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Abstract
In the present days of modern cosmology it is assumed that the main ingredient to cosmic energy
presently is vacuum energy with an energy density ϵvac that is constant over the cosmic evolution.
In this paper here we show, however, that this assumption of constant vacuum energy density is
unphysical, since it conflicts with the requirements of cosmic thermodynamics. We start from the
total vacuum energy including the negatively valued gravitational binding energy and show that
cosmic thermodynamics then requires that the cosmic vacuum energy density can only vary with
cosmic scale R = R(t) according to ϵvac ∼ R−ν with only two values of ν being allowed, namely
ν1 = 2 and ν2 = 5/2. We then discuss these two remaining solutions and find, when requiring
a universe with a constant total energy, that the only allowed power index is ν1 = 2. We discuss
the consequences of this scaling of ϵvac and show the results for a cosmic scale evolution of a
quasi-empty universe like the one that we are presently faced by.
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1 Introduction

We start this paper asking why at all should
a vacuum gravitate or influence spacetime
geometry? This question is perhaps worth to
be asked, since, if vacuum, expressis verbis,
represents ’nothing’ in a physical sense, then
it should not do anything, especially should not
gravitate, unless it is wrongly defined. Modern
physics nowadays argues, however, that a
vacuum cannot be energy-less, but is loaded with
energy, or, due to the energy-mass equivalence,
is mass-loaded. Masses, on the other hand,
do in general gravitate, unless something else
compensates for that. But how could sources of
gravity be compensated, unless perhaps by anti-
masses which are not known to exist?

The General Relativistic action of a vacuum
in general is taken into account by a fluid-
like hydrodynamical energy-momentum tensor
T vac
µν which describes how the vacuum, due to

its pressure pvac and its mass energy density
ρvac, acts as source of spacetime geometry
(see e.g. [1]). If in addition vacuum energy
density ϵvac = ρvacc

2 is assumed to be constant,
as done in present-day standard cosmologies
(see [2], [3]), then this induces the relation
pvac = −ϵvac (see e.g [4]) and leads to the
following geometrical source tensor (see e.g. [5])
T vac
µν = ρvacc

2gµν , where gµν denotes the metric
tensor.

This term T vac
µν , since being isomorphal, can be

taken together with the term due to Einstein’s
cosmological constant Λ0 ([6]). This idea has
already been proposed at different places in
the literature. Early ideas of [7] have been
further analysed by [4] and [8] and imply that
temporal changes of the vacuum energy density
are connected with mass generation. This
idea independently has also been proposed
for thermodynamic and entropy reasons by [9].
Close connections of vacuum energy and matter
have most recently also be discussed by [10]
and [11]. While the first authors discuss a
screening of vacuum energy by quantum field
loop corrections to the energy momentum tensor,
the latter authors point to the possibility of
introducing an effective cosmological constant by
taking into account Gauss-Bonnet terms within
the frame of a higher (5-6) dimensional gravity.

We shall follow in principle these ideas here in
this paper, but shall argue in a much simpler
form:

If both terms are placed on the right-hand side
of the GRT field equations, while Einstein placed
his term on the left hand side, they can be put
together representing an ’effective’ cosmological
constant Λeff given by [12] and [13].

Λeff =
8πG

c2
ρvac,0 − Λ0. (1.1)

Now one can draw the following conclusion: A
completely empty, matter-free space, not doing
anything in terms of gravity, is realized, if ,evident
from the above, Λeff just vanishes, i.e. the
cosmological term Λ0 just compensates the
vacuum energy density of empty space whatever
maybe its value (e.g. see [14], [15]).

Interestingly, very similar ideas have come
up in papers by Sola (see [16], [17]) who
expresses the fact that in order to settle down
the spacetime geometry of a pure vacuum to
a nongravitating Minkowskian spacetime within
a covariant general-relativistic field theory the
effective vacuum energy of this empty space has
to vanish.

In the presence of real matter the argumentation,
however, is much more complicate as we have
discussed at several places in the literature ([12],
[13], [18], [19], [20]). Especially it is then highly
question- able whether under such conditions a
constant vacuum energy density can at all be
expected as an option.

