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ABSTRACT. In this paper, a new identity for functions defined on an open
invex subset of set of real numbers is established, and by using the this iden-
tity and the Holder and Power mean integral inequalities we present new
type integral inequalities for functions whose powers of third derivatives in
absolute value are preinvex and prequasiinvex functions.
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1. Preliminaries

Definition 1.1. A function f: I C R — R is said to be convex if the inequality
flz+ (1 -ty <tf(x)+ (1 —1t)f(y) is valid for all z,y € [ and ¢ € [0,1]. If
this inequality reverses, then f is said to be concave on interval I # &.

This definition is well known in the literature. Convexity theory has appeared
as a powerful technique to study a wide class of unrelated problems in pure and
applied sciences.

Definition 1.2. f : I C R — R be a convex function on the interval I of
real numbers and a,b € I with a < b. The following celebrated double inequal-
ityis well known in the literature as Hermite-Hadamard’s inequality for convex
functions [I]. Both inequalities hold in the reserved direction if f is concave.
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The classical Hermite-Hadamard inequality provides estimates of the mean value
of a continuous convex or concave function. Hadamard’s inequality for convex or
concave functions has received renewed attention in recent years and a remark-
able variety of refinements and generalizations have been found; for example see
1, 2, B, [, B5]. Hermite-Hadamard inequality (see [6]) has been considered the
most useful inequality in mathematical analysis. Some of the classical inequali-
ties for means can be derived from Hermite-Hadamard inequality for particular
choices of the function f.

Definition 1.3. A function f : I € R — R is said to be quasi-convex if the
inequality f (tx + (1 —t)y) < max{f (z), f(y)} holds for all z,y € I and ¢ €
[0,1]. Clearly, any convex function is a quasi-convex function. Furthermore,
there exist quasi-convex functions which are not convex [7].

Let us recall the notions of preinvexity and prequasiinvexity which are signicant
generalizations of the notions of convexity and qusi-convexity respectively, and
some related results.

Definition 1.4 (|§]). Let K be a non-empty subset in R™ and n : K x K — R"™.
Let x € K, then the set K is said to be invex at x with respect to 7 (-, ), if
x+tn(y,z) € K, Ve,y € K t €[0,1]. K is said to be an invex set with respect
to n if K is invex at each z € K. The invex set K is also called n-connected set.

Definition [1.4] essentially says that there is a path starting from a point x which
is contained in K. We do not require that the point y should be one of the end
points of the path. This observation plays an important role in our analysis.
Note that, if we demand that y should be an end point of the path for every
pair of points z,y € K, then 7 (y,x) = y — z, and consequently invexity reduces
to convexity. Thus, it is true that every convex set is also an invex set with
respect to n(y,z) = y — x, but the converse is not necessarily true, see [9] [10]
and the references therein. For the sake of simplicity, we always assume that
K =[x,z + tn (y, )], unless otherwise specified [I1].

Definition 1.5 ([§]). A function f: K — R on an invex set K C R is said to be
preinvex with respect to 0, if f (u + tn(v,u)) < (1—t)f(u)+tf(v), Yu,v € K, t €
[0,1]. The function f is said to be preconcave if and only if —f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map
N (y,2) = © — y but the converse is not true see for instance.

Definition 1.6 ([I2]). A function f : K — R on an invex set K C R is said to be
prequasiinvex with respect to n, if f (u+tn(v,u)) < max{f(u), f(v)},Yu,v €
K, te€]0,1].

Also every quasi-convex function is a prequasiinvex with respect to the map
7(v,u) = v —u but the converse does not hold, see for example [I2]. Mohan and
Neogy [9] introduced Condition C' defined as follows:
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Definition 1.7 ([9]). Let S C R be an open invex subset with respect to the
map 1 : S xS — R. We say that the function satisfies the Condition C' if, for
any z,y € S and any t € [0, 1],

n Y,y +tn(z,y) = —tn(z,y) (1)

n(z,y+in(z,y) =010-t)n(z,y). (2)
Note that, from the Condition C', we have

n(y+tan(x,y),y +tn(x,y) = (2 — t1) n(z,y)
for any z,y € S and any ¢, 12 € [0, 1].

