
 

_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: aliyu_bhar@yahoo.com; 

 
 

Advances in Research 
5(3): 1-13, 2015, Article no.AIR.18334 

ISSN: 2348-0394 
 

SCIENCEDOMAIN international 
                                      www.sciencedomain.org 

 

 

Oscillation Analysis for Longitudinal Dynamics of a 
Fixed-Wing UAV Using PID Control Design 

 
B. K. Aliyu1*, C. A. Osheku1, P. N. Okeke2, F. E. Opara2 and B. I. Okere2  

 
1
Centre for Space Transport and Propulsion (CSTP), Epe Lagos-State, Nigeria. 

2Centre for Basic Space Science (CBSS), Nsukka Enugu-State, Nigeria. 
 

Authors’ contributions 
 

This work was carried out in collaboration between all authors. Author BKA designed the study, did 
the first Simulations in MATLAB/Simulink and wrote the first draft of the manuscript. Author BIO 

verified all DATCOM and MATLAB result. Authors CAO, PNO and FEO edited the first draft of the 
manuscript, verified all results, and managed information release and literature searches. All authors 

read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/AIR/2015/18334 
Editor(s): 

(1) Akash Dixit, Department of Mechanical Engineering, Oakland University, USA. 
Reviewers: 

(1) Anonymous, Kielce University of Technology, Poland. 
(2) Khairul Nizam Tahar, Universiti Teknologi Mara, Shah Alam, Malaysia. 

(3) Anonymous, Inha University, Korea. 
(4) Anonymous, Tongji University, China. 

(5) Anonymous, Dalian University of Technology, China. 
Complete Peer review History: http://sciencedomain.org/review-history/9899 

 
 
 

Received 15th April 2015  
Accepted 5

th
 June 2015 

Published 20th June 2015 

 
 

ABSTRACT 
 

A longitudinally disturbed motion of a UAV after an arbitrary initial disturbance consists normally of 
two oscillatory modes: the short-period oscillation and the phugoid oscillation.The typical 
longitudinal model of a UAV in state-space can be separated into short-period mode and phugoid 
period mode equations of motion. In this study, we choose to investigate the dynamic 
characteristics of the longitudinal dynamic equation of a mini-UAV and its reduced forms popularly 
known as short-period and phugoid period modes. This is necessary to establish a basis for plant 
selection during PID autopilot design. The short and phugoid period oscillations modes are sieved 
from the longitudinal dynamic equation and carry the same eigenvalues of the longitudinal model, 
but they still differ. Firstly, the three systems have different step response trajectories due to their 
different DC gain values. Secondly, the variables that constitute the short-period and phugoid mode 
dynamic equations can be identified by their settling time after designing PID controllers. State-
space model of the longitudinal dynamics, phugoid mode and short period dynamics of a UAV can 
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be transformed into equivalent transfer functions. These transfer functions are then used in the 
design of Proportional, Integral and Derivative (PID) controllers. Hence, the phugoid mode 
variables are the system variables in the longitudinal dynamic model with the longest settling time. 
The short period mode variables are the longitudinal system variables with the shortest settling 
time. Synthesis and simulation were done in MATLAB/Simulink. Also, from simulation results, plant 
for autopilot design could be selected based on the system with smallest rise time. 
 

 
Keywords: UAV; PID control; MATLAB/Simulink; time response characteristics; short period mode; 

phugoid mode. 
 

1. INTRODUCTION 
 
High cost and operational limitation of manned 
aircraft prohibits their use by a lot of scientific 
institutions as platforms for research. The use of 
Unmanned Aerial Vehicles (UAV) offers a viable 
alternative. The lack of neither human pilot on 
board nor a pilot on the ground in a control 
centre (Ground Control Station) allows a 
significantly smaller, lighter and less expensive 
aircraft to be developed. Most importantly, the 
unmanned nature relaxes the aircraft’s flight 
safety margin. While many operational UAV’s 
exist, a good number of them are limited to 
military applications and are largely unavailable 
to civilian research institutions. A lot of papers 
have been published by the academic 
community documenting their own research into 
the design and flight testing of inexpensive 
UAVs. Few of these projects are intended for use 
outside their own research departments. 
However the growing knowledge base and 
success of many of these projects, points to the 
fact that a uniquely built UAV may be realistically 
developed by the National Space Research and 
Development Agency (NASRDA) of Nigeria, 
tailored to their specific mission profile and 
environment [1]. An important task for the 
development of UAV flight test platforms is 
modelling and identifying the aircraft dynamics. 
Accurate models of UAV flight dynamics are 
generally unavailable due to the custom design 
of the airframes. However, such models are 
required to characterize aircraft behaviour and 
determine stability and performance properties 
before designing a controller. Two of the most 
important calculations needed for an airplane are 
the coefficient of lift and drag, which put 
limitations on the airplane’s aerodynamic 
performance, thereby also affecting the power 
and thrust requirement [2]. 
 
