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ABSTRACT 
 

Aims: Maya ancestry populations from Yucatan have exhibited a high prevalence of diabetes and 
obesity; consequently, the aim of this study was to determine the allelic and genotype frequencies 
of six polymorphisms associated with diabetes and obesity in two Maya populations. 

Original Research Article  
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Place and Duration of Study:  Department of Genetics and Molecular Biology, Centro de 
Investigación y de Estudios Avanzados del IPN; Laboratorios de Genética y Hematología, Centro 
de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán between 
September 2014 and March 2016. 
Methodology:  Healthy individuals with Maya ancestry were recruited in small rural and urban 
communities from Yucatan. Six polymorphisms present in five genes (PPARGC1A, NRF1, 
SLC30A8, ADRA2A and UCP3) were genotyped using TaqMan assays. Linkage disequilibrium 
analysis was performed for rs13266634 and rs11558471 (SLC30A8).  
Results:  The observed frequencies in the small rural community (SRC) and Merida were in Hardy 
Weinberg equilibrium. Frequencies of five polymorphisms (rs8192678, rs1882095, rs13266634, 
rs11558471 and rs3781907) correlated with 1000 genomes project data, furthermore, statistical 
analysis did not reveal a significant difference between genotype frequencies of the SRC and 
Merida populations. Contrary, frequencies from Mexicans living in Los Angeles compared with 
frequencies obtained in Yucatan (SRC and Merida) indicated significant difference on genotype 
frequencies in the ADRA2A gene (P-value= .017). The polymorphisms rs13266634 and 
rs11558471 in the SLC30A8 gene displayed strong linkage disequilibrium (D’= 0.96), displaying 
frequencies of 0.725, 0.255, and 0.015 for haplotypes C-A, T-G, and C-G respectively.  
Conclusion:  Distribution of A allele in rs553668 (ADRA2A) in the Yucatan populations was higher 
than the frequency reported for Mexicans from LA, Americans, Europeans, and Africans. This 
finding could be related to blood pressure levels in the Maya populations. Additionally, a high 
frequency of C-A haplotype (rs13266634 and rs11558471) in the SLC30A8 gene could be 
associated with an increased risk of diabetes and obesity in these populations. 
 

 
Keywords: Mexican-Maya; PPARGC1A; NRF1; SLC30A8; ADRA2A; UCP3. 
 
1. INTRODUCTION  
 
The state of Yucatan is known for its Maya 
heritage, with the ancient Pre-Hispanic cultures 
having settled in this region more than 3,500 
years ago. Past studies have emphasized certain 
physical and genetic characteristics of Maya 
descendants, which are thought are playing a 
major role in their physical constitution and risk of 
metabolic disease [1-4]. Currently, Yucatan is in 
the top five states in the nation with the highest 
rates of diabetes and hypertension. The National 
Health and Nutrition survey of 2012 registered 
7,210 and 7,070 cases of diabetes and 
hypertension, respectively, in Yucatan [5,6]. 
Projections for the next 25 years estimate an 
increase from 44.3 to 60.5 million cases of Type 
2 diabetes (T2D) [7]. Reports from 2011 show 
that the prevalence of T2D in Yucatan is 8.2-
9.2% [5]. Despite this modest average, 
communities in the northeast coast of Yucatan 
display a higher prevalence of T2D [3,8]. 
Specifically, there is a case of a small rural 
community (SRC) with less than 5,000 habitants 
where the prevalence of T2D rises up to 22% 
(unpublished data). Additionally, this population 
exhibits a strong Maya ancestry, as well as a 
high prevalence of obesity [3,8].  
 
Genetic, environmental factors and ethnicity 
have been related to the development of 

diabetes [9-11]. However, genetic 
polymorphisms found throughout the genome 
also play a role in susceptibility to T2D, mainly 
when there are polymorphisms in genes 
implicated in insulin secretion [12–14], insulin 
resistance [15–17], β-pancreatic cells impairment 
[18,19] and/or lipid metabolism [20,21].  
 
