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Axons convey information in neuronal circuits via reliable conduction of action potentials
(APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent
experimental findings increasingly evidence that the axonal function is not limited to the
simple transmission of APs. Advances in subcellular-resolution recording techniques
have shown that axons display activity-dependent modulation in spike shape and
conduction velocity, which influence synaptic strength and latency. We briefly review
here, how recent methodological developments facilitate the understanding of the axon
physiology. We included the three most common methods, i.e., genetically encoded
voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode
arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying
axonal physiology in more detail. Due to their robustness, amenability to high-
throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional
electrical readout of single cells and cellular ensembles at subcellular resolution. HD-
MEAs can, therefore, be employed in investigating axonal pathologies, the effects
of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound
screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular
microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of
axonal functions.

Keywords: axon, action potential propagation, patch-clamp technique, genetically encoded voltage indicators,
high-density microelectrode arrays

INTRODUCTION

Intricate operations, performed by neuronal networks, emerge from the orchestrated interplay
of individual neurons. Neurons use action potentials (APs) as a means to encode and relay
information from the soma to the presynaptic terminal via reliable conduction through the axon.
The three functional compartments of the axon include the axon initial segment (AIS), the axon
proper, and the presynaptic terminal. Somato-dendritic integration of a number of synaptic inputs
at the AIS are thought to shape the AP firing patterns. The axon proper is often conceived as a
simple cable, whose function is the faithful transmission of the AP to distant presynaptic terminals
in a digital (all or none) fashion. However, with the development of modern techniques that can
directly access small axonal structures, an increasing body of work has emerged that challenges
the traditional view on the role of the axon being purely limited to the transmission of the AP
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(Debanne et al., 2011; Sasaki et al., 2011; Sasaki, 2013; Bucher,
2016). It has been shown that the shape of the presynaptic
AP can be modulated by subthreshold potentials, which, in
turn, modulate the spike-evoked transmission through so-called
“analog-digital facilitation” (Debanne, 2004; Alle and Geiger,
2008; Kress and Mennerick, 2009; Bucher and Goaillard,
2011; Debanne et al., 2011; Sasaki, 2013; Bucher, 2016). As
AP propagation and synaptic transmission might undergo
substantial modulation, the computational repertoires of single
axons in the neuronal circuit may be more complex than
commonly assumed.

Axonal membrane excitability and conduction velocity
can change substantially with repeated activation. This
can potentially alter the temporal patterns of spikes during
propagation from the AIS to presynaptic sites. Such changes in
temporal spike patterns may be an important feature of neural
coding strategies (Izhikevich, 2006; Bucher and Goaillard, 2011;
Bucher, 2016). Axonal conduction velocity in unmyelinated
axons depends on several biophysical factors, such as ion-
channel densities and kinetics, membrane capacitance, axial
resistance, axon geometry, and, for myelinated axons, myelin
thickness and internodal distances (Hodgkin, 1954; Manor
et al., 1991; Shepherd and Harris, 1998; Ganguly et al., 2000;
Fields, 2005; Cai et al., 2011). Axonal conduction velocity per se
provides little information about the functional aspects of
neuronal communication. On the other hand, axonal conduction
delay, which depends on both, conduction velocity and axonal
length, may have important functional implications in the
integration of sensory information (Konishi, 2003). A plethora
of diverse neurological disorders is associated with impaired
axonal functionality (Suter and Scherer, 2003; Waxman, 2006;
Krarup and Moldovan, 2009; Kullmann, 2010; Egawa et al.,
2017; Khalilpour et al., 2017). Axonal dysfunction can be
caused by missing or reduced myelination (e.g., multiple
sclerosis) (Steinman, 1996; Trapp et al., 1999). Acute axonal
damage (e.g., traumatic injury) (Smith and Meaney, 2000;
Johnson V.E. et al., 2013), toxic entities, aggregated proteins,
microgliosis and disrupted axonal transport (e.g., prion disease,
Parkinson’s disease, Alzheimer’s disease) (Liberski and Budka,
1999; Millecamps and Julien, 2013) may directly affect axonal
physiology. Lastly, abnormalities in the composition or function
of ion channels (in channelopathies, e.g., in certain forms of
migraine and epilepsy) are known to alter the conduction
properties of axons (Goadsby et al., 2017; Oyrer et al., 2018;
Pietrobon, 2018).