One of the primary functions of an autopilot is the 
ability to control the UAV response to match 
command parameters. This ability is largely 

determined by the performance of the control 
algorithm implemented by the autopilot software. 
All autopilots reviewed for UAVs state that their 
control algorithm uses the well-established 
proportional, integral, derivative (PID) controller 
[3,4,5,6]. The Proportional-Integral-Derivative 
(PID), controller dates back to 1890s, with the 
first practical example from 1911 (largely owning 
to Elmer Sperry’s ship autopilot) [7].  
 
The development of an autopilot system is an 
area undergoing intense research. The ability to 
test autopilots in a virtual (software) environment 
using a software flight dynamics model for UAV’s 
is significant for this study. In many cases, 
testing newly developed autopilot systems in a 
virtual environment is the only way to guarantee 
absolute safety. Additionally the model will allow 
better repeatability in testing with controlled 
environment. 
 
In this study, we are careful enough to show that 
the plant used in the design of PID autopilots 
system for a mini-UAV will have different time 
response characteristic(s) depending on how the 
variable is defined in transfer function. This could 
be from a longitudinal dynamics model or from a 
reduced model (short period dynamics, or 
phugoid mode). In most literatures, no scientific 
reason is given for such plant selection [8]. 
 
The mini-UAV, Ultra Stick 25e chosen for this 
research is commercially available and serves as 
the primary flight test vehicle for the University of 
Minnesota UAV flight control research group. 
The UltraStick 25e is a small, low-cost, fixed-
wing, radio controlled aircraft. It is equipped with 
conventional elevator, aileron, and rudder control 
surfaces. The aircraft is powered by an electric 
motor that drives a propeller. 
 
The basic physical characteristics of the UAV are 
as outlined in Table 1. A UAV falls into the 
category of the mini type if it has a wingspan of 
less than 2 m. 
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Fig. 1. 6 DoF variables of the Ultrastick 25e mini-UAV 

 
Table 1. UAV parameters 

 
Parameter Description Value and 

units 

A Wing reference 
Area 

0.31 m
2 

b Wing span 1.27 m 

 Wing chord 0.25 m 

m Gross weight 1.9 kg 
mc Mass of payload 0.25 kg 
mT Take off mass 2.15 kg 

 
This paper is organized as follows: a Longitudinal 
fixed-wing aircraft flight dynamics model 
structure is presented in 2.0, hence, phugoid 
mode dynamics model and short period 
dynamics model are extracted from the 
Longitudinal model. Section 3.0 introduces the 
PID controller. Design and simulation to define 
short period and phugoid dynamics where 
outlined in section 4.0. 
 

2. LONGITUDINAL FIXED-WING AIR-
CRAFT FLIGHT DYNAMICS 

 
Numerical modelling of flight dynamics has a 
long history in aerospace industry, and is used in 
the development of all modern aircrafts. A flight 
dynamics model is a mathematical representa-
tion of the steady state performance and 
dynamic response that is expected of the 
proposed vehicle. 
 

The fundamental goal of flight dynamics 
modelling is to represent the flight motion 
numerically for a given input. This is expected to 
be close to the flight motion in the real world as 
the application requires. All flight dynamics 
models are based on the mathematical model 
derived from Newtonian Physics. From Newton’s 
second law, an aircraft’s motion in its six-
degrees-of-freedom (6DOF) can be described by 
a system of non-linear first order differential 
equations. These equations of motion served as 
the fundamental for almost all flight dynamics 
model. With today’s computing power, the 
processing time of solving these equations is 
trivial comparing to other signal processing 
algorithms (e.g. Kalman filter) that might be 
implemented as part of the flight model.  
 