1.1 Function of Genes Involved in T2D of 

this Study 
 
Peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha encoded by 
PPARGC1A gene is a transcriptional coactivator 
of nuclear receptors and other transcription 
factors that regulate metabolic processes, 
including mitochondrial biogenesis and 
respiration, and hepatic gluconeogenesis [22,23]. 
This protein may be also involved in controlling 
blood pressure, regulating cellular cholesterol 
homeostasis, and obesity development [24]. The 
rs8192678 variant has been associated with 
diabetes related traits such as insulin resistance 
[25] and insulin secretory response and lipid 
oxidation [26].  
 
The nuclear respiratory factor-1 encoded by the 
gene NRF1 homodimerizes and functions as a 
transcription factor which activates the 
expression of some key metabolic genes, 
regulating cellular growth and nuclear genes 
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required for respiration, heme groups 
biosynthesis, and mitochondrial DNA 
transcription and replication [22,27,28]. It also 
has been reported that decrease in PPARGC1A 
expression may be responsible for decreased 
expression of NRF1 dependent genes, leading to 
insulin resistance and T2D [29]. The variant 
rs13266634 has been associated to T2D in a 
Finnish population [30]. 
 
The solute carrier family 30 member 8 encoded 
by the gene SLC30A8 is a zinc efflux transporter 
involved in the accumulation of zinc in 
intracellular vesicles. This gene is expressed at a 
high level in islets of Langerhans [22,31]. 
Recently, it has been confirmed the increased 
risk of developing T2D in Asian, European                 
and African populations with the variant 
rs13266634 [31]; and the variants rs11558471 
and rs13266634 together have been also 
associated to T2D in a Han Chinese population 
[32]. 
 
Alpha-2-adrenergic receptors are members of 
the G protein-coupled receptor superfamily [22]. 
These receptors have a critical role in regulating 
neurotransmitter release from sympathetic 
nerves and from adrenergic neurons in the 
central nervous system [33]. The variant 
rs553668 located in the 3′ UTR region of the 
adrenoreceptor alpha 2A encoded by the gene 
ADRA2A, caused its overexpression, which has 
been associated with impaired insulin secretion 
in a Scandinavian population [34]. 
 
Mitochondrial uncoupling proteins encoded by 
the UCP3 gene are members of the larger family 
of mitochondrial anion carrier proteins (MACP). It 
is primarily expressed in skeletal muscle [22]. 
UCPs facilitate the transfer of anions from the 
inner to the outer mitochondrial membrane and 
the return transfer of protons from the outer to 
the inner mitochondrial membrane. Expression 
levels of this gene increase when fatty acid 
supplies to mitochondria exceed their oxidation 
capacity and the protein enables the export of 
fatty acids from mitochondria. The haplotype that 
includes the variants rs3781907, rs11235972, 
and rs1800849 has been associated with high 
LDL-cholesterol in a Finnish population [35]. 
 
The two Maya populations of this study exhibit 
particular genetic characteristics inherent to 
Maya ancestry, which makes them unique for 
distribution studies as an initial approach for 
research in complex diseases. Therefore, the 
aim of this study was to describe the distribution 

of six polymorphisms associated with T2D and 
obesity in two communities with high prevalence 
of these pathologies. 
 
2. MATERIALS AND METHODS 
 
2.1 Subjects   
 
Individuals were recruited in the SRC and Merida 
(Yucatan, Mexico). The study included 181 
healthy, contemporary Mexicans with Maya 
ancestry, between ages of 20 to 90 years. 
Participants had at least three generations of 
ancestors born at the place of sampling and their 
last names were of Maya origin. The study was 
performed according to the Helsinki Declaration 
and Institutional Review Board authorizations 
were obtained from Centro de Investigaciones 
Regionales “Dr. Hideyo Noguchi”, Universidad 
Autónoma de Yucatán, and informed consent 
was obtained from all participants. 
 