Recent advances in the understanding of axon physiology
and pathophysiology have been driven by technological
developments, such as optical imaging of the membrane
potentials using genetically encoded voltage indicators (GEVI),
subcellular patch-clamp recordings from thin axons and boutons,
and high-density microelectrode array recordings (HD-MEA)
(Figure 1; Shu et al., 2006; Kole et al., 2007; Sasaki et al., 2011;
Bakkum et al., 2013; Novak et al., 2013; Hoppa et al., 2014;
Kawaguchi and Sakaba, 2015; Müller et al., 2015; Rama et al.,
2015a; Radivojevic et al., 2017). These techniques stand apart
from other classical electrophysiological methods in their ability
to monitor and interactively control subcellular components

of single neurons at high spatial and microsecond temporal
resolution. The above-mentioned techniques and devices were
reviewed in-depth elsewhere (Hierlemann et al., 2011; Sasaki,
2013; Spira and Hai, 2013; Obien et al., 2015; Inagaki and Nagai,
2016; Ohura and Kamiya, 2016; Yang and St-Pierre, 2016; Xu
et al., 2017; Zeck et al., 2017; Platisa and Pieribone, 2018; Rama
et al., 2018; Wang et al., 2019). Here, we will briefly introduce
these technologies with the focus on studying axonal signals,
while we describe - in a bit more detail - recent investigations in
axonal neurobiology by using HD-MEAs.

TECHNOLOGICAL APPROACHES

In the following, we provide a brief overview of the three
most commonly used recording modalities for measuring
axonal signals. We describe the parameters that govern to
the detection of neuronal signals and outline recent advances,
including potential advantages and limitations. Table 1 lists
the key specifications of each methodology. Since several
publications are available on each technology, we pooled the
data from the most advanced and most recent publications.
Given the plethora of applications for each methodology, we
will restrict our comparison to the detection and measurements
of AP propagation. A schematic overview on the different
methodologies along with representative signals is displayed
in Figure 1.

Voltage Imaging
In order to monitor neural activity at single-cell resolution,
optical methods, such as voltage-sensitive dyes and GEVI, make
use of fluorescence signals to detect alterations in voltage
(Peterka et al., 2011; Storace et al., 2016). Voltage-sensitive
dyes have provided important insights into neuronal electrical
signaling ranging from individual neurons to population
dynamics (Grinvald et al., 1981; Gross and Loew, 1989;
Petersen et al., 2003; Miller et al., 2012; Popovic et al.,
2015). Yet, major limitations of voltage-sensitive dyes include
cell toxicity, phototoxicity, indiscriminate neuronal and glial
staining, and small signal-to-noise ratio (SNR) (Knöpfel et al.,
2006; Mennerick et al., 2010).

In the last two decades, considerable efforts have been
made to overcome these limitations, which have led to the
development of GEVIs. The three main molecular designs
of GEVIs – inserted into the plasma membrane – are (1)
the fusion of fluorescent proteins (FP) to voltage-sensing
domains, (2) the use of opsins, and (3) hybrid opsin-FP pairs
(rhodopsin-FRET sensor) (Boyden et al., 2005; Kralj et al.,
2011; Akemann et al., 2012; Jin et al., 2012; Tsutsui et al.,
2013; Hochbaum et al., 2014; St-Pierre et al., 2014; Gong et al.,
2015). Voltage sensitivity (dynamic range, %) is an important
parameter of fluorescence indicators, expressed as 1F/F per
100 mV (−70 to 30 mV), which represents linear changes
in fluorescence in response to voltage fluctuations. To detect
neuronal activity with high SNR, a combination of key features
of voltage indicators, such as bright fluorescence, fast kinetics
(rapid response to changes in voltage), large dynamic range,
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FIGURE 1 | Three functional readouts for measuring neuronal and axonal activity. (A) Colored scanning electron micrograph of neurons (green) cultured on a CMOS
HD-MEA chip. The readouts include, from top to bottom, patch pipettes, microelectrodes and fluorescence microscopy. At the right side, an intracellular action
potential (AP), recorded by using the patch-clamp technique, an extracellular AP recorded by an HD-MEA, and an AP-induced fluorescence signal using GEVIs are
displayed. (B) Tracking of AP propagation in neuronal processes performed by the three techniques displayed in (A). Modified with permissions from Hochbaum
et al., 2014; Hu and Jonas, 2014; Müller et al., 2015.

photostability, and efficient plasma membrane localization is
desired (Lee et al., 2017; Xu et al., 2017; Piatkevich et al., 2018;
Wang et al., 2019).

