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1. Introduction

T heory of multisets is an important generalization of classical set theory which has emerged by violating
a basic property of classical sets that an element can belong to a set only once. The term multiset (mset

in short) as Knuth [1] notes, was first suggested by De Bruijn [2] in a private communication to him. The
concept of fuzzy sets proposed by Zadeh [3] is a mathematical tool for representing vague concepts. The idea
of fuzzy multisets was conceived by Yager [4] as the generalization of fuzzy sets in multisets framework.

The concept of fuzzy multigroups was introduced by Shinoj et al., [5] as an application of fuzzy multisets
to group theory, and some properties of fuzzy multigroups were presented. Ejegwa introduced the concept
of fuzzy multigroupoids and presented the idea of fuzzy submultigroups with a number of results and
more properties of abelian fuzzy multigroups were explicated [6–8]. Also Ejegwa introduced direct product
in fuzzy multigroup setting as an extension of direct product of fuzzy subgroups [9]. In mathematics, a
t-norm (also T-norm or, unabbreviated, triangular norm) is a kind of binary operation used in the framework
of probabilistic metric spaces and in multi-valued logic, specifically in fuzzy logic. A t-norm generalizes
intersection in a lattice and conjunction in logic. The name triangular norm refers to the fact that in the
framework of probabilistic metric spaces t-norms are used to generalize triangle inequality of ordinary metric
spaces. The author by using norms, investigated some properties of fuzzy algebraic structures [10–15]. The
author [15] defined fuzzy multigroups under t-norms and some properties of them are explored and some
related results are obtained.

In this paper, we introduce the concept of direct product of fuzzy multigroups under t-norms (TFSM(G))

and investigate some properties and results about them. We prove that direct products of TFSM(G) are also
TFSM(G). Next we investigate and obtain some new results of strong upper alpha-cut, weak upper alpha-cut,
strong lower alpha-cut and weak lower alpha-cut of direct product of fuzzy Multigroups under t-norms. Later
we prove that if A, C ∈ TFMS(G) and B, D ∈ TFMS(H) such that A is conjugate to B and C is conjugate to D,
then A×C is conjugate to B×D. Also A and B are commutative if and only if A× B is a commutative. Finally,
we define group homomorphisms on direct propduct of fuzzy multigroups under t-norms and we prove that
image and pre image of direct propduct of fuzzy multigroups under t-norms is also fuzzy multigroups under
t-norms.

2. Preliminaries

This section contains some basic definitions and preliminary results which will be needed in the sequel.
For details we refer to [15–24].
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Definition 1. Let G be an arbitrary group with a multiplicative binary operation and identity e. A fuzzy subset
of G, we mean a function from G into [0, 1]. The set of all fuzzy subsets of G is called the [0, 1]-power set of G
and is denoted [0, 1]G.

Definition 2. Let X be a set. A fuzzy multiset A of X is characterized by a count membership function

CMA : X → [0, 1]

of which the value is a multiset of the unit interval I = [0, 1]. That is,

CMA(x) = {µ1, µ2, ..., µn, ...}∀x ∈ X,

where µ1, µ2, ..., µn, ... ∈ [0, 1] such that

(µ1 ≥ µ2 ≥ ... ≥ µn ≥ ...).

Whenever the fuzzy multiset is finite, we write

CMA(x) = {µ1, µ2, ..., µn},

where µ1, µ2, ..., µn ∈ [0, 1] such that
(µ1 ≥ µ2 ≥ ... ≥ µn),

or simply
CMA(x) = {µi},

for µi ∈ [0, 1] and i = 1, 2, ..., n.
Now, a fuzzy multiset A is given as

A =

{
CMA(x)

x
: x ∈ X

}
or A = {(CMA(x), x) : x ∈ X} .

The set of all fuzzy multisets is depicted by FMS(X).

Example 1. Consider the set X = {a, b, c}. Then for CMA(a) = {1, 0.5, 0.4}, CMA(b) = {0.9, 0.6} and

CMA(c) = {0} we get that A is a fuzzy multiset of X written as A =

{
1, 0.5, 0.4

a
,

0.9, 0.6
b

}
.