2.2 DNA Isolation 
 
DNA was isolated from peripheral blood using 
either a commercial kit Invisorb® Spin Blood Midi 
Kit (STRATEC Molecular GmbH, Berlin, 
Germany), as described in the manual and/or 
using the automated extraction system 
Chemagic Prepito® (PerkinElmer Inc., Waltham, 
MA, USA). 
 
2.3 Genotyping   
 
This procedure was carried out by Real Time 
PCR using TaqMan® Assays (Applied 
Biosystems, Foster City, CA, USA) as suggested 
by the manufacturer in five genes (PPARGC1A 
rs8192678, NRF1 rs1882095, SLC30A8 
rs13266634, SLC30A8 rs11558471, ADRA2A 
rs553668 and UCP3 rs3781907) (Table 1).  
 
2.4 Statistical Analysis 
 
Allelic and genotype frequencies, and Hardy 
Weinberg equilibrium (HWE) were evaluated with 
SNPstat software (Barcelona, Spain). Analysis of 
Fisher’s exact test or the Chi square test were 
performed with R package version 3.2.3, 
(Vienna, Austria). Linkage disequilibrium and 
haplotype frequency in variants located in the 
SLC30A8 gene (rs13266634 and rs11558471) 
were assessed using SNPstat. Haplotype was 
verified using Haploview version 4.1 (Cambridge, 
MA, USA), values of D’ and r2 in both SNPs were 
determined. 
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Table 1. Characteristics of variants studied 
 

Gene Ref A*/RA** 
MAF*** 

Pathology Population Reference 

PPARGC1A 
rs8192678 

C/A 
0.2658/1331 

Increased risk of non-alcoholic fatty 
liver disease 

Taiwanese  Lin et al. 2013 [36] 

Higher triacylglycerols, suggested 
increased risk for cardiovascular 
diseases and/or type 2  

Brazilian Queiroz et al. 
2015 [37] 

Sarcoidosis  Slovenia Maver et al. 2008 
[38] 

NRF1 rs1882095 T/T 
0.4902/2455 

Higher risk of type 2 diabetes Finnish Gaulton et al. 
2008 [30] 

SLC30A8 
rs13266634 

C/C 
0.2552/1278 

Higher risk of type 2 diabetes Asian/ 
European 

Cheng et al. 2015 
[39] 

Higher risk of type 2 diabetes French Sladek et al. 2007 
[40] 

SLC30A8 
rs11558471 

A/C 
0.2600/1302 

Fasting glucose levels South Asians Rees et al. 2011 
[41] 

A/A 
0.2600/1302 

Fasting proinsulin levels  Europeans Strawbridge et al. 
2011 [42] 

ADRA2A 
rs553668 

A/A 
0.3295/1650 

Higher risk of type 2 diabetes Europeans Chen et al. 2013 
[43] 

Obesity Swedish Långberg et al. 
2013 [44] 

UCP3 rs3781907 A/G 
0.2855/1430 

Serum lipid levels and higher risk of 
type 2 diabetes  

Finnish Salopuro et al. 
2009 [45] 

Abbreviations: Ref A*= Reference allele, RA**= Risk allele, MAF***= Minor allele frequency 
 
3. RESULTS 
 
3.1 Genotype and Allelic Frequencies 
 
In this study were included 181 individuals from 
two different populations, 93 subjects were from 
Merida and 88 from the SRC. The genotype and 
allelic frequencies are shown in Fig. 1. Observed 
frequencies in both the SRC and Merida 
populations were in HWE. Frequencies of six 
previously described SNPs were compared with 
other populations worldwide [African, European, 
East and South Asian, American and Mexican 
living in Los Angeles (LA) populations] using data 
obtained from the 1000 Genomes Project                
(1000 GP) (Appendix I). Five out of the six 
variants (rs8192678, rs1882095, rs13266634, 
rs11558471 and rs3781907) were consistent with 
the frequencies of the 1000 GP (Figs. 1A, B; C; 
D; F).  
 