A nonlinear aircraft model built in Simulink was 
linearized at forward velocity, u=17 m/s, pitch 
angle, θ= 0.0217 rad, elevator deflection angle, η 
= 0.091 rad, throttle angle, τ = 0.559 rad, and 
altitude h = 120 m. The simplest form of the 
equations of motion is taken in the body axis 
reference frame of the aircraft and assumes an 
Earth coordinate system. Twelve states are 
required to describe the aircraft rigid-body 
longitudinal dynamics, these are: three inertial 
positions (X, Y, Z), three body-axis velocities (u, 
v, w), three attitude angles ( ), and three 

body-axis angular rates (p, q, r). The coupled 
(longitudinal and lateral dynamics) 6DoF 
equation of motion for a rigid aircraft is given as 
[9];

 

c

, ,  

M,q, θ (Pitch)  

Left Aileron  

Right Aileron   

Right Elevator  

Left Elevator  

Rudder  

N,r,Ψ
 (Yaw) 

  

L,p, (roll),

  

X, u Z, w  

Y, v
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     (2) 

 

                                     (3) 

 

      (4) 

 

  (5) 

 

 (6) 

 

                                                                                                (7) 

 

                                                                                                                   (8) 

 

                                                                                                                  (9) 

 
where, m is the mass of the UAV, u, v, w are the velocity components in x, y, z axis respectively. η, ξ 
,ζ are notations for the control surfaces elevator, aileron and rudder respectively.  X, Y, Z are forces in 
x, y, z direction and L, M, N are moments in the same axis coordinated. θ, φ, Ψ are the three Euler 
angles of pitch, roll and yaw respectively. While Ix, Iy and Iz are moment of inertia in roll, pitch and yaw 
respectively, while Ixy, Ixz and Iyz are the products of inertia in the appropriate axis. For pitch control, 
we need a longitudinal dynamics equations, thus (1)-(9) needs to be decoupled to isolate the 
longitudinal dynamic equation of motion, these are (1), (3), (5) and (8). Decoupled longitudinal motion 
means that the aerodynamic coupling derivatives (dimensional) are negligibly small and may be taken 
as zero whence 
 

                                                                                      (10) 

 
Similarly, since aileron and rudder deflections do not usually cause motion in the longitudinal plane of 
symmetry the coupling aerodynamic control derivatives (dimensional) may also be taken as zero, thus 
 

                                                                                                   (11) 

 
Hence, the longitudinal dynamics (1), (3),(5) and (8) could be written as, 
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                                (12) 

 

                            (13) 

                                                          (14) 

 

                              (15) 

 
The primary control surface in the longitudinal 
dynamics model is the elevator deflection η (rad), 
in state-space (12)-(15) can be represented as 
 

      (16) 

 
where xu, zu and mu  are the dimensionless 
stability aerodynamic derivatives with respect to 
the state variable u, and xη, zη, and mη are the 
dimensionless control aerodynamic derivatives. 
τ(t)  is the throttle lever angle, if the UAV's cruise 
speed is constant, then �=0. Thus attitude can 
be controlled using the elevator η. For this study, 
the mini UAV pitch model was obtained after 
running the MATLAB script from [10], with our 
working conditions for linearization, this gave 
 

  (17) 

 

The characteristic equation for (17) is given in 
(18) and the roots are given in (19) 
 

     (18) 

 

                         (19) 

 

The DC gain for the four-state longitudinal model 
given in (17) was computed using MATLAB and 
has it values giving in (20). This is necessary for 
accurate determination of the of the open-loop 
response of the system. 
 

       (20) 

 

A longitudinally disturbed motion of an UAV, 
following an arbitrary initial disturbance, consists 
normally of two oscillatory modes: the short-
period oscillation and the phugoid oscillation. The 
disturbed flight consists initially of both short-
period and phugoid modes but, after a 
comparatively short time, the former is normally 
damped out and the latter only persists for quite 
a long time. The short-period oscillation can, 
therefore, be only studied during the early stage 
of the disturbed flight [11]. 