Definition 3. Let A, B ∈ FMS(X). Then A is called a fuzzy submultiset of B written as A ⊆ B if CMA(x) ≤
CMB(x) for all x ∈ X. Also, if A ⊆ B and A 6= B, then A is called a proper fuzzy submultiset of B and denoted
as A ⊂ B.

Definition 4. Let A ∈ FMS(X) and α ∈ [0, 1]. Then we define the following notions:

1. A? = {x ∈ X | CMA(x) > 0}.
2. A? = {x ∈ X | CMA(x) = CMA(eX)} where eX is the identity element of X.
3. A[α] = {x ∈ X | CMA(x) ≥ α} is called strong upper alpha-cut of A.
4. A(α) = {x ∈ X | CMA(x) > α} is called weak upper alpha-cut of A.
5. A[α] = {x ∈ X | CMA(x) ≤ α} is called strong lower alpha-cut of A.
6. A(α) = {x ∈ X | CMA(x) < α} is called weak lower alpha-cut of A.

Definition 5. Let A, B ∈ FMG(X). We say that A is conjugate to B if for all x, y ∈ X we have CMA(x) =

CMB
(
yxy−1) .

Definition 6. Let A ∈ FMG(X). We say that A is commutative if CMA(xy) = CMA(yx) for all x, y ∈ X.

Definition 7. A t-norm T is a function T : [0, 1]× [0, 1]→ [0, 1] having the following four properties:
(T1) T(x, 1) = x (neutral element),
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(T2) T(x, y) ≤ T(x, z) if y ≤ z (monotonicity),
(T3) T(x, y) = T(y, x) (commutativity),
(T4) T(x, T(y, z)) = T(T(x, y), z) (associativity),

for all x, y, z ∈ [0, 1].
We say that T be idempotent if T(x, x) = x for all x ∈ [0, 1].

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T(x1, y1) ≥ T(x2, y2).

Example 2. (1) Standard intersection t-norm Tm(x, y) = min{x, y}.
(2) Bounded sum t-norm Tb(x, y) = max{0, x + y− 1}.
(3) Algebraic product t-norm Tp(x, y) = xy.

(4) Drastic T-norm TD(x, y) =


y if x = 1
x if y = 1
0 otherwise.

(5) Nilpotent minimum t-norm TnM(x, y) =

{
min{x, y} if x + y > 1

0 otherwise.

(6) Hamacher product t-norm TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest t-norm:
TD(x, y) ≤ T(x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].

Lemma 1. Let T be a t-norm. Then

T(T(x, y), T(w, z)) = T(T(x, w), T(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 8. Let A ∈ FMS(G). Then A is said to be a fuzzy multigroup of G under t-norm T if it satisfies the
following two conditions:

(1) CMA(xy) ≥ T(CMA(x), CMA(y)),
(2) CMA(x−1) ≥ CMA(x),

for all x, y ∈ G.
The set of all fuzzy multisets of G under t-norm T is depicted by TFMS(G).

Theorem 1. Let A ∈ TFMS(G). If T be idempotent, then for all x ∈ G, we have and n ≥ 1,
(1) CMA(e) ≥ CMA(x);
(2) CMA(xn) ≥ CMA(x);
(3) CMA(x) = CMA(x−1).

3. Direct product of fuzzy multigroups under t-norms

Definition 9. Let A ∈ TFMS(G) and B ∈ TFMS(H). The direct product of A and B, denoted by A × B, is
characterized by a count membership function

CMA×B : G× H → [0, 1]

such that
CMA×B(x, y) = T(CMA(x), CMB(y))

for all x ∈ G and y ∈ H.

