, which is why results for 1700, 
1773 and 1633 are so affected by a poor 
data distribution. 

3.1.2 Inclination plots 
 
As for the declination plots, inclination has been 
presented for both models in the same epochs. 
Inclination values in Fig.5 are negative in New 
Zealand and Australia. Inclination values given 
by the gufm1 dipole model are compatible with 
those of gufm1. Inclinations in New Zealand vary 
from -72° to -63°. The gufm1 dipole model gives 
more rapid change of inclination north of 
Australia with values 20° different from the gufm1 
model. The gufm1 dipole model gives              
inclination contours, which tend to be flatter than 
in gufm1, especially around New Zealand. The 
exception is for 1700 where most of the data are 
in the far north of the spherical cap, Fig. 5.  

 
Four main points can be made from the 
comparison between the self-consistent and 
gufm1 models for the time between 1900 to 1633 
in the southwest Pacific region, Fig. 6. 

 
3.1.3 Inclination Plots   
 
The inclination plots for both the self-consistent 
and gufm1 models are shown in Fig. 7 for the 
time from 1633 to 1900. No major differences are 
observed between the self-consistent and global 
gufm1 models for inclination in the time period 
considered. The inclination plots from the                
self-consistent model show generally slightly 
lower values over New Zealand and adjacent 
areas than the gufm1 models, especially 
between 1633 and 1790. All the self-consistent 
plots show a maximum inclination value  
reaching close to +50° in the north Pacific region 
where the maximum values in the gufm1              
model reach   only to +300 ~ +350. In New 
Zealand, the inclination given by both models 
increases slowly going backwards in time. This 
increase agrees with the inclination variation 
found by G. M. Turner & Lillis [21] from 
palaeomagnetic lake sediment data. 

 

3.2 Comparison of the Two Models 
 

To investigate and assess the usefulness of the, 
self-consistent and gufm1 dipole models, a 
comparison between these models has been 
made. The declination plots for the gufm1                
dipole model show poor field prediction in the 
study area in period between 1650-1800.                
The declinations from both models are 
reasonably similar from 1825 onwards although 
the declinations for the self-consistent model                
are about ~50 higher than for the gufm1 dipole 
model. The self-consistent model declinations 
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are also more like gufm1 over most of the area. 
The inclination plots for both the gufm1 dipole 
and self-consistent models are similar although 
the inclination values for the gufm1 dipole model 
are about ~50 steeper than for the self-consistent 
model before about 1775. Intensity contours for 
the gufm1 dipole model do not appear realistic 
from 1633 until around 1775. Contours after this 
epoch are of similar shape to those from the self-
consistent model. Overall, the intensity values at 
equatorial and high latitudes for the self-
consistent model are higher by about ~25000 nT 
than for the gufm1 dipole model. It appears that 
the declination, inclination and intensity values 
from the self-consistent model have a closer 
similarity to gufm1 global SHA although there are 

some differences. Although contour plots of 
declination, inclination and intensity of both the 
gufm1 dipole and self-consistent models are 
interesting and visual, they do not clearly show 
which is the better model to describe the field in 
our area of interest. Therefore, in order to 
investigate the reliability of both models, the 
misfit to the data has been calculated for each 
period of time from 1633 to 1875, Table 1. The 
values are the root mean squared difference 
between the magnetic field values (BXe, BYe, BZe) 
which have been used to calculate the SCHA 
model, and the predicted magnetic field value 
calculated from the final SCHA model 
coefficients at the latitude and longitude of each 
data point. 
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Fig. 4. Declination maps for the southwest Pacific region from 1633 to 2000. Comparing the 
results of the gufm1 dipole model (A-I) with the gufm1 model (J-R). Contour interval is 5° 
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Fig. 5. Inclination maps for the southwest Pacific region from 1633 to 2000. Comparing the 
results of the gufm1 dipole model (A-I) with the gufm1 model (J-R). Contour interval is 10° 
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Fig. 6. Declination maps for the southwest Pacific region from 1633 to 1900. Comparing the 
results of the self-consistent model (A-G) with the gufm1 model (H-N). Contour interval is 5° 
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Fig. 7. Inclination maps for the southwest Pacific region from 1633 to 1900. Comparing the 
results of the self-consistent model (A-G) with the gufm1 model (H-N). Contour interval is 10° 

 
Table 1. The root mean square difference between estimated values (Xe, Ye, Ze) and modeled 
values at each latitude and longitude of data point for each period of time from 1633 to 1875 