  

  
 

Fig. 2. Open-loop response of the longitudinal dynamics model 
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2.1 Phugoid Mode 
 
The phugoid mode is slow, well damped, and dominates the response in states u and θ. This mode 
can be represented as; 
 

                         (21) 

 
The characteristic equation for the phugoid mode in (21) is given in (22) and roots in (23). 

                                                        (22) 

 

                                                                                                 (23) 

 
The natural frequency ωn, for the phugoid mode is directly obtainable from the third term of (22) or 
from (23), in general form it is represented as, 
 

                                                                                     (24) 

 
The phugoid oscillation has a period of the order of one minute (up to 2 minutes or more at very high 
speeds). Hence, for this study, the phugoid period τph was computed as, 
 

                                                                                                                     (25) 

 
Its damping factor ζph, depend on a great number of derivatives, and there are considerable difficulties 
in correlating calculated and measured characteristics. Here, it was computed as, 
 

                                                                                                       (26) 

 
The DC gain for the phugoid mode dynamics is computed in (27) and its open-loop response is 
depicted in Fig. 3. 
 

                                                                                              (27) 

 

  
 

Fig. 3. Open loop response for the phugoid mode dynamics 
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2.2 Short Period Mode 
 
The short-period mode is typically fast, moderately damped, and dominates the response in states w 
and q. Stability properties and pilot handling qualities of the aircraft depend primarily on the dynamics 
of the short-period mode. The short-period model takes the form, 
 

                           (28) 

 
The characteristic equation for the short period mode is given in (29) and the roots in (30). 
 

                            (29)  

 

                             (30) 

 
The natural frequency for the short period mode 
is represented and computed as follows; 
 

     (31) 

 
The short-period oscillation has a period no more 
than a few seconds (sometimes below 1 
second), and for this study it was computes as, 
 

                                  (32) 

 
The short period oscillation is usually strongly 
damped to the extent that it may become not 
recordable after two or three periods, except for 
the dangerous cases of inadequate damping. 
The properties of this oscillation depend 
practically on only a few very important 
dimensionless aerodynamic derivatives, these 
are, zw, mw, mq and mẅ. The damping factor is 
computed as, 
 

                             (33) 

 

Hence, DC gain for the short period dynamics is 
computed as, 
 

     (34) 

 
The natures of the fast and slow modes are 
obvious if we view their dynamics separately as 
done here. It is interesting that this phenomenon 
could be illusive if one has only the longitudinal 
model to play with. Step response of the 
longitudinal dynamics does not reveal these 

modes as seen in above Fig. 2 (all variables 
settle at about the same time). 

 

 
 

Fig. 4. Open-loop step response for the short 
period dynamics 

 
3. PROPORTIONAL- INTEGRAL-DERIVA-

TIVE (PID) CONTROL 
 
PID controller is a linear controller, but has been 
used on nonlinear systems such as for an UAV 
fixed-wing [12]. The aim of a PID controller is to 
make the error signal, i. e., the difference 
between the reference signal and the measured 
signal, as small as possible, i.e. go to zero with 
time [13]. This is expressed mathematically as 
 

                            (35) 

 
where, r is the reference signal and y is the 
measured signal from the sensor and for this 
study, sensor gain is taken as unity. 
 
Mathematically, the PID controller designed in 
this study is described as: 
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where Kp, Ki and Kd represents the proportional, 
integral and derivative gains respectively, and η 
is the control signal. In other to design a PID 
controller, the mathematical model of the system 
to be controlled must be in transfer function. 

Hence the MATLAB function ss2tf [14] was 
employed in this study to get state transfer 
functions from the longitudinal dynamics model 
described in (17), these are; 
 

 

                             (37) 

 

                            (38) 

 

                           (39) 

 

                            (40) 

 
For the four transfer functions (37)-(40), we will design PID controllers for each and see if we can 
judge dominancy of variable from the closed-loop step response of all the system (Controller with 
plant). 
 
In MATLAB/Simulink, the set-point tracking control configuration shown in Fig.5 was design and 
simulated for all plants (37-40). Simulation results are presented in Fig. 6. 
 