In recent years, many mathematicians have been studying about preinvexity and
types of preinvexity. A lot of efforts have been made by many mathematicians to
generalize the classical convexity. These studies include, among others, the work
of [8, 13}, [14] [15] (16, I7]. In this papers have been studied the basic properties
of the preinvex functions and their role in optimization, variational inequalities
and equilibrium problems. Ben-Israel and Mond gave the concept of preinvex
functions which is a special case of invexity [13]. Pini introduced the concept of
prequasiinvex functions as a generalization of invex functions [I6]. In a recent
paper, Noor has obtained the following Hermite-Hadamard type inequalities for
the preinvex functions [I§].

Theorem 1.8 ([18]). Let f : [a,a + tn(b,a)] — (0,00) be a preinvexr function
on the interval of the real numbers K° (the interior of K) and a,b € K° with
n(b,a) > 0. Then the following inequalities holds

a a atn(b,a) a
f(2 —|—;](b, )) < n(;a)/a f(z)dz < w (3)

For several recent results on inequalities for preinvex and prequasiinvex functions
which are connected to , we refer the interested reader to [19] 20, 21], 22] and
the references therein. Let 0 < a < b, throughout this paper we will use

A = A(a,b):a;b
bP+1_aP+1 P
Ly(a,b) = ((p—i—l)(b—a)) , a#b peR, p#-1,0

for the arithmetic and generalized logarithmic mean, respectively. Moreover, for
shortness, the following notations will be used:

a = a(a7b,n)=a+@, atzat(a,b,n)=a+t@7
b, b,
ﬂ = 5(07@77):(14‘@, Bt:ﬁt(avban):a—’_twv

and

If(a,b,n) =

n*(b, a) (a UG

: =) 1 o nl0v)
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b,a
—a) (a4 8520 1 o i)

a+n(b,a)
1 (a+ n(b,0)) (a+ (b)) — fla)a - / f(z)d.

In this paper, using a general integral identity for a three times differentiable
functions, we establish some new type integral inequalities for mappings whose
third derivative in absolute value at certain powers are preinvex and prequasi-
invex.

2. Main Results

We will use the following Lemmas for obtain our main results about the prein-
vexity and prequasiinvexity.

Lemma 2.1. Let K C R be an open invex subset with respect to mappingn (-, ) :
KxK — R" and a,b € K withn(b,a) > 0. Suppose that the function f: K — R
is a three times differentiable function on K such that " € Lla,a+ n(b,a)].
Then the following identity hold:

2 a
T 517 (0t (b)) (b a)af (@ (b, 0)
a+n(b,a)
Hatnt.a) @)~ faa- [ fad
1,2
= ') [ %ﬁtf’”(a—ktn(&a))dt.
Proof. Integrating three times by parts and then changing the variable, we obtain
142
n*(b, a) ; %ﬂtf”/(a—i—tn(b,a))dt
2 1
= ng(b,a)%ﬁtf”(aﬂn(b,a)) — b, a)tarf (a + tn(b,a))l
0
1
+ (b)) f (a+ tn(ba)l§ =) [ f (ot tn(ba) e
2
= D g (0t (b))~ nlba)acf" -+ i)
1
+{act n(ba) f @+ (b)) = af (@) =nfba) [ Fa-+ tn(ba) e
n*(b, a)

= 5 B (a+n(b.a) = (b a)af (a+nb a)

a+n(b,a)
+(a+n(b,a)) f (a+n(b,a) —af (a) - / f(z)d.