While there is constant development of new constructs, a
recent work by Bando et al. (2019) provided a temporal snapshot
of state-of-the-art GEVIs and compared their performances.
The authors report that QuasAr2, a rhodopsin-based GEVI,
outperforms other GEVIs concerning the optical detection of
single APs of neurons in vitro, featuring high signal amplitude,
fast kinetics and high SNR. In addition, Ace-2N-4AA-mNeon,
a rhodopsin-FRET sensor, was shown to resolve individual
spikes in single trials without averaging, while suffering from
fast photobleaching.

A combination of a red-light-excited QuasAr2 with a
spectrally compatible blue-light-activated channelrhodopsin
(CheRiff) was co-expressed in neurons via a vector called
“Optopatch,” which was targeted at enabling simultaneous
all-optical electrophysiology in neuronal cultures or organotypic
brain slice cultures (Hochbaum et al., 2014; Kiskinis et al., 2018).
The use of this construct enabled mapping of the dynamics
of AP initiation and propagation across dendritic and axonal
structures at high spatiotemporal resolution (Figure 1). However,
significant multi-trial averaging (200–17,000 trials) was required

for attaining good enough signal-to-noise characteristics
(Hochbaum et al., 2014).

Subcellular Patch-Clamp Recordings
Patch-clamping is the gold standard technique for studying
electrical properties of neurons at unprecedented resolution.
The patch-clamp technique uses a glass micropipette that
presses against the cell membrane to form a tight gigaohm
seal resistance between the cell membrane and the rim
of the glass micropipette. In the original cell-attached
configuration, activity of single ion channels in the tiny
patch of membrane surrounded by the tip of the pipette
can be studied. If the patch of membrane under the
pipette tip is ruptured by applying pressure, the electrode
accesses the inside of the cell in the so-called whole-
cell configuration, where the trans-membrane voltage and
currents can be directly recorded (Neher and Sakmann, 1976;
Ogden and Stanfield, 1994).

Most patch-clamp studies have been conducted on the soma,
which is the largest compartment of a neuron (8–30 µm in
diameter). One of the limitations of the conventional patch-
clamp technique is that the studies on axons encountered
technical difficulties due to the thin axonal structure (∼200 nm
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TABLE 1 | Comparison of the three techniques in studies that showed AP propagation.

Genetically Encoded Voltage
Indicators

Subcellular Patch-clamp CMOS HD-MEA

Recording type Optical Electrical Electrical

Modality Fluorescence Intracellular/ Extracellular Extracellular

Signal 1F/F µV, mV, pA µV

Spatial resolution within
detection area

3.25 µm in 1.2 × 3.3 mm2 NA 17.5 µm pixel in 3.85 × 2.10 mm2

Temporal resolution 0.37–1.2 ms µs µs

Dynamic range 12–90% 1F/F per 100 mV ± 1 V ±3 µV to ± 1.6 mV c

1 to 200 nA a, 0.1 to 20 nA b

Device noise 2.2 mV at 300 W/cm2

1.5 mV at 800 W/cm2
∼40 µVRMS

3.0 pARMS
a
, 1.4 pARMS

b
2.4 µVRMS (AP band)

Duration of stable recording Minutes Hours >Months

Simultaneous recording
sites

Medium; dozens Low; two sites High; Thousands

Stimulation capability No – Needs external stimulation Yes - Electrical Yes - Electrical

Advantages Non-invasive Single-spike resolution Non-invasive

Cell-specific labeling Precise spike shape Long-term recording

tracking Single-trial APs

Subthreshold and PSP detection High throughput

Limitations Photobleaching Invasive Cannot detect subthreshold signals

Phototoxicity Time consuming

Multiple-trial APs Low throughput

Labor intensive

References Hochbaum et al., 2014; Gong et al.,
2015

Sasaki et al., 2011; Hu and Jonas,
2014

Müller et al., 2015; Radivojevic et al.,
2017

For subcellular patch-clamp, the device specifications of the Multiclamp 700 b have been taken. Feedback resistors: a 50 M�, b 500 M�. cWith a gain of 1024; up to 1 V
with reduced gain.