If under these perspectives it could be assumed,
that only the energy difference between
the matter-polarized and the empty vacuum
gravitates then some interesting new conclusions
could be drawn. It then means that in a matter-
filled universe the effective quantity representing
the action of the vacuum energy density is given
by:

Λeff =
8πG

c2
(ρvac − ρvac,0). (1.2)

The above formulation expresses that in a matter-
filled universe only the difference between the
values of the vacuum energy densities ρvac,0
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of empty space and ρvac of matter-polarized
space gravitates, i.e. the spacetime geometry
only reacts to the difference of these vacuum
energies.

Even under these new prerequisites it is
nevertheless not the most natural assumption,
that vacuum energy density ϵvac = ρvacc

2

should be considered as a time-independent
quantity. This is because the unit of volume
is not a cosmologically relevant quantity, and
vacuum energy density neither is. It would
probably appear more reasonable to assume
that thecosmic energy load of any homologously
comoving spacelike proper volume does not
change with cosmic expansion, i.e. that rather
just this proper-energy is constant. This demand,
however, means that the true constant quantity,
instead of the vacuum energy density ϵvac, is

evac = ϵvac
√
−g3d

3V (1.3)

where g3 is the determinant of the 3d-space
metric which in case of a Robertson-Walker
geometry is given by

g3 = g11g22g33 = − 1

(1−Kr2)
R6r4 sin2 ϑ (1.4)

with K denoting the curvature parameter, the
R = R(t) determining the time-dependent scale
of the universe. Here we would like to emphasize
that for this above idea the spacelike 3D- proper
volume is requested, not the 4D- spacetime
volume. The differential 3-space volume element
in normalized polar coordinates is given by

d3V = drdϑdφ. (1.5)

This then leads to the following request

evac = ϵvac

√
R6r4 sin2 ϑ/(1−Kr2)drdϑdφ

= ϵvac
R3

√
1−Kr2

r2 sinϑdrdϑdφ = const. (1.6)

which evidently leads to a variability of the
vacuum energy density ϵvacin the form

ϵvac = ρvacc
2 ∼ R(t)−3. (1.7)

In the following paper we shall now throw some
new light on the variability of ϵvac that must be
expected. We therefore study the behavior of the
vacuum energy density ϵvac with the scale R(t)
of the universe from a thermodynamical view.

2 Thermodynamics of the
Cosmic Vacuum

In the following cosmological considerations we
treat the cosmic vacuum by quantities denoting
its vacuum energy density εvac and its associated
vacuum pressure pvac, like done in case of a
hydrodynamic fluid which in general relativity
theory is described by the following fluid-type
hydro-dynamical energy-momentum tensor (see
e.g [1], [12], [13], [21])

T vac
µν = (ρvacc

2 + pvac)UµUν − pvac ∗ gµν (2.1)

where εvac = ρvacc
2 and pvac are energy density

and pressure of the vacuum, Ui denote the
components of the fluid four-velocity, and gµν is
the four-space metric tensor.

In order to use the above energy-momentum
tensor in the frame of the general relativistic
field equations one needs to know, how ρvac
and pvac are related to each other and how they
are dependent on spacetime coordinates. For
that purpose we want to use the well known
thermodynamic equation that relates the internal
volume energy with the work expended at the
expansion of that volume. In its easiest form
for a Robertson-Walker symmetric universe with
curvature K = 0 this equation for a sphere of
scale R = R(t) is given by (see [1]):

4π

3

d

dR
(εvacR

3) = −pvac
4π

3

d

dR
R3. (2.2)

Analogously to a star at its contraction the
internal volume energy, irrelevant whether it
is vacuum- or matter-filled, should, however,
be completed by the gravitational self-binding
energy, since a vacuum that is energy-loaded
evidently is a source of internal gravity which at
all makes it cosmologi- cally relevant as source
of cosmic geometry. If we include the negatively
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valued gravitational self-binding energy (see [18],
[19]) into the total internal energy of a cosmic
sphere with radius R, then instead of the
above relation one obtains the following more
complicate thermodynamic equation:

d

dR
[
4π

3
εvacR

3 − 8π2G

15c4
(εvac + 3pvac)

2R5] =

−pvac
4π

3

d

dR
R3 (2.3)

which now instead of Eq. (2.2) should define
the relation between εvac and pvac and both their
dependences on the scale parameter R = R(t)
which is a function of the cosmic time t.