This completes the proof of lemma. O
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Theorem 2.2. Let K C R be an open invex subset with respect to mapping
n(,) : Kx K — R"” and a,b € K with n(b,a) > 0. Suppose that the
function f : K — R is a three times differentiable function on K such that
"€ Lla,a+mn(b,a)]. If|f"|* is preinvez on K for q > 1, then the following
inequality holds:

Y R
@bl < 5 = [[f7(0)|" C1,y (a,0) + [ f"(a)|* Capy (a,0)] " . (4)
(2p+1)7
where
n(b, a) [Lgi} (B,a) —aLl (B, )} , a>0,8>0,
Cl(a,0) =4 3(a+ ) LT} (B, —a) — S5 A (B4, (—a)H1) .a < 0,3 > 0,
—n(b,a) [L5} (~a.=B) +aLi(~a,—B)],  a<0.8<0.
and
—n(b,a) [Lgi} (B,a) — L (B, )] , a>0,8>0,
Coy (a,b) =4 —3(a+ ) LU (B, —a) + q6f1A (891, (—a)™*1) ,a < 0,8 >0,
n(b,0) [L4T (—a,~8) + aLy (~a,-B)] a<0,8<0.

Proof. 1f |f"'|? for ¢ > 1 is preinvex on [a,a + n(b,a)], using Lemma the
Holder integral inequality and | f"(a + tn(b, a))|? < t|f"(b)|*+(1—t) |f" (a)|? ,we
get

I(a.bon)

< g0 [ #1811 ol

< gr(.a) (/Olt%dt)é (/01 |Bt|qf”’(a+tn(b,a))|th)}1

< pioo ([ t?pdt)é ([ e o+ - o1 ozt)é

< 1(;;(“)); (7o [ sl i@l [ a-olsra)
mn a B

) ;(Zpi’f)); (37'7‘§(bf?)' [ pamaeltas

q

31" (@) e s
S [ ) >>|d)

g ;
- 135777((),@1) (f”’(b)|q/ 3(x —a)l|z|?dx
2 (2p+1)r a
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Q=

B
@ [ 0.0 =36~ a) |x|“””>

Q=

i 7]1+% (ba CL) [
2 (2p+1)»
This completes the proof of theorem. O

[f"(®)]* Cry (a,b) + [/ ()| oy (a,0)] 7 .

Corollary 2.3. Suppose that all the assumptions of Theorem [2.3 are satisfied.
If we choose 1(b,a) = b—a then when || is convex on K for ¢ > 1 we obtain
following inequality:

b—a (2a+b\ ., ., a+b, FB)b— f( /
3 (25 o - e« RO [
1 1 (b— ) ey 14 1 3
< 231U 0)) Cr (a,b) + [ (@)]? Ca ()] 7
2 (2p+1)r
where
(b—a) [LIT] (252,0) — aLg (252,0) |, a > 0,25 >0,
c , (5a +b) Lgﬂ (2“3+b —a)
1(a’ )7 Q+1A<(2a+b)q+17(_a)q+1)7 a < 07 2&3—“’ > 07
—(b—a) [Lgﬂ (—a,—2%) +aLl (—a,—zaTH’)} ,a <0,2%8 <,
—(b—a) |LIT} (2atb —alLl 2atb q)|, a> 0,242 >0,
(b—a) [L15 (%5 ;
—(5a +b) Lgﬁ (2“§H’ —a)
T TP /s s O
(00 [E07} (-~ + 0L (o 24)], a <0, 252 <o,

Remark 2.4. If the mapping 7 satisfies condition C then by use of the prein-
vexity of | f"”’|? we obtain following inequality for every ¢ € [0, 1]:

[f" (a+tn(b,a)|" = [ (a+n(ba)+ (1= t)n(a,a+n(ba)
< tlf" (@+n®a)"+ 1= f"(a) ()

If we use the inequality in the proof of Theorem then the inequality
becomes the following inequality:

If(a7b 77)
3705 (0, )
2 (2p+1)»

We note that by use of the preinvexity of |f”|? we get |f"(a+n(b,a))|? <
|£”(b)|. Therefore, the inequality (6) is better than the inequality (4.