in diameter). Accordingly, axonal recordings have been mostly
restricted to giant axon terminals, such as hippocampal mossy
fiber boutons (Geiger and Jonas, 2000; Bischofberger et al., 2006;
Boudkkazi et al., 2011) and the Calyx of Held (Forsythe, 1994;
Borst et al., 1995; Awatramani et al., 2005). Recordings from
thin axons have been obtained from axonal blebs (3–6 µm),
which are resealed swellings at the cut ends of axons after
brain slicing procedures (Shu et al., 2006, 2007; Kole et al.,
2007; Kim, 2014; Rama et al., 2015a). Recently, recordings from
intact thin axons have been made possible using a fluorescence-
guided patch-clamp technique (Ishikawa et al., 2010; Sasaki
et al., 2011, 2012; Hu and Jonas, 2014; Kawaguchi and Sakaba,
2015). Cell-attached extracellular recordings of APs in intact
unmyelinated axons (∼1 µm in diameter) have been made using
pipettes coated with fluorescently conjugated albumin. However,
stable recording was possible for only less than 60 min with
∼50% success rate. Simultaneous whole-cell recordings have
been performed from the soma and axon shaft of hippocampal
basket cells in acute slices (Hu and Jonas, 2014) as well as
in the presynaptic terminals in cerebellar Purkinje cells in
cultures (Kawaguchi and Sakaba, 2015) to examine the fidelity
of AP propagation.

In recent years, several studies were conducted using paired
recordings from two distinct sites along a single axon or
from a presynaptic axon terminal and a postsynaptic neuron.
These experiments have made considerable contributions to

understanding the mechanism of analog-digital facilitation,
compartmentalized distribution of ion channels and gating
properties, as well as the modulation of short- and long-term
synaptic plasticity (Engel and Jonas, 2005; Alle and Geiger, 2008;
Sasaki et al., 2011; Hu and Jonas, 2014; Kawaguchi and Sakaba,
2015; Rama et al., 2015b; Rowan et al., 2016). However, due
to the limitation in simultaneously recording from multiple
sites along the axon, the patch-clamp technique is not capable
of tracking the modulation of AP propagation throughout
the axon proper.

CMOS HD-MEAs
The electrical activity of neurons can also be detected
extracellularly by means of metal electrodes, arranged in
large arrays and known as MEAs. Microelectrodes can record
changes in the electric field generated by the moving ions
in the extracellular space during the electrical activity of a
nearby neuron (Buzsáki et al., 2012; Anastassiou et al., 2013).
During an AP, the fast Na+ current flows away from the
electrode into the cell and results in a negative peak in
the extracellular action potential (EAP). Thereafter, a slower
current of K+ ions flows out of the cell toward the electrode
resulting in a positive peak. Most axonal signals show a
stereotypical positive-first, triphasic shape. The first, small
amplitude positive peak corresponds to a capacitive current,
the large negative peak to the Na+ current, and the final
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positive peak to the K+ current (Gold et al., 2006). In general,
EAPs show heterogeneity in signal shapes and amplitudes
depending on the magnitude, polarity, and the distance from
the recording site (Nunez and Srinivasan, 2006). In addition,
the relative positioning of cells with respect to the location
of electrodes has a strong influence on the amplitude of
the EAP (Gold et al., 2006). EAPs signal amplitudes are in
the range of µV and are usually around three orders of
magnitude lower than intracellularly measured signals (mV)
(Buzsáki et al., 2012).