In order to compare frequencies and assess 
significant differences between data from the 
SRC versus Merida participants, and Mexicans 
from LA versus Yucatan individuals (SRC and 
Merida), the Fisher’s exact test or the Chi-square 
test were estimated. The results did not reveal a 
significant difference between genotype 

frequencies of SRC and Merida participants in 
most cases. Nevertheless, the ADRA2A gene 
showed a significant difference between 
frequencies (P= .01) when Mexicans in LA were 
compared to Yucatan individuals (Merida and the 
SRC) (Fig. 1E). 
 
3.2 Linkage Disequilibrium Analysis 
 
Polymorphisms rs13266634 and rs11558471                 
in the SLC30A8 gene showed a strong              
linkage disequilibrium of D’= 0.96 (Fig. 2),                  
displaying haplotypes C-A, T-G, and C-G with 
frequencies of 0.725, 0.255 and 0.015, 
respectively. 
 
4. DISCUSSION 
 
The Maya populations of this study have been 
very important historically. The two populations 
are located near each other (with 53 km of 
distance between them); however, there are 
notable differences, for example the SRC is an 
isolated population in a rural community, 
meanwhile Merida is a cosmopolitan city in an 
urban area with genetic and ancestry differences 
that could influence studies of complex diseases 
[3,46].
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Fig. 1. Distribution of genotype frequencies includ ing SRC and Merida of six SNPs. A. 
PPARGC1A  rs8192678; B. NRF1 rs1882095; C. SLC30A8  rs13266634; D. SLC30A8  rs11558471; 

E. ADRA2A  rs553668; and F. UCP3 rs3781907 
Significant difference between Mexicans living in Los Angeles, USA and Mayas from Yucatan, Mexico; P=.017 is 

displayed by * 
 
Maya populations are often lumped together and 
treated as a homogeneous population. 
Consequently, there have been inconsistent 
findings regarding the heterogeneity of Maya and 
relationship among individuals in this culture [46]. 
Physiologically, individuals of Maya populations 
exhibit different metabolic rates, heart rates, 
blood pressure, and incidence of hyperthyroidism 
[47,48], making this population a target of study 

in the context of its genetic variation and 
susceptibility for multifactorial diseases, such as 
obesity and diabetes. Genotype frequency and 
distribution studies of the SLC16A11 gene 
among different Maya populations, for example, 
could give us insight of how genomic variants 
may influence the incidence of multifactorial 
diseases in Mexicans [49,50]. 
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Fig. 2. Linkage disequilibrium structure and 
locus. A. Haploview figure of SLC30A8  gene 

(rs13266634 and rs11558471). Linkage 
disequilibrium coefficients D’ x 100 is shown 
in coloured black square and was measured 
using data from all subjects (Yucatan). Three 

haplotype blocks are shown and the 
haplotype frequencies are next to each 
haplotype. B. Locus of SLC30A  gene is 

represented in chromosome 8 
 
This is the first study reporting frequencies of five 
polymorphisms (rs8192678, rs1882095, 
rs11558471, rs553668 and rs3781907) located in 
five genes (PPARGC1A, NRF1, SLC30A8, 
ADRA2A and UCP3) in two contemporary Maya 
populations with a history of high prevalence of 
obesity and diabetes [8,50]. Genotype and allelic 
frequencies of these communities were analyzed 
and compared with those of African, European, 
South and East Asian, American and Mexican 
living in LA populations reported in the 1000 GP. 
Mexican populations are genetically shaped by 
an admixture of different ethnicities; hence, allelic 
and genotype frequencies cannot be considered 
the same for Mayas and for Mexican-Americans. 
Volunteers from LA genotyped on the 1000 GP 
are considered globally as a representative 
sample of Mexican-Mestizos, who present a high 
rate of admixture owing to their Spanish and 
Native-American genetic background and, to a 
minor extent, to Asian and African genetic 
background [51]. According to the International 
HapMap Project, Mexicans that are from Los 
Angeles have 45%, 49, and 5% of Native 
American, European, and African ancestry 
respectively (http://hapmap.org); however, 
evaluation of ancestry in Mexico City using trios, 

estimated proportions were 65%, 31%, and 3% 
in Native American, European and African 
respectively, that is different to HapMap analysis 
[52]. 
 