(1" (@ + n(b.a)|" C1 y (a.) + | £ (@)|" Cay (a,D)] 7 .(6)
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Theorem 2.5. Let K C R be an open invex subset with respect to mapping
n(,) : Kx K — R"” and a,b € K with n(b,a) > 0. Suppose that the
function f : K — R is a three times differentiable function on K such that
"€ Lla,a+n(b,a)]. If|f"|* is preinvez on K for q > 1, then the following
inequality holds:

1

Itabon)] < Sy .00 (0, [ TORE TR )

* (2 +1) (29 +2) ’
where
1B 1p (8, a), a>0, >0,
Cs, (a,b) = ]%A (BPH, (—a)Pt) ,a <0, B> 0,
19 rp(—a,~f), a<0, f<0.

Proof. If |f"'|? for ¢ > 1 is preinvex on [a,a + 1(b,a)], using Lemma the
Hélder integral inequality and | " (a + tn(b,a))|? < t|f”(b)|1+ (1 —1t) |f"(a)|?,
we obtain the following inequality:

(¢ (a,b,n)]

< Lpe a>/1t25||f’”<a+t (b.a))] dt
= 277 ) 0 t o,

1 1 L 1 L
< yrea([1ara) ([ e neaora)
<

1 1 »
S (0,0) ( /O 1,7 dt)
1

X (/ U O+ (1=t | ()] dt)}z

0

1 ! ’
= gt ([ 1ara)

1 1 q
% (|f///(b)|q/0 t2q+1dt+ |f///(a)‘Q/0 (th _t2q+1) dt)

_ 1; 241 /ﬁ p ’ ‘f”/(b)lq " q 1 1 %
= 530 (b7a)<a lelfde | e TN 5T~ 32

1
11 941 ; g+ D) IO + 1" (@)
=37 a(b,a)C3 b .
2 n ( 7a) 3,17(a7 )|: (2q+1)(2q+2)
This completes the proof of theorem. O

Corollary 2.6. Suppose that all the assumptions of Theorem [2.5 are satisfied.
If we choose 1n(b,a) = b — a then when |f"'|? is convex on K for ¢ > 1 we have
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the following inequality:

/% a — f(a)a ’
S S P D=y

1

< So-aTic] e |

Q=

(2¢ + D) [f"(B)]" + f”’(a)lq]
(2¢+1)(2¢+2)

where
ey (k.0) a>0, 5
Cs (a,b) = 1%’4 ((2&;—1))1’ ’(_a)p+1) ,a <0, 2aT+b >0,
%Lg (—a,—2a3+b), a <0, 2“;1’ < 0.

Remark 2.7. If the mapping 7 satisfies condition C then using the inequality
in the proof of Theorem then the inequality becomes the following
inequality:

1

p(abom)l < 2?45 (b, ), (0,D) [@q + 1)@+ (b))’ +1f"(@)]"]

(2¢+1) (29 +2)

(8)
We note that by use of the preinvexity of |f”'|? we get |f"”(a+n(b,a))|? <
|f"(b)|* . Therefore, the inequality is better than the inequality .

Theorem 2.8. Let K C R be an open invex subset with respect to mapping
n(,) : K x K — R” and a,b € K with n(b,a) > 0. Suppose that the
function f : K — R is a three times differentiable function on K such that
"€ Lla,a+n(b,a)]. If|f"|* is preinvex on K for q > 1, then the following
inequality holds:

Q=

Tp(abm)l < 2 5 (b, a)Dy, 7 (a,) 17 0)" Doy a,) + |£ (@) Dy (3, )]

(9)
where
nig;a)w, a>0,8>0
Din(ab) + =g Tl 4 a <0, f>0
ngl;a)w, a<0,8<0
n'(ba) nb.a)tisa a>0,6>0
Dy yla,b) @ = "é}“’W*%ﬂdﬂﬂ )
(ba)w, a<0,8<0
n(l;a)w a>0,8>0
Dyp(ab) + =4 QA0 g 0) 43950 < 0,8>0
%@%, a<0,8<0.
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Proof. Using Lemma 2.1 and Power-mean integral inequality, we obtain
[y (a,b,m)|

1 3 ! 2 "
=1°(b, t tn(b, dt
50°0.0) [ #1817 @+ (b))