Commercially available standard MEAs are an established
technology for investigating neuronal network activity. However,
they do not allow for targeting individual neurons in a network
due to the limited number of electrodes (<300), arranged
at a comparably large pitch (>30 µm) (Gross et al., 1993;
Jimbo and Robinson, 2000; Stett et al., 2003; Rutten et al.,
2007). In order to investigate the properties of individual
neurons, CMOS (complementary metal oxide semiconductor)-
technology-based, planar, HD-MEAs can be used that enable
simultaneous recording from a large number of sites at high
spatiotemporal resolution (Eversmann et al., 2003; Berdondini
et al., 2009; Frey et al., 2009; Huys et al., 2012; Johnson
B. et al., 2013; Bertotti et al., 2014; Jackel et al., 2017; Ogi
et al., 2017; Tsai et al., 2017). In contrast to a full-frame
readout that is also used with CMOS cameras, our lab has
developed a flexible readout approach, where a matrix of switches
below the electrodes (total number: 26,000–59,000 electrodes)
routes arbitrarily selectable subsets of 1024 or 2048 electrodes
to a high-end readout circuitry placed outside the electrode
array. This flexible readout approach enables (i) high spatial
resolution with electrode densities of 3,000 to 5,000 electrodes
per mm2 at (ii) good signal quality. However, not all the
electrodes can be simultaneously read out, but only subsets in
a sequential approach [for technical details, cf. (Ballini et al.,
2014; Müller et al., 2015; Dragas et al., 2017; Viswam et al., 2018;
Yuan et al., 2018)].

The main advantage of the HD-MEAs is the high
spatiotemporal resolution, which allows for detection of
signals from thin axons (∼200 nm diameter) and the ability to
record APs at microsecond temporal resolution. This degree
of resolution helps to efficiently assign detected extracellular
spikes to units or neurons through spike sorting (Einevoll
et al., 2012; Diggelmann et al., 2018). HD-MEAs enable, owing
to the high spatial resolution and non-invasive detection
of EAPs, the simultaneous recording at EAPs at hundreds
of sites simultaneously along the axonal arbor for up to
several days (Bakkum et al., 2013; Radivojevic et al., 2017).
CMOS-based HD-MEAs have been used with many in vitro
preparations, such as dissociated cell cultures (Maccione et al.,
2012; Bakkum et al., 2013; Yada et al., 2016; Amin et al., 2017;
Radivojevic et al., 2017), cultures of induced pluripotent stem
cells (iPSCs) (Amin et al., 2016; Fiscella et al., 2018), acute
retinae (Menzler and Zeck, 2011; Fiscella et al., 2012; Jones
et al., 2015), acute brain slices (Egert et al., 2002; Frey et al.,
2009; Ferrea et al., 2012; Medrihan et al., 2014; Obien et al.,
2019), and organotypic brain slice cultures (Gong et al., 2016).
A disadvantage of HD-MEAs is that inferences with respect to

analog signaling are difficult, as the subthreshold signals are not
directly measurable.

STUDIES OF AXONAL NEUROBIOLOGY
USING HD-MEAs

The possibility to stimulate and record from a single axon,
simultaneously at multiple spatial locations, enables to study
axonal electrical properties in great detail. Capitalizing on
this capability, our group investigated the possibilities to
study neuronal cultures by using a combination of HD-MEA
recordings, electrical extracellular stimulations, live staining
of neurons directly on the HD-MEA, and patch-clamping of
targeted individual neurons. For a long time, the soma and
dendrites have been considered the main contributors to the EAP
landscape, since most electrophysiological measurements, e.g.,
through whole-cell patch-clamp, have been done at the soma.
Although the initiation of APs has been known to occur at
the distal AIS (Kole et al., 2008; Hu et al., 2009; Foust et al.,
2010; Popovic et al., 2011; Baranauskas et al., 2013; Debanne
and Garrido, 2018; Leterrier, 2018), the contribution of axons
to the EAP landscape has been assumed to be small, if not
negligible due to the small dimensions of axonal structures –
in contrast to the soma and dendrites. In order to investigate
the contribution of different neuronal compartments to the EAP
spatial landscape in detail, our group has used HD-MEAs to
electrically image EAPs of cultured cortical neurons and of
Purkinje cells in acute cerebellar slices (Bakkum et al., 2018).
By using spike-triggered averaging, the EAP landscapes of more
than 50 neurons were measured and compared to fluorescence
images of the respective neuronal cells (Bakkum et al., 2013). We
found that the largest measured EAP signal amplitudes originated
from the AIS, instead of the soma. The dominant EAP signals,
found at the AIS, featured negative polarity (charges entering
the cell), while some EAP signals found in nearby dendrites
had positive polarity (return currents or charges exiting the
cell) (Figures 2A,B). These findings are relevant in interpreting
results obtained with extracellular recording schemes (in vitro
and in vivo), for setting up compartmental neuron models, and
for developing methods to study the function of the AIS in
healthy and diseased cellular cultures.