Example 3. Let G = {1, x} be a group, where x2 = 1 and H = {e, a, b, c} be a Klein 4-group, where a2 = b2 =

c2 = e. Suppose
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A =

{
0.9, 0.8

1
,

0.7, 0.6
x

}
and

B =

{
1, 0.85

e
,

0.35, 0.25
a

,
0.10, 0.50

b
,

0.8, 0.6
c

}
be fuzzy multigroups of G and H. Let

G× H = {(1, e), (1, a), (1, b), (1, c), (x, e), (x, a), (x, b), (x, c)}

be a a group from the classical sense. Define

A× B =

{
0.9, 0.8
(1, e)

,
0.35, 0.25
(1, a)

,
0.10, 0.50
(1, b)

,
0.8, 0.6
(1, c)

,
0.7, 0.6
(x, e)

,
0.35, 0.25
(x, a)

,
0.10, 0.50
(x, b)

,
0.7, 0.6
(x, c)

}
and let Tm(x, y) = min{x, y} be a standard intersection t-norm for all x, y ∈ [0, 1]. Then

A× B ∈ TFMS(G× H).

Proposition 1. Let Ai ∈ TFMS(Gi) for i = 1, 2. Then A1 × A2 ∈ TFMS(G1 × G2).

Proof. Let (a1, b1), (a2, b2) ∈ G1 × G2. Then

(CMA×B)((a1, b1)(a2, b2)) = (CMA×B)(a1a2, b1b2) = T(CMA(a1a2), CMB(b1b2))

≥ T(T(CMA(a1), CMA(a2)), T(CMB(b1), CMB(b2)))

= T(T(CMA(a1), CMB(b1), T(CMA(a2), CMB(b2))

= T((CMA×B)(a1, b1), (CMA×B)(a2, b2)).

Also

(CMA×B)(a1, b1)
−1 = (CMA×B)(a−1

1 , b−1
1 )

= T(CMA(a−1
1 ), CMB(b−1

1 )) ≥ T(CMA(a1), CMB(b1)).

Thus A1 × A2 ∈ TFMS(G1 × G2).

Corollary 1. Let A ∈ TFMS(G) and B ∈ TFMS(H). Then

A× 1H , 1G × B ∈ TFMS(G× H).

Corollary 2. Let Ai ∈ TFMS(Gi) for i = 1, 2, ..., n. Then

A1 × A2 × ...× An ∈ TFMS(G1 × G2 × ...× Gn).

Proposition 2. Let A ∈ TFMS(G) and B ∈ TFMS(H) such that T be idempotent t-norm. Then for all α ∈ [0, 1] the
following assertions hold:

(1) (A× B)? = A? × B?.
(2) (A× B)? = A? × B?.
(3) (A× B)[α] = A[α] × B[α].
(4) (A× B)(α) = A(α) × B(α).
(5) (A× B)[α] = A[α] × B[α].
(6) (A× B)(α) = A(α) × B(α).
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Proof. (1) We know that (A × B)? = {(x, y) ∈ G × H | CMA×B(x, y) > 0}. Then (x, y) ∈ (A × B)? ⇐
CMA×B(x, y) > 0 ⇐ T(CMA(x), CMB(y)) > 0 ⇐ T(CMA(x), CMB(y)) > 0 = T(0, 0) ⇐ CMA(x) >

0 and CMB(y) > 0⇐x ∈ A? and y ∈ B? ⇐(x, y) ∈ A? × B? . Hence (A× B)? = A? × B?.
(2) As (A × B)? = {(x, y) ∈ G × H | CMA×B(x, y) = CMA×B(eG, eH)} so (x, y) ∈ (A × B)? ⇐

CMA×B(x, y) = CMA×B(eG, eH) ⇐ T(CMA(x), CMB(y)) = T(CMA(eG), CMB(eH)) ⇐ CMA(x) =

CMA(eG) and CMB(y) = CMB(eH)⇐x ∈ A? and y ∈ B? ⇐(x, y) ∈ A?× B? . Thus (A× B)? = A?× B?.
(3) Let (A× B)[α] = {(x, y) ∈ G× H | CMA×B(x, y) ≥ α}. Now (x, y) ∈ (A× B)[α] ⇐CMA×B(x, y) ≥ α ⇐

T(CMA(x), CMB(y)) ≥ α ⇐ T(CMA(x), CMB(y)) ≥ α = T(α, α) ⇐ CMA(x) ≥ α and CMB(y) ≥ α ⇐
x ∈ A[α] and y ∈ B[α] ⇐(x, y) ∈ A[α] × B[α] . Thus (A× B)[α] = A[α] × B[α].