I g ' "
3 (b,a) </0 3 |ﬂt|dt>

i 1 A
< | 1801+ e, a>>|th)
s ([ 2 11a)
—n°(b d
g0 ([ 1l

< ( [ el e+ a-ol @) dt)

1—1

- oo ([ na)”
s'a) ([ 13l ar

1 1
x (If”’(b)lq [ elalacirar [ea-g /wt)

) ;n3(b’a)<m(2b7ja)>1—§<7ﬁ(2b77®>é(/aﬁ(x—a)2|x|da:>1

y ( PO [ 3 — a)? 2] de )

IN

IN

1
-2

IN

Q=

1
q

Q=

Q=

(@) [P (2 — a)? [n(b,a) — 3(x — a)] || da
1—1

1 /B N
= Tyt ( / (xa>2x|dx>

y ( PO [ 3@ — a) || da )
+ 1@ [P (@ = a)? [n(b, @) — 3(a — a)) || da

7 1 -1
= 2 )by, (@) [ B Doy (0.5) + 1) Dy (0.D)]

Q=

1
q

This completes the proof of theorem. O

Corollary 2.9. Suppose that all the assumptions of Theorem [2.5 are satisfied.
If we choose n(b,a) = b — a then when |f"'|? is convex on K for ¢ > 1 we get

—a a a — a)a b
b2 (2 3+b> () — ;bf'(be(b)z—Z( ) _bia/a f(2)dz
o) =D, 1 (a,h) [1£”/ ()| Da (a.b) + |1 (@)|" D (a. )] T,

- 2
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where
(b ;’) bJ{g’“, a>0,8>0
Di(a,b) = (b—a)® iqg’u ,a<0, >0
_G 27) bk a<0,8<0
%4“6‘31“, a>0,>0
Dy(a,b) = § Gpelibile _340a<0,8>0
(bQ;) 4b+11a’ a<0,8<0
and (-1 brta
60 a>0,8>0
Ds(a,b) = ¢ (-a” Bt + (b —a)G +315,a < 0,5>0
— (o) bida a<0,8<0.

Remark 2.10. If the mapping 7 satisfies condition C then using the inequality
in the proof of Theorem then the inequality @[) becomes the following
inequality:

27 1 1-1
|If(a7b777)| < ?77 q(b7a)D1,nq (a,b) (10)

1

x [1f"(a +n(b, a))|" Doy (a,b) + [ f"(a)|" D3y (a,0)] 7 .

We note that by use of the preinvexity of |f”/|? we get |f"(a+n(b,a))|? <
|f""(b)|*. Therefore, the inequality is better than the inequality @I)

Corollary 2.11. If we take ¢ = 1 in Theorem [2.8, then we have the following
inequality:

[y (a,b,m)| <

277( ) (1" (0)] D2y (a,b) + | /" (a)| Ds.y (a,b)]

Now we will give our results for prequasiinvex functions by using Lemma

Theorem 2.12. Let K C R be an open invexr subset with respect to map-
ping n(-,:) : K x K — R™ and a,b € K with n(b,a) > 0. Suppose that the
function f : K — R is a three times differentiable function on K such that
" € Lla,a+mn(ba)]. If |f"|? is prequasiinver on K for ¢ > 1, then the
following inequality holds:

¢ (a,b,n)]

1
34 gt 1 P 11
< St (5 h) e @ o) e nan
where
"(%’“)Lq (8,a), a>0,8>0,
Cylg.ab) =3 ZHA[pH, (~a)] a<0,8>0,

1
189 14 (—a,—f), a<0,8<0.
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Proof. If | f"""|? for ¢ > 1 is prequasiinvex on [a, a + n(b, a)], using Lemma the
Hélder integral inequality and | /"' (a + tn(b, )| < max {|f"(a)|*,|f" (b)|"} we
obtain

[ (a,b,n)|
1
< grba) [ #1811 @ )] di
0
1 ; 1 :
< gt ([ o) (a1 me.a) )
0 0
1 i 1 L
< yreea ([ era) ([t i@ o) )
0 0
_ 376?72-5-%(6 CL) 1 P (max{|fm |(I |f//l ‘ }) / |.Z‘|q dzr !
2 ’ 2p+1
= ) (o ) (max {17 @1 ) O (g.0.b)
2 W2t ’
This completes the proof of theorem. O