The frequencies obtained from PPARGC1A, 
SLC30A8, and UCP3 are in agreement to those 
reported by the 1000 GP in Mexican-Mestizos 
from LA, unlike the frequencies of NRF1 and 
ADRA2A, with 5.7% and 14.3%, respectively. 
The results of NRF1 frequencies are similar to 
those reported in African and South Asians, 
despite their evolutionary distance. Furthermore, 
in contrast with data reported from individuals 
living in LA with Mexican ancestry, whose 
frequencies are used as a reference of Mexican-
Mestizos, a high frequency of the A allele of 
ADRA2A was found in the populations from the 
SRC and Merida. In a previous study, Kurnik                
et al. [53] associated homozygous individuals 
containing A allele with a greater hypotensive 
response to Dexmedetomidine (agonist of alpha 
receptors 2). The variant rs553668 has been also 
associated to overexpression of ADRA2A which 
contributes to T2D [34] and may be favoring a 
low blood pressure and increase risk to T2D.  
 
The Maya, African and South Asian populations 
have high risk to T2D including migrants from 
South Asia [54,55] and Africa [56–58] living in 
other countries, however our study showed that 
the frequencies of rs1882095 (NRF1) in the 
Maya, Asian, and African populations are similar. 
Nevertheless, there were no significant 
differences with the 1000 GP. Consequently, it 
will be important to increase the sample size in 
future studies to determine if the difference in 
frequency of rs1882095 in Maya populations are 
statistically significant. 
 
As we mentioned most of the SNPs frequencies 
were similar, even though the SRC may have a 
different genetic background due to a poor rate 
of migration inducing less genetic admixture with 
other communities. In addition, the analyzed 
frequencies of variants rs1155847 and 
rs13266634 located in the SLC30A8 gene 
displayed similar frequencies compared to those 
reported for Maya populations living in 
communities of Yucatan [50]. Furthermore, 
linkage disequilibrium of these SNPs resulted in 
a D’=0.96 indicating a high linkage 
disequilibrium; the fact that these SNPs are 950 
bp apart from each other on chromosome 8q24.1 
explains this D’ value. The analysis also showed 
high haplotype frequency with 72.5% of C-A 
haplotype, 25.5% of T-G haplotype and 1.5% of 
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C-G. This is important because the C allele 
(rs13266634) and A allele (rs1155847) from C-A 
haplotype have been reported as risk alleles in 
other populations [39,40,42]. 
 
In previous reports haplotype C-G in rs13266634 
and rs1995222 were associated with a higher 
risk of T2D in all ethnicities (OR = 1.67, 
P = 8.6 × 10-5) and in Indian subjects (OR = 1.93, 
P = .001) [59]. Moreover, rs11558471, rs2466295 
and rs4876703 exhibited the A-C-A haplotype, 
which was associated with a high risk of T2D 
development in a Chinese Han population [60]. 
These results are remarkable because 
frequencies in SNP rs13266634 in Africans are 
quite contrasting. In this African population, the 
homozygous T allele shows a frequency of 0.5%, 
meanwhile the frequency of the same SNP in 
Mexicans in LA, SRC and Merida, present 
frequencies of 7.8%, 3.4% and 9%, respectively, 
without having a significant difference among 
them.  
 