(4) Since (A× B)(α) = {(x, y) ∈ G× H | CMA×B(x, y) > α}, so (x, y) ∈ (A× B)(α) ⇐CMA×B(x, y) > α ⇐
T(CMA(x), CMB(y)) > α ⇐ T(CMA(x), CMB(y)) > α = T(α, α) ⇐ CMA(x) > α and CMB(y) > α ⇐
x ∈ A(α) and y ∈ B(α) ⇐(x, y) ∈ A(α) × B(α) . So (A× B)(α) = A(α) × B(α).

(5) Because (A× B)[α] = {(x, y) ∈ G× H | CMA×B(x, y) ≤ α}, then (x, y) ∈ (A× B)[α] ⇐CMA×B(x, y) ≤
α ⇐ T(CMA(x), CMB(y)) ≤ α(x, y) ∈ (A× B)[α] ⇐CMA×B(x, y) ≤ α ⇐ T(CMA(x), CMB(y)) ≤ α ⇐
T(CMA(x), CMB(y)) ≤ α = T(α, α) ⇐ CMA(x) ≤ α and CMB(y) ≤ α ⇐ T(CMA(x), CMB(y)) ≤ α =

T(α, α) ⇐ CMA(x) ≤ α and CMB(y) ≤ α ⇐ x ∈ A[α] and y ∈ B[α] ⇐ (x, y) ∈ A[α] × B[α] . Therefore
(A× B)[α] = A[α] × B[α].

(6) Because of (A × B)(α) = {(x, y) ∈ G × H | CMA×B(x, y) < α}, then (x, y) ∈ (A × B)(α) ⇐
CMA×B(x, y) < α ⇐ T(CMA(x), CMB(y)) < α ⇐ T(CMA(x), CMB(y)) < α = T(α, α) ⇐ CMA(x) <

α and CMB(y) < α⇐x ∈ A(α) and y ∈ B(α) ⇐(x, y) ∈ A(α) × B(α) . Hence (A× B)(α) = A(α) × B(α).

Proposition 3. Let A ∈ TFMS(G) and B ∈ TFMS(H) such that T be idempotent t-norm. Then for all (x, y) ∈
G× H the following assertions hold:

(1) CMA×B(eG, eH) ≥ CMA×B(x, y),
(2) CMA×B((x, y)n) ≥ CMA×B(x, y),
(3) CMA×B(x, y) = CMA×B(x−1, y−1).

Proof. Using Proposition 1 we get that A× B ∈ TFMS(G× H). Now Theorem 1 gives us that assertions are
hold.

Proposition 4. Let A ∈ TFMS(G) and B ∈ TFMS(H) such that T be idempotent t-norm. Then for all α ∈ [0, 1] the
following assertions hold:

(1) (A× B)? is a subgroup of G× H,
(2) (A× B)? is a subgroup of G× H,
(3) (A× B)[α] is a subgroup of G× H,
(4) (A× B)(α) is a subgroup of G× H.

Proof. (1) Let (x1, y1), (x2, y2) ∈ (A× B)?. We need to prove that (x1, y1)(x2, y2)
−1 ∈ (A× B)?.

As (x1, y1), (x2, y2) ∈ (A× B)?, so CMA×B(x1, y1) > 0 and CMA×B(x2, y2) > 0.
Now

CMA×B((x1, y1)(x2, y2)
−1) = CMA×B((x1, y1)(x−1

2 , y−1
2 ))

= CMA×B(x1x−1
2 , y1y−1

2 ) = T(CMA(x1x−1
2 ), CMB(y1y−1

2 ))

≥ T(T(CMA(x1), CMA(x−1
2 )), T(CMB(y1), CMB(y−1

2 )))

≥ T(T(CMA(x1), CMA(x2)), T(CMB(y1), CMB(y2)))

= T(T(CMA(x1), CMB(y1)), T(CMA(x2), CMB(y2)))

= T(CMA×B(x1, y1), CMA×B(x2, y2)) > T(0, 0) = 0 .