As evident, in this highly symmetric FLRW
universe both quantities, i.e. εvac and pvac,
can only depend on the scale parameter R(t),
because according to the cosmological principle,
which is the accepted basis of all cosmology,
all 3-places in the universe have to be alike,
meaning that also vacuum energy and vacuum
pressure only can be functions of the general
world time t or R(t), respectively. We now try to
solve the above equation, following the same way
as already used in the case of the more simple,
uppermost thermodynamic Eq. (2.2), namely
assuming a power-law dependence of εvac on
R in the form εvac ∼ R−ν with an undefined
power index ν, and then obtaining for the vacuum
pressure the relation

pvac = −3− ν

3
εvac. (2.4)

Here so far all power indices, especially the
cardinal index values ν = 0, 1, 2, 3, were equally
allowed, none of them being apriori excluded,
however, the R-dependence of pvac and εvac
turned out to be identical.

If we now make use of these earlier results (Eq.
(2.4), but try to find solutions of the extended
thermodynamic Eq. (2.3) on the basis of these
earlier findings we then obtain:

−4π

3

3(3− ν)

3− ν
pvacR

2 = −3
4π

3
pvacR

2+

8π2G

15c4
d

dR
[(εvac + 3pvac)

2R5] (2.5)

which, since the terms left and right of the identity
sign cancel, after replacing εvac by pvacwith Eq.
(2.4) leads to the requirement

0 =
(6− 3ν)2

(3− ν)2
d

dR
(p2vacR

5). (2.6)

This equation for a completed thermodynamics
now evidently is only solved by two special values
of ν, i.e. the requirements:

a: ν = ν1 = 2
and
b: p2vacR5 = const, i.e. by ν = ν2 = 5/2

thus now determining, compared to the
earlier result, a much more restricted set of
physically possible dependences of pvac and εvac
on R.

3 Do There Exist Two
Competing Solutions?

From the above derivation the two solutions ν =
ν1 and ν = ν2 are competing as equally justified,
and one could think of taking a representation of
the form

εvac = ε0,1(R/R0)
−ν1 + ε0,2(R/R0)

−ν2 (3.1)

as the most general solution. However,
without any concrete, specific physics behind
the different forms, how εvac reacts to cosmic
scale expansion, this form of a solution is not
really satisfying. Thus we try to restrict the
possible power indices even more by looking at
this question from another view.

Requiring a universe where in every instant the
positively valued vacuum energy is compensated
by its gravitationally induced self-binding energy,
then , in addition to the above thermodynamic
requirement, one has to also fulfill the following
relation (see [18], [19]) for a vanishing total
vacuum energy

4π

3
(εvac + 3pvac)R

3 =
8π2G

15c4
[(εvac + 3pvac)

2R5].

(3.2)
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We now solve this quadratic equation with
respect to the pressure pvac and get the following
two solutions:

pvac,1 = −1

3
εvac (3.3)

and

pvac,2 =
1

3
(

5c4

2πGR2
− εvac). (3.4)

Insertion of Eq. (3.3) or Eq. (3.4) into Eq.
(2.3) results in both cases in one and the same
differential equation for the energy density εvac
given by:

dεvac
dR

R+ 2εvac = 0 (3.5)

which has the unique solution:

εvac = εvac,0
R2

0

R2
∼ pvac,1,2 (3.6)

with εvac,0 the vacuum energy density at a scale
parameter R0, e.g. at the present cosmic time t0.
Using εvac = ρvacc

2 we finally get from Eq. (3.6)
for the associated cosmic mass density ρvac of a
pure vacuum-energy-dominated universe which
scales according to R−2:

ρvac = ρvac,0
R2

0

R2
. (3.7)

Similar results, however derived independently
from very different theoretical reasons, have
already been published by [16], [17], [22] and
[23]. In these papers it has been discussed that
strictly keeping to covariance requirements of
the underlying general relativistic field equations
one can allow for a time-dependence of the
inherent cosmic vacuum energy density ρvac
and, as a leading term, one should preferably
consider the following time-depen- dence of the
vacuum energy density ρvac = ρvac,0 + α ·H2(t),
where H = H(t) = Ṙ/R denotes the time-
dependent Hubble constant within a Friedman-
Lemaitre cosmology. As the above authors
emphasize, this new setting will help solving
many outstanding problems in the present-day
cosmology like triggering a smooth transition
from an initial inflationary expansion powered

by very strong vacuum energy density into a
present-day smooth inflation at very low vacuum
energy densities of the order of ρvac,0 ≃
10−26kg/m3.