Results obtained in this work could help 
researchers around the world in selecting 
variants to develop and replicate T2D case-
control studies in Mexican populations including 
Maya. Furthermore, the high difference of 14.3% 
for ADRA2A in the Maya populations of this 
study may explain the risk to T2D in Mexicans 
and also might help in determine susceptibility to 
this disease in the future. 
 
5. CONCLUSION 
 
The distribution of rs553668 (ADRA2A gene) has 
a higher frequency in our samples compared to 
European, Asian and African populations, which 
could be related to other studies that report lower 
blood pressures in populations living in the 
Yucatan Peninsula. Additionally, according to our 
significant findings regarding ADRA2A, we 
suggest to take into consideration the C-A 
(rs13266634 and rs11558471) haplotype for 
future case-control diabetes studies, and related 
traits. 
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APPENDIX I 
  

Allelic and genotype frequency distribution of worl dwide populations. 
 

Gene/SNP Population* Allele frequency   Genotype frequency 
PPARGC1A  rs8192678 ALL   C: 0.734 (3677) T: 0.266 (1331)   C|C: 0.568 (1422) C|T: 0.333 (833) T|T: 0.099 (249) 

AFRICAN   C: 0.955 (1262) T: 0.045 (60)   C|C: 0.917 (606) C|T: 0.076 (50) T|T: 0.008 (5) 
EUROPEAN   C: 0.639 (643) T: 0.361 (363)   C|C: 0.412 (207) C|T: 0.455 (229) T|T: 0.133 (67) 
EAST ASIAN   C: 0.558 (562) T: 0.442 (446)   C|C: 0.325 (164) C|T: 0.464 (234) T|T: 0.210 (106) 
SOUTH ASIAN   C: 0.710 (694) T: 0.290 (284)   C|C: 0.515 (252) C|T: 0.389 (190) T|T: 0.096 (47) 
AMERICAN   C: 0.744 (516) T: 0.256 (178)   C|C: 0.556 (193) C|T: 0.375 (130) T|T: 0.069 (24) 
MEXICAN IN LA   C: 0.773 (99) T: 0.227 (29)   C|C: 0.625 (40) C|T: 0.297 (19) T|T: 0.078 (5) 
SRC MEX   C: 0.722 (120) T: 0.277 (46)   C|C: 0.493 (41) C|T: 0.457 (38) T|T: 0.048 (4) 
MERIDA MEX   C: 0.805 (145) T: 0.194 (35)   C|C: 0.644 (58) C|T: 0.322 (29) T|T: 0.033 (3) 
YUCATAN MEX   C: 0.765 (265) T: 0.234 (81)   C|C: 0.572 (99) C|T: 0.387 (67) T|T: 0.040 (7) 

NRF1 rs1882095 ALL   T: 0.510 (2553) C: 0.490 (2455)   T|T: 0.272 (682) C|T: 0.475 (1189) C|C: 0.253 (633) 
AFRICAN   T: 0.518 (685) C: 0.482 (637)   T|T: 0.272 (180) C|T: 0.492 (325) C|C: 0.236 (156) 
EUROPEAN   T: 0.350 (352) C: 0.650 (654)   T|T: 0.125 (63) C|T: 0.449 (226 C|C: 0.425 (214) 
EAST ASIAN   T: 0.719 (725) C: 0.281 (283)   T|T: 0.500 (252) C|T: 0.438 (221) C|C: 0.062 (31) 
SOUTH ASIAN   T: 0.486 (475) C: 0.514 (503)   T|T: 0.254 (124) C|T: 0.464 (227) C|C: 0.282 (138) 
AMERICAN   T: 0.455 (316) C: 0.545 (378)   T|T: 0.182 (63) C|T: 0.548 (190) C|C: 0.271 (94) 
MEXICAN IN LA   T: 0.445 (57) C: 0.555 (71)   T|T: 0.156 (10) C|T: 0.578 (37) C|C: 0.266 (17) 
SRC MEX   T: 0.494 (85) C: 0.505 (87)   T|T: 0.220 (19) C|T: 0.546 (47) C|C: 0.232 (20) 
MERIDA MEX   T: 0.510 (95) C: 0.489 (91)   T|T: 0.258 (24) C|T: 0.505 (47) C|C: 0.236 (22) 
YUCATAN MEX    T: 0.502 (180) C: 0.497 (178)   T|T: 0.240 (43) C|T: 0.525 (94) C|C: 0.234 (42) 

