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Abstract

In this study, we proposed a generalization of the Pranav distribution by Shukla (2018). This new
distribution called an extended Pranav distribution is obtained using the exponentiation method. The
statistical characteristics of this new distribution such as the moments, moment generating function,
reliability function, hazard function, Rényi entropy and order statistics are derived. The graphical
illustrations of the shapes of the probability density function, the cumulative distribution function, and
hazard rate functions are provided. The maximum likelihood estimates of the parameters were obtained
and finally, we examine the performance of this new distribution using some real-life data sets to show its
flexibility and better goodness of fit as compared with other distributions.

Keywords: Pranav distribution, exponentiation, hazard rate function; Rényi entropy.
1 Introduction

In order to study lifetime data in real life, two things often stand out- the analysis and modeling of the
datasets using a probability distribution. This is usually done with the aim of finding the true nature of the
data set and how it behaves. Hence, over the years, researchers have proposed a lot of distributions to
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achieve this aim over the various field of study such as applied sciences, engineering, finance, insurance, etc.
because of the peculiarity of the data sets. These data sets often possess different shapes, mean residual life,
hazard rates etc. and requires a unique distribution which gives the best fit.

A lot of lifetime distributions have been proposed over the years for analyzing and modeling lifetime
datasets. Distributions such as the exponential and Lindley distributions have been proposed and applied to
some lifetime distributions. Shanker [1] carried out a comparative study on the exponential and Lindley
distributions using lifetime data sets obtained in the field of engineering and biomedical science. Their
findings showed that the two distributions were not suitable for most of the lifetime datasets.

Hence the quest to seek out the best lifetime distribution has led many researchers to propose a lot of new
lifetime distributions for a better fit to lifetime datasets. Shanker [1] proposed the one parameter Akash
distribution for modeling lifetime datasets. The author stated that the Akash distribution was superior to
lifetime distributions such as the Weibull, Exponential, and Lindley distributions. Other lifetime
distributions developed over the years include the Power Lindley distribution [2], the inverse Weibull
distribution [3], Sujatha distribution [4], Two-parameter Akash distribution [5], Discrete Shanker
distribution [6] among others. Recently, Shukla [7] proposed a new lifetime distribution known as Pranav
distribution for modeling lifetime datasets. The author demonstrated the ability of this distribution to provide
a better fit to some real-life data sets than some of the distributions mentioned earlier such as the Akash,
Lindley, and Sujatha among others.

The lifetime distributions above are referred to as baseline distributions because, in order to ensure their
robustness, they are often generalized. The exponentiation method of Mudholkar and Srivastava [8] is
popularly used when generalizing a baseline distribution due to its ability to be more flexible and give a
better fit. Some of the distributions that have been generalized using this method by researchers include the
exponentiated Weibull distribution [9], the exponentiated Lindley distribution [10], the exponentiated
Fréchet distribution [11], exponentiated Exponential distribution [12], the exponentiated power Lindley
distribution [13], exponentiated Inverted Weibull distribution [14] among others. These exponentiated
distributions were shown to be superior and more flexible than their baseline distribution using real-life data
sets.

The aim of this study, therefore, is to improve on the Pranav distribution using the exponentiation technique.
In order to achieve this, we propose a new distribution with its mathematical properties called an extended
Pranav distribution, a generalization of the Pranav distribution. Furthermore, we will show the flexibility of
this new distribution as well as its ability to provide a better fit for some real-life data sets.

2 The Exponentiated Pranav Distribution

Recently, Shukla [7] proposed a one parameter lifetime distribution for modelling lifetime data sets. The pdf
and cdf of the Pranav distribution as proposed by Shukla (2018) is given respectively as

64
6%+6

flx) = @ +xe % x>0,0 >0, (1)
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A random variable X is said to have an exponentiated distribution if the cdf and pdf are given respectively
by
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Hence, we obtain the pdf and cdf of the new extended Pranav distribution using the equations above as
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where 6 and «a are the scale and shape parameters respectively.
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The plots of the probability density function and cumulative distribution function are shown in Figs. 1 and 2

for different values of the parameters.
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Fig. 2. The CDF of the extended Pranav distribution



Uwaeme et al.; AJPAS, 2(4): 1-15, 2018, Article no.AJPAS.46556

3 Mathematical Characteristics

In this section, we present some of the mathematical properties of the extended Pranav distribution such as
the moment and moment generating function, the order statistics, entropy and reliability analysis.

3.1 Moments

We derive the rth moment of the extended Pranav distribution in this subsection.
Theorem I

Given a random variable X, following an extended Pranav distribution, the rth order moment about origin,
E(X™) of the extended Pranav distribution is given by

(r+3j-k-D! (r+3j—-k—1+3)!

E(XT) = Aijper et T Bijkt Gy etees (7

Where
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Proof

The rth moment of a random variable X is given by;
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Using the Binomial series expansion below,
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Substituting, we have
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3.2 Moment generating function
Here, we propose the moment generating function for the extended Pranav distribution.

Theorem I1

Let X have an extended Pranav distribution. Then the moment generating function of X,My (t) is given by

- k k+3j—1-m)! k+3j—1— !
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Proof

The moment generating function of a random variable X is given by
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3.3 Order statistics

The order statistics of the extended Pranav distribution is presented below.
Theorem III

Suppose X3, X,, ..., X,, is a random sample from an extended Pranav distribution. Let

X, X(2), -+ » X(m) denote the corresponding order statistics. Then, the probability density function, pdf of the
pth order statistics, say X = X(;), is given by

fx(x) =
an!(9+x3)e‘9"(j+1) _ _ i o . oo . 3l.pm.g3k—l-m+4,3k-l-m
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While the cdf'is given by;
Fx(x) = . . »
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Proof.
The pdf of a pth order statistics is given by
) v LWL - Q)
x) = ———— QP ()[1 - Q)" Pq(x
n! - _ . a4
fx(0) = mz&g’("i”)(—l)l QP (x)q(x) (11

Substituting for Q(x) and q(x) in the equations above we obtain the pdf and cdf of the order statistics
respectively as;
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The cdf of the p™ order statistics is given by
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3.4 Entropy

Entropy measures the uncertainties associated with a random variable of a probability distributions. One of
the type of entropy widely used is the Rényi’s entropy [15].