Thus CMA×B((x1, y1)(x2, y2)
−1) > 0, which means that (x1, y1)(x2, y2)

−1 ∈ (A× B)?. Hence (A× B)? is
a subgroup of G× H.

(2) Let (x1, y1), (x2, y2) ∈ (A× B)?. We need to prove that (x1, y1)(x2, y2)
−1 ∈ (A× B)?.
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Because (x1, y1), (x2, y2) ∈ (A × B)? then CMA×B(x1, y1) = CMA×B(x2, y2) = CMA×B(eG, eH), which
means that T(CMA(x1), CMB(y1)) = T(CMA(x2), CMB(y2)) = T(CMA(eG), CMB(eH)), so CMA(x1) =

CMA(x2) = CMA(eG) and CMA(y1) = CMA(y2) = CMA(eH). Thus

CMA×B((x1, y1)(x2, y2)
−1) = CMA×B((x1, y1)(x−1

2 , y−1
2 ))

= CMA×B(x1x−1
2 , y1y−1

2 ) = T(CMA(x1x−1
2 ), CMB(y1y−1

2 ))

≥ T(T(CMA(x1), CMA(x−1
2 )), T(CMB(y1), CMB(y−1

2 )))

≥ T(T(CMA(x1), CMA(x2)), T(CMB(y1), CMB(y2)))

= T(T(CMA(eG), CMA(eG)), T(CMB(eH), CMB(eH)))

= T(CMA(eG), CMB(eH)) = CMA×B(eG, eH)

≥ CMA×B((x1, y1)(x2, y2)
−1) . (Proposition 2(1))

Thus CMA×B((x1, y1)(x2, y2)
−1) = CMA×B(eG, eH), so (x1, y1)(x2, y2)

−1 ∈ (A × B)?. Hence we obtain
that (A× B)? is a subgroup of G× H.

(3) Let (x1, y1), (x2, y2) ∈ (A× B)[α]. We need to show that (x1, y1)(x2, y2)
−1 ∈ (A× B)[α].

As (x1, y1), (x2, y2) ∈ (A× B)[α] so CMA×B(x1, y1) ≥ α and CMA×B(x2, y2) ≥ α.
Now

CMA×B((x1, y1)(x2, y2)
−1) = CMA×B((x1, y1)(x−1

2 , y−1
2 ))

= CMA×B(x1x−1
2 , y1y−1

2 ) = T(CMA(x1x−1
2 ), CMB(y1y−1

2 ))

≥ T(T(CMA(x1), CMA(x−1
2 )), T(CMB(y1), CMB(y−1

2 )))

≥ T(T(CMA(x1), CMA(x2)), T(CMB(y1), CMB(y2)))

= T(T(CMA(x1), CMB(y1)), T(CMA(x2), CMB(y2)))

= T(CMA×B(x1, y1), CMA×B(x2, y2)) ≥ T(α, α) = α .

Thus CMA×B((x1, y1)(x2, y2)
−1) ≥ α which means that (x1, y1)(x2, y2)

−1 ∈ (A× B)[α]. Hence (A× B)[α]
is a subgroup of G× H.

(4) If (x1, y1), (x2, y2) ∈ (A× B)(α), then CMA×B(x1, y1) > α and CMA×B(x2, y2) > α. Now

CMA×B((x1, y1)(x2, y2)
−1) = CMA×B((x1, y1)(x−1

2 , y−1
2 ))

= CMA×B(x1x−1
2 , y1y−1

2 ) = T(CMA(x1x−1
2 ), CMB(y1y−1

2 ))

≥ T(T(CMA(x1), CMA(x−1
2 )), T(CMB(y1), CMB(y−1

2 )))

≥ T(T(CMA(x1), CMA(x2)), T(CMB(y1), CMB(y2)))

= T(T(CMA(x1), CMB(y1)), T(CMA(x2), CMB(y2)))

= T(CMA×B(x1, y1), CMA×B(x2, y2)) > T(α, α) = α .

Thus CMA×B((x1, y1)(x2, y2)
−1) > α which means that (x1, y1)(x2, y2)

−1 ∈ (A× B)(α). Hence (A× B)(α)
is a subgroup of G× H.