A characteristic parameter of axons is the conduction velocity,
which determines how fast information is transferred between
neurons. Detecting fluctuations or deviations in conduction
velocity along the axon can provide an understanding of factors
that affect conduction success or failure. Such detection poses
a major challenge, as it requires a method to directly measure
AP propagation at several points along the axon. Several
groups have utilized PDMS tunnels, combined with MEAs, to
confine the axons, to increase SNR (higher electrical resistance
along the channels) and to track the AP propagation along
axons and axonal bundles (Shimba et al., 2014; Lewandowska
et al., 2015; Habibey et al., 2017). Our group used stimulus-
triggered averaging of EAPs to precisely measure the propagation
of APs and quantify the conduction velocity along axonal
branches (Bakkum et al., 2013). In general, the velocity of AP
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FIGURE 2 | Application of HD-MEAs to study axon neurobiology. (A) (Left) Contour plots of the minimum (blue) or maximum (red) extracellular-action-potential (EAP)
signal within ± 500 µs of the negative peak. The AIS has been marked on the MAP2 fluorescence image in the background (black) with a red line (ankyrin-G
staining). The contours have been normalized to the largest negative signal (blue-to-green) or the largest positive signal (red-to-yellow), see right panel. (Right) The
largest negative (blue) and positive EAP signals (red) along with the somatic potentials (black) are shown as peaks. (B) Spatial distribution of the averaged
spontaneous EAP of a Purkinje cell (PC). The largest EAP amplitudes were found along the axon of the PC. (C) (Top) Velocity profiles (color) along the propagation
pathway without (left) and with (right) application of synaptic blockers. Arrows indicate the antidromic propagation direction. (Middle) Velocities without (black) and
with (red) application of synaptic blockers calculated by using a bootstrapping procedure. (Bottom) The same analysis was performed for an orthodromic action
potential. The red cross indicates the stimulation electrode located near the soma. Propagation continued into two branches (“East” and “South”).
(D) Stimulation-triggered EAP footprint superimposed with neuronal morphology, revealed by live-cell imaging using lipofection. Circle sizes indicate logarithmically
scaled amplitudes of triggered APs, whereas colors indicate the occurrence times of the negative AP peaks relative to the stimulation time. The black arrow points to
the stimulation electrode for orthodromic stimulation, whereas the pale red patch indicates the area affected by the stimulation artifact. (E) Two axonal branches,
labeled “Branch 1” and “Branch 2,” are marked by dark-green and light-green lines on a fluorescence image. White circles indicate the positions of the used
recording electrodes. (F) AP propagation times obtained from the two branches: average propagation times are presented by solid lines; the standard deviations of
the propagation times are represented by the pale bands in the background. Except Panel B, which is an acute cerebellar slice preparation, all other panels refer to
cortical neuronal cultures. Images have been adapted with permissions from Bakkum et al., 2013, 2018 (A–C), Radivojevic et al., 2016, 2017 (D–F).

propagation along axons of wild-type primary rodent neuron
cultures increases with age, as observed in our experiments and
reported by other authors (Bakkum et al., 2013; Habibey et al.,
2017). Both, antidromic (toward the soma) and orthodromic
(away from the soma) AP propagations featured variations in
conduction velocity along the axon (Figure 2C). The variations
persisted upon application of synaptic blockers (100 µM
APV, 10 µM CNQX, and 50 µM bicuculline methiodide),
suggesting that variations in ion-channel properties and densities
influence the conduction properties of axons, among others
factors. Moreover, higher conduction velocities were observed
in axonal segments closer to the soma as compared to the
putatively thinner distal branches, which is in agreement with
the theory that the action-potential propagation velocity is
inversely proportional to the axon diameter (Goldstein and Rall,
1974). Pathological conditions affecting the axon may cause
conduction delays, so that the capability to measure axonal signal

propagation may allow for phenotyping cell cultures or brain
slices that are characteristic of brain disorders and for identifying
pharmacological effects.