SLC30A8  rs11558471 ALL   A: 0.740 (3706) G: 0.260 (1302)   A|A: 0.566 (1418) A|G: 0.347 (870) G|G: 0.086 (216) 
AFRICAN   A: 0.923 (1220) G: 0.077 (102)   A|A: 0.850 (562) A|G: 0.145 (96) G|G: 0.005 (3) 
EUROPEAN   A: 0.709 (713) G: 0.291 (293)   A|A: 0.505 (254) A|G: 0.408 (205) G|G: 0.087 (44) 
EAST ASIAN   A: 0.537 (541) G: 0.463 (467)   A|A: 0.294 (148) A|G: 0.486 (245) G|G: 0.220 (111) 
SOUTH ASIAN   A: 0.744 (728) G: 0.256 (250)   A|A: 0.554 (271) A|G: 0.380 (186) G|G: 0.065 (32) 
AMERICAN   A: 0.726 (504) G: 0.274 (190)   A|A: 0.527 (183) A|G: 0.398 (138) G|G: 0.075 (26) 
MEXICAN IN LA   A: 0.750 (96) G: 0.250 (32)   A|A: 0.578 (37) A|G: 0.344 (22) G|G: 0.078 (5) 
SRC MEX   A: 0.755 (133) G: 0.244 (43)   A|A: 0.545 (48) A|G: 0.420 (37) G|G: 0.034 (3) 
MERIDA MEX   A: 0.708 (129) G: 0.291 (53)   A|A: 0.516 (47) A|G: 0.384 (35) G|G: 0.098 (9) 
YUCATAN MEX    A: 0.731 (262) G: 0.268 (96)   A|A: 0.530 (95) A|G: 0.402 (72) G|G: 0.067 (12) 

SLC30A8  rs13266634 ALL   C: 0.745 (3730) T: 0.255 (1278)   C|C: 0.573 (1435) C|T: 0.343 (860) T|T: 0.083 (209) 
AFRICAN   C: 0.926 (1224) T: 0.074 (98)   C|C: 0.856 (566) C|T: 0.139 (92) T|T: 0.005 (3) 
EUROPEAN   C: 0.717 (721) T: 0.283 (285)   C|C: 0.521 (262) C|T: 0.392 (197) T|T: 0.087 (44) 



 
 
 
 

Domínguez-Cruz et al.; BJMMR, 17(12): 1-12, 2016; Article no.BJMMR.28660 
 
 

 
12 

 

Gene/SNP Population* Allele frequency   Genotype frequency 
EAST ASIAN   C: 0.543 (547) T: 0.457 (461)   C|C: 0.300 (151) C|T: 0.486 (245) T|T: 0.214 (108) 
SOUTH ASIAN   C: 0.745 (729) T: 0.255 (249)   C|C: 0.552 (270) C|T: 0.387 (189) T|T: 0.061 (30) 
AMERICAN   C: 0.733 (509) T: 0.267 (185)   C|C: 0.536 (186) C|T: 0.395 (137) T|T: 0.069 (24) 
MEXICAN IN LA   C: 0.758 (97) T: 0.242 (31)   C|C: 0.594 (38) C|T: 0.328 (21) T|T: 0.078 (5) 
SRC MEX   C: 0.767 (132) T: 0.232 (40)   C|C: 0.569 (49) C|T: 0.395 (34) T|T: 0.034 (3) 
MERIDA MEX   C: 0.715 (126) T: 0.284 (50)   C|C: 0.522 (46) C|T: 0.386 (34) T|T: 0.090 (8) 
YUCATAN MEX    C: 0.741 (258) T: 0.258 (90)   C|C: 0.545 (95) C|T: 0.390 (68) T|T: 0.063 (11) 