Uwaeme et al.; AJPAS, 2(4): 1-15, 2018, Article no.AJPAS.46556

Theorem IV
Given a random variable X, which follows an extended Pranav distribution. The Rényi entropy is given by
1 3j—k=0)! (3B+3j—k=1)!
Tr(B) = 51 00{Aij i et T Bijk W} (13)
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3.5 Reliability analysis

Given any probability distribution, the reliability analysis is always considered based on the survival
function and the hazard rate function of the distribution. Hence, for the extended Pranav distribution, the
survival and hazard rate function is given below;

3.5.1 Survival function

The survival function is defined as the probability that an item does not fail prior to some time t. It is given
by

Sx)=1-0Q(x) (14)

0x(02x%+30x+6) e—Gx]a
0%+6

Sy =1-[1-[1+ (15)

10
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3.5.2 Hazard rate function

The hazard rate function on the other hand can be seen as the conditional probability of failure, given it has
survived to the timet. It is given by

__a®
h(x) = 22 (16)
a-1
a9216(6+x3) 1—(1+79x(92:2126x+6)>e_9"] e~0x
h(x) = 0x(6%2x2+36x+6)] _g, “ (17
1-[1- [ x|

Figs. 3 and 4 shows the graph of the hazard rate function and survival function of the extended Pranav
distribution for various values of the parameters. The hazard rate function graph shows a monotonically
increasing shape.
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Fig. 4. The survival function of the extended Pranav distribution
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4 Maximum Likelihood Estimation

Let X1, X>, ..., X, be a random sample of size n from the extended Pranav distribution. The log-likelihood
function of parameters can be written as

LL(a,0) =[IiL,1 ng(x;) (18)

n

2.3 a-1
1T "[9:1 K +x3)[ ( o+ 369xl-+6))e_axi] e_axi}
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2.3
where G;(0) = [1 - (1 T w) —Gxi]

0%+6

In order to maximize the log likelihood, we solve the nonlinear likelihood equations obtained from the
differentiation of (19) w.r.t fas shown below;
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k=1+ ~0k=0+4+0—
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12
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Therefore,

aLL i 24m8 + (0% 4 6) ) n . @-13, [93x?(94xi+693+18)+9;9ii2+(:61)2294—1893—36xi)—369xi2] .
26 6(6* +6) = [1 _ (1 + exi(ezzi:zexwé)) e_gxi]

And also from the differentiation of (19) w.r.t. @, we have
=+ T 1{Gi(9)) 1)

In order to obtain the estimates of the parameters using the nonlinear equations above, we use the Newton—
Raphson method available from the maxLik package in the R software.

5 Application

In this section, we demonstrate the flexibility and superiority of the extended Pranav distribution to some
competing lifetime distributions using a real-life data set. In order to achieve this, we compare the goodness
of fit of the extended Pranav distribution with similar distributions such as the Lindley distribution (LD) by
Lindley [16], the exponentiated Lindley distribution (ELD) by Bakouch et al. [10], exponentiated
Exponential distributions (EED) by Gupta and Kundu [12], the Akash distribution (AD) by Shanker [1], the
Two-parameter Akash (TPAD) by Shanker and Shukla [5] and the recently proposed Pranav distribution by
Shukla [7].

This comparison is done using some measures for testing the goodness of fit of a distribution such as the
parameter estimates, the log likelihood, the Akaike Information Criteria (AIC) and the Bayesian Information
Criteria (BIC).

The real-life data-set adopted in this study is presented in the Table below.

Data set: This data contains the strength of data of glass of the aircraft window as reported by Fuller et al.
[17] as shown below.

18.83 20.8 21.657 23.03 23.23 24.05
24.321 25.5 25.52 25.8 26.69 26.77
26.78 27.05 27.67 29.9 31.11 33.2

33.73 33.76 33.89 34.76 35.75 35.91
36.98 37.08 37.09 39.58 44.045 45.29
45.381

Table 1 shows that the extended Pranav distribution provides better fit than the competing distribution which
confirms its superiority of the other distributions.

Table 1. MLE’s, -2In L, AIC, BIC of the fitted distributions of data sets

Model Parameter estimates -2LL AIC BIC

AD 0.0971 240.6818 242.6818 244.1157

TPAD 6 =3861x102 274.53 278.5301 281.398
1 =1.280x 10*

EED 6 =0.1660 208.2686 212.6286 215.1366
@ = 33.7818

PD 0.129818 232.77 234.77 236.68

EPD 0 = 0.2423 141.8131 145.8131 148.681
a@=9.61 46

LD 0.0630 253.9884 255.9884 257.4224

ELD 6 =0.1934 208.2038 212.2038 215.0718
B =36.6683
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6 Conclusion

This study proposed a new distribution known as the extended Pranav distribution using the widely used
exponentiation technique. The mathematical properties of the newly developed distribution including the
Order statistics, Entropy, Moments and Moment generating function and reliability analysis was also
proposed and derived. Furthermore, the maximum likelihood estimation was discussed. To demonstrate the
superiority, the extended Pranav distribution was compared with the Akash, Two-parameter Akash, Lindley
and exponentiated distributions among others using a real-life data set. The results obtained easily showed
that the extended Pranav outperformed the other distributions.
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