The electrical properties of neurons, including their
susceptibility to extracellular electrical stimulation, are highly
variable across their morphology, so that stimulation efficiency
with extracellular electrodes will strongly depend on where
the neuron is stimulated. By combining optical imaging
and electrically multisite stimulation, we could determine the
electrical stimulation profiles of single neurons (Radivojevic et al.,
2016). The AIS, the axonal arbor, and proximal somatodendritic
compartments could be identified as prime stimulation targets
(Figure 2D). Stimulation at the AIS required low voltages and
provided immediate, selective and reliable neuronal activation,
whereas stimulation at the soma required high voltages and
produced delayed and unreliable responses. Subthreshold
stimulation at the soma depolarized the somatic membrane
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potential without eliciting APs. These findings provided a strategy
to stimulate individual neurons with high specificity, by first
measuring their EAP footprint to determine the likely location
of their AIS (region of highest signal amplitudes) for subsequent
electrical stimulation with low voltages.

A property of axons, which is of high biological relevance
but is very hard to experimentally investigate, is the temporal
precision with which axons conduct APs. The dendritic
integration depends on the timing of incoming postsynaptic
potentials. However, determining the temporal precision of
axonal conduction, again, requires experimental access to a single
axon at multiple locations and requires resolving single APs. As
discussed previously, most recording modalities lack either the
spatial or temporal resolution, or they rely on averaging many
APs. Averaging, however, is not an option, when the timing of
individual APs needs to be estimated. We demonstrated a method
to non-invasively and directly record individual APs propagating
along axons at microsecond temporal resolution using HD-
MEA recordings and a template-matching technique relying on
multi-electrode templates. We were able to detect individual APs
propagating across entire neurons including axonal terminals,
which were hundreds of micrometers away from the AIS by
using optimized matched filters (Radivojevic et al., 2017). We
found that cortical axons conduct single APs with high temporal
precision and reliability. Individual APs travel along 1 mm of
axons with a fixed travel time ± 100 µs, and we did not observe
any conduction or branch-point failure in more than 8,000,000
recorded APs (Figures 2E,F).

DISCUSSION AND OUTLOOK

Based on the studies reviewed above, we think that HD-MEAs
constitute a versatile tool to investigate neuronal information
processing and axonal signaling. The possibility to conduct long-
term, simultaneous, multisite recordings at high spatiotemporal
resolution renders HD-MEAs an ideal technology for detailed
characterizations of neurons and axons. HD-MEAs can be used
to study alterations in axonal signal propagation and the effects
of brain disorders on axonal signaling, as they provide a direct
functional readout. Examples include the assessment of the effects
of mutations in voltage-gated ion channels (e.g., in the case of
channelopathies) on signal propagation velocity. The possibility
to reliably electrically stimulate neurons at high frequencies
can be used to study the modulation of axonal APs and the
mechanisms of axonal conduction failures during repetitive
neuronal activation (Geiger and Jonas, 2000; Debanne, 2004;
Boudkkazi et al., 2011). Furthermore, spatiotemporal aspects of
analog-digital integration in axonal signals can be investigated
(Alle and Geiger, 2006; Shu et al., 2006).

HD-MEAs can be arranged in a multi-well-plate format
to realize high-throughput as required, e.g., for large-scale
genomic interventions (RNAi or CRISPR) or compound
screenings, using human iPSC-derived neurons to model
neurological diseases. HD-MEAs enable access to a variety
of electrophysiological parameters, including axonal properties,
which can be used for characterizing functional phenotypes
of neurological disease models. Therefore, HD-MEAs can be
used as a platform for drug screening, pre-clinical diagnostics
and will find applications in the evolving landscape of
precision medicine.

From a technological perspective, it is conceivable that
only the combination of different recording modalities
will substantially increase the number of applications.
Extracellular, intracellular and optical readouts can be
combined to determine how they can complement each
other. For example, subthreshold voltage distributions can
be optically visualized while simultaneously measuring
axonal signals throughout the axonal arbors using HD-
MEAs. Such an approach will allow for deciphering effects
of axonal and synaptic plasticity in neuronal networks
and provide functional insights into axon physiology and,
possibly, pathophysiology. In particular, it may become
possible in the future to better understand the functional
underpinnings of clinically heterogeneous diseases that arise
from axonal disturbances.
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