Corollary 2.13. Suppose that all the assumptions of Theorem[2.13 are satisfied.
If we choose n(b,a) = b— a then when |f"'|? is prequasiinvex on K for ¢ > 1 we

have
b—a (2a+0b\ ,, a+b,, f)b— f( /
b) — ——f'(b
2 ( 3 )f() 2f()+ b—a b-a f@
1 1
34 1 1
< Fe-a <2p+1>p(max{|f'" I 1O} O (g, 0,0)
where
b—TaLg(bg?a,az, a>0,%42e >0,
Clg.a,0) =3 [(btf“)(ﬁ_ (—a)™ | a < 0,22 > 0,
%Lg (—a,——b?“), a <0, b+32“ < 0.

Remark 2.14. If the mapping 7 satisfies condition C then by use of the pre-
quasiinvexity of | f"’|? we get
" (a+tn(b,a)" = [f" (a+n(ba)+ (1 —t)n(a,a+mnba))l
< max {[f"(@)[", " (a+n(b,a))|"} (12)
for every t € [0,1]. If we use the inequality in the proof of Theorem
then the inequality becomes the following inequality:

|If<a’a b, 77)| (13>
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1 1
< Sptha) () e {17 @117 n(o. )]} O (a0, )
- 2 2p+1
We note that by use of the prequasiinvexity of | f”/|? we have | "’ (a + n(b,a))|? <
max {|f"(a)|?,|f""(a +n(b,a))|"} . Therefore, the inequality (14)) is better than
the inequality .

Theorem 2.15. Let K C R be an open invexr subset with respect to map-
ping () : K x K — R™ and a,b € K with n(b,a) > 0. Suppose that the
function f : K — R is a three times differentiable function on K such that
"€ Lla,a+mnba)]. If |f"|? is prequasiinver on K for ¢ > 1, then the
following inequality holds:

27
[ y(abym) < = (max {|f"(a)*, [/ (O)" }) Dy n(a,b) (14)
where
5’7“) atb.a)tla a>0,8>0
Dlm(a,b) = (%Q)M+F7a<0 ﬂ>0 s
g’?“) ab.a)ida a<0,8<0

Proof. From Lemma [2.1] and Power-mean integral inequality, we obtain

[1¢(a, b, n)]

1
< grba) [ 21815 (@t tn(b.a))de
0
1 L S i
< grea ([ emia) ([ e mo.o )
0 0
1 1 1-3 i
< gr.a) (/ t2,6’t|dt> (/ £2 || max {| " (a)| | " (b) }dt)
0 0
1 1l
= e max {1/ @I WD [ A
2 1
— 27 (max{|f”’ N 1" () |})q/ r—a)?|z|dx
— 2?7(max{|f’" \q lf" (b |}) D ,(a,b).
This completes the proof of theorem. O

Corollary 2.16. Suppose that all the assumptions of Theorem|[2.15 are satisfied.
If we choose n(b,a) = b— a then when |f"'|? is prequasiinvex on K for ¢ > 1 we

have
b—a (2a+0b\ ,, a+b f)b— f(
(255 -+ L2 b,a/f




New type integral inequalities for three times differentiable 45

< D) [ (1)) 17 0]
a
where (0-0)® be3 bio
e a> 0,050
Di(a,b) =y 5phbie a0, M2 >0
e SRR ()

Remark 2.17. If we use the inequality in the proof of Theorem then
the inequality becomes the following inequality:

Ip(a,b,m)| < 2 (mas {|f"(@)[*, £ (a +n(b,0))|})* Dy(ab)

This inequality is better than the inequality .

Corollary 2.18. If we take ¢ = 1 in Theorem[2.15], then we have the following
inequality:

Ly (a,b,m)] < % max {| /" (@), [/ (0)|*} D1.y(a,b)
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