Proposition 5. Let A ∈ TFMS(G) and B ∈ TFMS(H). If A× B ∈ TFMS(G×H), then at least one of the following
statements hold:

(1) CMB(eH)) ≥ CMA(x) for all x ∈ G,
2) CMA(eG)) ≥ CMB(y) for all y ∈ G.

Proof. Suppose that none of the statements holds, then we can find a ∈ G and b ∈ H such that CMA(a) >

CMB(eH) and CMB(b) > CMA(eG). Now

CMA×B(a, b) = T(CMA(a), CMB(b))

> T(CMB(eH), CMA(eG))

= T(CMA(eG), CMB(eH)) = CMA×B(eG, eH) .
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Thus CMA×B(a, b) > CMA×B(eG, eH), which is contradiction with Proposition 2(1), hence at least one of
the statements hold.

Proposition 6. Let A ∈ FMS(G) and B ∈ FMS(H) such that A× B ∈ TFMS(G× H) and CMA(x) ≤ CMB(eH)

for all x ∈ G. Then A ∈ TFMS(G).

Proof. As CMA(x) ≤ CMB(eH) for all x ∈ G, so CMA(y) ≤ CMB(eH) and CMA(xy) ≤ CMB(eH) =

CMB(eHeH) for all y ∈ G. Then

CMA(xy) = T(CMA(xy), CMB(eHeH))

= CMA×B(xy, eHeH)

= CMA×B((x, eH)(y, eH))

≥ T(CMA×B(x, eH), CMA×B(y, eH))

= T(T(CMA(x), CMB(eH)), T(CMA(y), CMB(eH)))

= T(CMA(x), CMA(y)) .

Thus
CMA(xy) ≥ T(CMA(x), CMA(y)).

Also since CMA(x) ≤ CMB(eH) for all x ∈ G so CMA(x−1) ≤ CMB(eH). Thus

CMA(x−1) = T(CMA(x−1), CMA(eH))

= T(CMA(x−1), CMA(e−1
H ))

= CMA×B((x, eH)
−1)

≥ CMA×B(x, eH)

= T(CMA(x), CMA(eH)) = CMA(x)

and then CMA(x−1) ≥ CMA(x). Therefore A ∈ TFMS(G).

Proposition 7. Let A ∈ FMS(G) and B ∈ FMS(H) such that A× B ∈ TFMS(G× H) and CMB(x) ≤ CMA(eG)

for all x ∈ H. Then B ∈ TFMS(H).

Proof. The proof is similar to Proposition 6.

Corollary 3. Let A ∈ FMS(G) and B ∈ FMS(H) such that A× B ∈ TFMS(G× H). Then either A ∈ TFMS(G)

or B ∈ TFMS(H).

Proof. Using Proposition 5 we get that CMB(eH)) ≥ CMA(x) for all x ∈ G or CMA(eG)) ≥ CMB(y) for all
y ∈ G. Then from Proposition 6 and Proposition 7 we have that either A ∈ TFMS(G) or B ∈ TFMS(H).

Proposition 8. Let A, C ∈ TFMS(G) and B, D ∈ TFMS(H). If A is conjugate to B and C is conjugate to D, then
A× C is conjugate to B× D.

Proof. As A is conjugate to B so CMA(x) = CMC(gxg−1) and as B is conjugate to D so CMB(y) =

CMD(hyh−1) for all x, g ∈ G and y, h ∈ H. Now

CMA×B(x, y) = T(CMA(x), CMB(y))

= T(CMC(gxg−1), CMD(hyh−1))

= CMC×D(gxg−1, hyh−1)

= CMC×D((g, h)(x, y)(g−1, h−1))

= CMC×D((g, h)(x, y)(g, h)−1) .
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Thus CMA×B(x, y) = CMC×D((g, h)(x, y)(g, h)−1) which means that A× C is conjugate to B× D.

Proposition 9. Let A ∈ TFMS(G) and B ∈ TFMS(H). Then A and B are commutative if and only if A × B is a
commutative.