 
  

Fig. 5. A typical PID controller design in MATLAB/Simulink 
 

  
 

Fig. 6. Closed-loop step response of PID controlled longitudinal model variables 
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3.1 Transient Response 
 
In control system design, an open loop system 
analysis of the transient response is essential as 
done in section 2.0. It is also imperative to 
compute and analyse the transient response of 
the closed-loop plant in combination the PID 
control algorithm. In general, analysis of the 
transient response of such systems to a 
reference input is difficult. Hence formulating a 
standard means of assessing transient 
performance becomes complicated. In many 
cases, the response is dominated by a pair of 
poles, thus acts like a second-order system [15]. 
For a reference step input to a dynamic system, 
four of the critical parameters that are used to 
compute transient response could be shown to 
have the following formulation: 
 
Rise time (tr), this gives an idea of how fast the 
system responds to an input, 
 

                             (41) 

 
Settling time (ts), reveals when the dynamic 
system reaches a steady values with time. 
 

                                                 (42) 

 
Percentage Overshoot (PO), gives the quantity in 
percentage of how much the system grows 
beyond or under the reference/tracking signal. 
 

                                 (43) 

 
where, n= 0,1…, if  odd then an overshoot is 
expected and if n is even an undershoot occurs. 
For a tracking controller configuration, as used in 
this study, Steady-State Error (SEE), is a 
measure of the accuracy of the output y(t) in 
tracking the reference input r(t). Other 
configurations with different performance 
measures would result in other definitions of the 
steady-state error between two signals. From 
Fig. 5, the error e(t) is  
 

                                    (44) 

 
and the steady-state error is 
 

                  (45) 

 
Assuming the limit exists, where E(s) is the 
Laplace transform of e(t), and s is the Laplacian 
operator, with G(s) the transfer function of the 
system and H(s) the transfer function of the 
controller, the transfer function between y(t) and 
r(t) is found to be 
 

                             (46) 

 
with 
 

                          (47) 

 
Table 2. Result of PID controllers for longitudinal dynamics 

 
S/N Plant Controllers Transient response Stability 

P               I            D               N tr (s)      ts(s)      PO(%) GM    PM                         
1  0.015  0.01 0.01 101.8 1.79 8.85 5.78 Inf 60º 

2  -0.16 -0.12 0.001 142.7 1.30 7.4 5.71 39 68º 

3  -0.04 -4.21 0 100 0.05 0.25 6.60 Inf 60º 

4  -0.19 -2.53 -0.003 118.7 0.04 0.23 7.22 Inf 60º
 
 

 
With the formulation in (42), we computed the settling time for both the open-loop phugoid mode and 
short period mode as; 
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                                                                                                                     (49)  

 
Transforming the state-space phugoid and short period mode models, into appropriate transfer 
functions gives the following: 
 

                                                                (50) 

 

                                                                    (51) 

 

                                                                             (52) 

 

                                                                                 (53) 

 
 PID controllers were also designed using the same configuration presented in Fig. 5, and the results 
are as shown in Fig. 7 and Table 3. 
 

 
 

 
Fig. 7. Closed-loop step response of PID controlled Phugoid and short period mode variables 

          
Table 3. Result of PID controllers for phugoid and short period modes 

 
S/N Plant Controllers Transient response Stability 

 P           I              D               N tr (s)         ts(s)     PO(%) GM    PM                         
1  4.1 7.1 -0.1 36.8 0.38 2.07 12.8 Inf 72º 

2  27.5 11.1 15.4 100.6 1.84 8.94 6.6 Inf 60º 

3  -0.38 -11.8 0.002 210.3 0.012 0.19 6.3 Inf 64º
 
 

4  -0.14 -2.1 -0.002 95.9 0.06 0.26 7.0 Inf 60º 

 
We proceed with a graphical comparison of the results of the PID controllers designed for each 
transfer function in the short period mode, phugoid mode and longitudinal model. This is depicted in 
Fig. 8 below. 
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(a) (b) 

 
 

(c) (d) 
 
Fig. 8.  Comparative plot of closed-loop step response of PID controlled phugoid, short period 

mode and longitudinal dynamics variables 
 

4. DISCUSSION OF RESULTS  

 

When the full longitudinal model of the UAV in 
(17) was separated into the phugoid mode and 
short period mode dynamic equations, their 
eigenvalues remained the same as seen in (19), 
(23) and (30) respectively. But their DC gain 
values vary as presented in (20), (27) and (34) 
hence; the open-loop responses of the three 
systems are different (see above Fig. 2, Fig. 3 
and Fig. 4).  