ADRA2A  rs553668 ALL   A: 0.329 (1650) G: 0.671 (3358)   A|A: 0.126 (316) A|G: 0.407 (1018) G|G: 0.467 (1170) 
AFRICAN   A: 0.307 (406) G: 0.693 (916)   A|A: 0.098 (65) A|G: 0.418 (276) G|G: 0.484 (320) 
EUROPEAN   A: 0.160 (161) G: 0.840 (845)   A|A: 0.022 (11) A|G: 0.276 (139) G|G: 0.702 (353) 
EAST ASIAN   A: 0.506 (510) G: 0.494 (498)   A|A: 0.242 (122) A|G: 0.528 (266) G|G: 0.230 (116) 
SOUTH ASIAN   A: 0.401 (392) G: 0.599 (586)   A|A: 0.180 (88) A|G: 0.442 (216) G|G: 0.378 (185) 
AMERICAN   A: 0.261 (181) G: 0.739 (513)   A|A: 0.086 (30) A|G: 0.349 (121) G|G: 0.565 (196) 
MEXICAN IN LA   A: 0.250 (32) G: 0.750 (96)   A|A: 0.062 (4) A|G: 0.375 (24) G|G: 0.562 (36) 
SRC MEX   A: 0.386 (68) G: 0.613 (108)   A|A: 0.159 (14) A|G: 0.454 (40) G|G: 0.386 (34) 
MERIDA MEX   A: 0.401 (65) G: 0.598 (97)   A|A: 0.172 (14) A|G: 0.456 (37) G|G: 0.370 (30) 
YUCATAN MEX    A: 0.393 (133) G: 0.606 (205)   A|A: 0.165 (28) A|G: 0.455 (77) G|G: 0.378 (64) 

UCP3 rs3781907 ALL   A: 0.714 (3578) G: 0.286 (1430)   A|A: 0.516 (1293) A|G: 0.396 (992) G|G: 0.087 (219) 
AFRICAN   A: 0.707 (934) G: 0.293 (388)   A|A: 0.504 (333) A|G: 0.405 (268) G|G: 0.091 (60) 
EUROPEAN   A: 0.732 (736) G: 0.268 (270)   A|A: 0.537 (270) A|G: 0.390 (196) G|G: 0.074 (37) 
EAST ASIAN   A: 0.613 (618) G: 0.387 (390)   A|A: 0.379 (191) A|G: 0.468 (236) G|G: 0.153 (77) 
SOUTH ASIAN   A: 0.746 (730) G: 0.254 (248)   A|A: 0.550 (269) A|G: 0.393 (192) G|G: 0.057 (28) 
AMERICAN   A: 0.807 (560) G: 0.193 (134)   A|A: 0.663 (230) A|G: 0.288 (100) G|G: 0.049 (17) 
MEXICAN IN LA   A: 0.820 (105) G: 0.180 (23)   A|A: 0.703 (45) A|G: 0.234 (15) G|G: 0.062 (4) 
SRC MEX   A: 0.843 (135) G: 0.156 (25)   A|A: 0.712 (57) A|G: 0.262 (21) G|G: 0.025 (2) 
MERIDA MEX   A: 0.831 (153) G: 0.168 (31)   A|A: 0.717 (66) A|G: 0.228 (21) G|G: 0.054 (5) 
YUCATAN MEX    A: 0.837 (288) G: 0.162 (56)   A|A: 0.715 (123) A|G: 0.244 (42) G|G: 0.040 (7) 

* Data for African, European, Asian, American and Mexican in Los Angles frequencies were obtained from 1000 genomes project. Results of this study are shown in bold 
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