Proof. Let x1, y1 ∈ G and x2, y2 ∈ H such that x = (x1, x2) ∈ G× H and y = (y1, y2) ∈ G× H. Let A and B
are commutative then CMA(x1y1) = CMA(y1x1) and CMB(x2y2) = CMB(y2x2). Which implies

CMA×B(xy) = CMA×B((x1, x2)(y1, y2))

= CMA×B(x1y1, x2y2)

= T(CMA(x1y1), CMB(x2y2))

= T(CMA(y1x1), CMB(y2x2))

= CMA×B(y1x1, y2x2)

= CMA×B((y1, y2)(x1, x2))

= CMA×B(yx) .

Thus CMA×B(xy) = CMA×B(yx) and then A× B is a commutative.
Conversely, suppose that A × B is a commutative. Then CMA×B(xy) = CMA×B(yx) ⇐

CMA×B((x1, x2)(y1, y2)) = CMA×B((y1, y2)(x1, x2)) ⇐ CMA×B(x1y1, x2y2) = CMA×B(y1x1, y2x2) ⇐
T(CMA(x1y1), CMB(x2y2)) = T(CMA(y1x1), CMB(y2x2)) ⇐ CMA(x1y1) = CMA(y1x1) and CMB(x2y2) =

CMB(y2x2) which gives us that A and B are commutative.

Definition 10. Let G × H and I × J be groups and f : G × H → I × J be a homomorphism. Let A × B ∈
FMS(G× H) and C× D ∈ FMS(I × J). Define f (A× B) ∈ FMS(I × J) and f−1(C× D) ∈ FMS(G× H) as:

f (CMA×B)(i, j) = (CM f (A×B))(i, j) =

{
sup{CMA×B(g, h) | g ∈ G, h ∈ H, f (g, h) = (i, j)} if f−1(i, j) 6= ∅

0 otherwise

and
f−1(CMC×D(g, h)) = CM f−1(C×D)(g, h) = CMC×D( f (g, h))

for all (g, h) ∈ G× H.

Proposition 10. Let G× H and I × J be groups and f : G× H → I × J be an epimorphism. If A ∈ TFMS(G), B ∈
TFMS(H) and A× B ∈ TFMS(G× H), then f (A× B) ∈ TFMS(I × J).

Proof. (1) Let X = (i1, j1) ∈ I × J and Y = (i2, j2) ∈ I × J such that

f−1(XY) = f−1((i1, j1)(i2, j2)) = f−1(i1i2, j1 j2) 6= ∅.

Then

f (A× B)(XY) = f (A× B)((i1, j1)(i2, j2))

= f (A× B)(i1i2, j1 j2)

= sup{CMA×B(g1g2, h1h2) | g1, g2 ∈ G, h1, h2 ∈ H, f (g1g2, h1h2) = (i1i2, j1 j2)}
= sup{CMA×B(g1g2, h1h2) | g1, g2 ∈ G, h1, h2 ∈ H, ( f (g1g2), f (h1h2)) = (i1i2, j1 j2)}
= sup{CMA×B(g1g2, h1h2) | g1, g2 ∈ G, h1, h2 ∈ H, f (g1g2) = i1i2, f (h1h2) = j1 j2}
= sup{T(CMA(g1g2), CMB(h1h2)) | g1, g2 ∈ G, h1, h2 ∈ H, f (g1g2) = i1i2, f (h1h2) = j1 j2}
= sup{T(CMA(g1g2), CMB(h1h2)) | g1, g2 ∈ G, h1, h2 ∈ H, f (g1g2) = i1i2, f (h1h2) = j1 j2}
≥ sup{T(T(CMA(g1), CMA(g2)), T(CMB(h1), CMB(h2))) | f (g1g2) = i1i2, f (h1h2) = j1 j2}
= sup{T(T(CMA(g1), CMB(h1)), T(CMA(g2), CMB(h2))) | f (g1g2) = i1i2, f (h1h2) = j1 j2}
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= sup{T(T(CMA(g1), CMB(h1)), T(CMA(g2), CMB(h2))) | f (g1) = i1, f (g2) = i2, f (h1) = j1, f (h2) = j2}
= sup{T(CMA×B(g1, h1), CMA×B(g2, h2)) | f (g1) = i1, f (g2) = i2, f (h1) = j1, f (h2) = j2}
= T(sup{CMA×B(g1, h1) | f (g1, h1) = (i1, j1)}, sup{CMA×B(g2, h2) | f (g2, h2) = (i2, j2)})
= T( f (A× B)(i1, j1), f (A× B)(i2, j2)) = T( f (A× B)(X), f (A× B)(Y)) .