 
Year gufm1 dipole model Self-consistent model 
1633 5700 nT 2759 nT 
1700 5473 nT 2295 nT 
1733 12155 nT 1562 nT 
1790 10838 nT 1406 nT 
1825 8515 nT 6560 nT 
1875 13309 nT 3279 nT 

 
It is clearly apparent from the results in the Table 
1 that the calculated root mean square value for 
the self- consistent model gives significantly 
smaller values than the gufm1 dipole model.  A 
comparison of root mean square misfits between 
magnetic field values in the X, Y and Z direction 
for both models, Table 2, shows that the BX and 
B z magnetic field values for the gufm1 dipole 
model are the most significant contributions to 
the magnetic field misfits especially in the 
historical period from 1633 to 1790. This is 
clearly visible in the gufm1 dipole declination 
contours plots, Fig. 4, as these plots are poor for 
these epochs and differ from those for the gufm1 
model. As the total magnetic field strength is of 
the order of 50000 nT, the gufm1 dipole average 
root mean square difference is up to nearly 40% 
of the total field, whilst the self-consistent root 
mean square difference is about 6% only. 
Therefore, the self-consistent model appears to 
provide a more reliable model field for our region 
of interest than dipole gufm1.There are a number 
of important reasons of why the gufm1 dipole 
model   does not give as good a fit to the data 
values as the self-consistent model. As explained 
previously, for the gufm1 dipole model for each 
epoch the first three coefficients, ��

�, ��
� and ℎ�

� of 

the gufm1 model were used to compute the 
missing declination and/or inclination and/or 
intensity values. The estimated values therefore 
are based only on the dipolar part of the gufm1 
model and do not consider the non - dipole part 
of the geomagnetic field in the southwest Pacific 
region. The self-consistent model was built from 
a distribution of data within the cap with the aid of 
a linear extrapolation of SCH Gauss coefficients 
up to degree 2 that include both the dipolar and 
non-dipolar parts of the field. The extrapolation 
also includes reliable IGRF observed data for 
2000, 1950 and 1900. Another reason of why 
one should not put much weight on the gufm1 
dipole model is the uneven distribution of the 
data sites through the spherical cap in some 
epochs. An example is the contours of 
declination for 1700, Fig. 4, where that data 
aligns linearly across the top of the cap. In 
contrast with this the use, through extrapolation, 
of the previous values of SCH coefficients to help 
fill in data gaps in the self-consistent model 
means that the effect of poor data distribution on 
the results is reduced. The only exception to this 
is the declination plot for 1700, Fig. 6, although 
this still has some of the features seen for the 
other epochs. 
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Table 2. The X, Y and Z root mean squares of gufm1 dipole and self-consistent model from 
1633 to 1875 

 

year  ɛx nT ɛy nT ɛz nT 
gufm1 
dipole 

Self-
consistent 

gufm1 
dipole 

Self-
consistent 

gufm1 dipole Self-
consistent 

1633 2851 474     3190     2634     3957     668 
1700 2437 964 3430 1855 3500 947 
1733 9933 566 3820 1398 5873 405 
1790 9051 613 3209 1277 5025 311 
1825 3142 2089 2251 982 7587 6140 
1875 8545 1988 2096 1227 9986 2301 

 

4. CONCLUSION  
 
In this study, two regional model of the 
geomagnetic field for the southwest Pacific 
region have been developed covering the time 
span from1600 to 2000. Both models have been 
calculated by using the SCHA regional 
technique. These models have been calculated 
using observational and estimated declination 
and inclination for different epochs. Also, 
research was determining the best geomagnetic 
field model in the southwest Pacific region for the 
last 400 years. Observations of all three 
magnetic field components are required in order 
to produce a model for the field. Where data 
gaps occur unrecorded values of inclination and 
declination at a site have been calculated using 
the geocentric dipole components from the 
gufm1 global model. Analysis of these data gives 
the gufm1 dipole model. Maps for the 
geomagnetic field for this model suggest that  
this model does not give a good representation 
of the geomagnetic field in southwest Pacific 
region. A self- consistent model has been 
obtained from linear extrapolation of SCHA 
Gauss coefficients up to l=2 derived initially from 
2000, 1950 and 1900 IGRF observed data. The 
extrapolation has then been applied further back 
in time to seven different epochs. The magnetic 
field plots show that this model gives a much 
closer fit to the gufm1 model which is the best 
historical global model since 1600. The results 
suggest that the self-consistent model provides a 
more reliable model field for the southwest 
Pacific region than the gufm1 dipole model. The 
root mean squared misfit of the self-consistent 
model to the field values averages 2900 nT, 
compared to 23000 nT for the gufm1 dipole 
model. 
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