 

All designed controllers have appreciably and 
accepted characteristics as seen in Fig. 8 and 
from above Table 2 and 3. Attention needs to be 
drawn to the fact that the plants GuL(s) and 
GθL(s) have the largest settling time, ts (ts = 
8.85s and ts= 7.4s), it value should be 
juxtaposed with tsph = 8.06s in (49). Also, the 
plants GqL(s) and GwL(s), both have a settling 
time of ts = 0.25s and ts = 0.23s respectively, 
comparing them with the value tssh= 0.19s as 
given in (48). Comparing the PID controllers 
designed for the same state variables in the short 
period mode and the phugoid mode with those of 
the longitudinal dynamics of the UAV (Fig. 8), 
reveals the following; the state variables qL and 
qsh have different tr(with values, 0.05s, 0.012s 
respectively) and ts (0.25s, 0.19s respectively), 

as shown in Fig. 8a .The state variables wL and 
wsh also differ with tr(with values, 0.04s, 0.06s 
respectively) and ts (0.23s, 0.26s respectively) as 
shown in Fig. 8b. While uL and uph have three 
characteristic terms in disparity, these are, tr 
(1.79s, 0.38s respectively), ts(8.85s, 2.07s 
respectively) and a steady-state-error of 0.07, 
this is shown in Fig. 8c. Finally, the pitch angles, 
θL and θph vary with tr(1.3s, 1.84s, respectively) 
and ts (7.4s, 8.94s respectively), as shown in Fig. 
8d. 

 

5. CONCLUSION 

  

One of several challenges a control system 
engineer faces is to compensate accurately for 
disturbances in autopilot design of UAVs. From 
results in Figs. 2, 3 and 4 above, the short period 
dynamics equation and the phugoid mode 
equations differ from the longitudinal model in 
terms of DC gain and hence in compensator 
(controller) requirement as shown in Fig. 8. This 
simply means that a control algorithm designed 
to compensate for either short period disturbance 
or phugoid mode will be most appropriate if the 
design is done from the standpoint of their 
individual mathematical models rather than from 
the longitudinal model. Also in this study we were 
able to show that the variables dominating the 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Time(s)

 

 

q
L
 (rad/s)

q
sh

 (rad/s)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Time(s)

 

 

w
L
 (m/s)

w
sh

 (m/s)

0 2 4 6 8 10 12
0

0.5

1

Time(s)

 

 

u
L
 (m/s)

u
ph

 (m/s)

0 2 4 6 8 10 12
0

0.5

1

Time(s)

 

 

L
 (rad)

ph
 (rad)



 
 
 
 

Aliyu et al.; AIR, 5(3): 1-13, 2015; Article no.AIR.18334 
 
 

 
12 

 

system dynamics of a state-space longitudinal 
dynamics of a UAV can be directly identified after 
designing PID controllers for each variable, and 
assessing their step response characteristics. 
From the step response characteristics of the 
closed-loop system with PID controllers, the 
settling time (ts) of each system (plant and PID 
controller) corresponds to the order of the settling 
times tssh or tsph measured from the short period 
and phugoid mode respectively. Thus the settling 
times (ts) in the longitudinal plants (ts = 8.85s and 
ts= 7.4s) are compared with tsph=8.06s, this 
identifies the output variable of the plants GuL(s) 
and GθL(s) as the phugoid variables. Likewise the 
longitudinal plants with settling times ts= 0.25s 
and ts = 0.23s when compared with tssh= 0.19s, 
identifies the output variables of the plants GqL(s) 
and GwL(s), as the short period variables.  

 

The common time response characteristic in 
disparity for all synthesised controllers in this 
study is the rise time, tr. In control system design, 
the smaller the tr the better the response of the 
autopilot system. On this basis, we conclude the 
following; to design a pitch (θ) autopilot the 
longitudinal dynamic transfer function (GθL(s)) 
should be selected as the plant and for pitch rate, 
q, the short period mode transfer function 
(Gqsh(s)) should be selected. For the velocity u 
autopilot, the phugoid mode transfer function 
(Guph(s)) should be used, and for velocity w 
autopilot the longitudinal dynamics transfer 
function (GwL(s)) will be the appropriate plant. 
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