Thus
f (A× B)(XY) ≥ T( f (A× B)(X), f (A× B)(Y)).

(2) Let X = (i, j) ∈ I × J then

f (A× B)(X−1) = f (A× B)((i, j)−1)

= f (A× B)(i−1, j−1)

= sup{CMA×B(g−1, h−1) | g ∈ G, h ∈ H, f (g−1, h−1) = (i−1, j−1)}
= sup{CMA×B(g−1, h−1) | g ∈ G, h ∈ H, ( f (g−1), f (h−1)) = (i−1, j−1)}
= sup{CMA×B(g−1, h−1) | g ∈ G, h ∈ H, f (g−1) = i−1, f (h−1)) = j−1}
= sup{T(CMA(g−1), CMB(h−1)) | g ∈ G, h ∈ H, f (g−1) = i−1, f (h−1)) = j−1}
≥ sup{T(CMA(g), CMB(h)) | g ∈ G, h ∈ H, f−1(g) = i−1, f−1(h) = j−1}
= sup{T(CMA(g), CMB(h)) | g ∈ G, h ∈ H, f (g) = i, f (h) = j}
= sup{CMA×B(g, h) | (g, h) ∈ G× H, f (g, h) = (i, j)}
= f (A× B)(i, j) = f (A× B)(X)

and then f (A× B)(X−1) ≥ f (A× B)(X). Therefore f (A× B) ∈ TFMS(I × J).

Proposition 11. Let G × H and I × J be groups and f : G × H → I × J be a homomorphism. If C ∈ TFMS(I),
D ∈ TFMS(J) and C× D ∈ TFMS(I × J), then f−1(C× D) ∈ TFMS(G× H).

Proof. (1) Let X = (g1, h1) ∈ G× H and Y = (g2, h2) ∈ G× H. Then

f−1(CMC×D)(XY) = f−1(CMC×D)((g1, h1)(g2, h2))

= f−1((CMC×D)(g1g2, h1h2))

= CMC×D( f (g1g2, h1h2))

= CMC×D( f (g1g2), f (h1h2))

= T(CMC( f (g1g2)), CMD( f (h1h2)))

= T(CMC( f (g1) f (g2)), CMD( f (h1) f (h2)))

≥ T(T(CMC( f (g1)), CMC( f (g2))), T(CMD( f (h1)), CMD( f (h2)))

= T(T(CMC( f (g1)), CMD( f (h1))), T(CMC( f (g2), CMD( f (h2)))

= T(CMC×D( f (g1), f (h1)), CMC×D( f (g2), f (h2)))

= T(CMC×D( f (g1, h1)), CMC×D( f (g2, h2)))

= T( f−1(CMC×D)(g1, h1), f−1(CMC×D)(g2, h2))

= T( f−1(CMC×D)(X), f−1(CMC×D)(Y)) .

Thus
f−1(CMC×D)(XY) ≥ T( f−1(CMC×D)(X), f−1(CMC×D)(Y)).

(2) Let X = (g, h) ∈ G× H, then

f−1(CMC×D)(X−1) = f−1(CMC×D)((g1, h1)
−1)
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= CMC×D( f (g, h)−1)

= CMC×D( f (g−1, h−1))

= CMC×D( f−1(g), f−1(h))

= T(CMC( f−1(g)), CMD( f−1(h)))

≥ T(CMC( f (g)), CMD( f (h)))

= CMC×D( f (g), f (h))

= CMC×D( f (g, h))

= f−1(CMC×D)(g, h)

= f−1(CMC×D)(X)

and then f−1(CMC×D)(X−1) ≥ f−1(CMC×D)(X). Thus f−1(C× D) ∈ TFMS(G× H).
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