A similar attempt to subject the field equations
to more general scale-invariance requirements
has led [24] on the basis of a Weylian scalar-
tensor theory also to a term which acts equivalent
to vacuum energy density and which is varying
with (1/R2) exactly like derived in our above
approach. The question may, however, come
up here with concern to the justification of a
scale-invariance requirement applied to the GRT
field equations. Nevertheless, there are hints
from many sides that a scale- or time-dependent
vacuum energy term ρvac = ρvac(t) seems to
make much sense in cosmology.

4 Friedmann-Lemaı̂tre
Equations for a R−2-
scaling of ρvac

The Friedmann equations provide a relationship
between the cosmic scale R, its first and second
time derivatives Ṙ and R̈ on one hand, and
the cosmic mass density ρ and its associated
pressure p on the other hand. In the following we
investigate a pure vacuum energy filled universe
with curvature K = 0. The Friedmann equations
are then given by:

H2(t) =
Ṙ2

R2
=

8πG

3
ρvac (4.1)

and

R̈

R
= −4πG

3c2
(ρvacc

2 + 3pvac) (4.2)

with H(t) the time dependent Hubble parameter.
Insertion of the R−2-dependent equivalent mass
density of the vacuum energy given by Eq. (3.7)
into Eq. (4.1) leads to:

H2(t) =
Ṙ2

R2
=

8πG

3
ρvac,0

R2
0

R2
(4.3)

which provides the following result for the
expansion velocity Ṙ of the scaling factor R:

Ṙ =

√
8πGρvac,0

3
R0 = const. (4.4)
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and thus, if we require R(t = 0) = 0:

R =

√
8πGρvac,0

3
R0t. (4.5)

At this point of our paper we would like to stress
that the above result of a constant expansion
velocity of the universe is the result of our
above model derivations for a universe with pure
vacuum energy and the assumption that vacuum
energy density decreases by 1/R2.

We now look at the 2. Friedmann equation Eq.
(4.2). The calculated pressure in eq. Eq. (3.3)
results in a cosmic acceleration which is simply
zero:

R̈ = −4πG

3c2
(ρvacc

2 + 3pvac,1)R =

−4πG

3c2
(ρvacc

2 − 3
1

3
ρvacc

2)R = 0. (4.6)

However, the pressure in Eq. (3.4) leads to the
following expression:

R̈ = −4πG

3c2
(ρvacc

2 + 3
1

3

5c4

2πGR2
−

3
1

3
ρvacc

2)R = −10c2

3R
. (4.7)

The result of Eq. (4.7) is in discrepancy with
the constant expansion velocity Ṙ in Eq. (4.4)
which follows from the 1. Friedmann equation
which itself does not depend on the pressure.
Thus, since a constant Ṙ cannot be realized with
Eq. (4.7), we can conclude that the pressure in
Eq. (3.4) and its associated acceleration in Eq.
(4.7) are of course mathematical solutions of our
thermodynamical equations but not physical ones
which are realized in a cosmos with a vacuum
energy density which scales according to R−2

and which always leads to Ṙ = const., i.e. R̈ =
0. With other words, the correlation between
a vacuum energy density ϵvac ∼ R−2 and its
associated pressure pvac is given by (equation of
state):

pvac = −1

3
ϵvac. (4.8)

5 Consequences of the
R−2-scaling of ρvac and
Conclusions

With the results of the previous chapter for a
matter-free, empty universe dominated by pure
vacuum energy and with a curvature parameter
K = 0 (i.e. a flat vacuum universe) we now look
at the Hubble parameter H(t) which is given for
this universe by (see Eqs. (4.4) and (4.5):

H(t) =
Ṙ

R
=

√
8πGρvac,0

3
R0√

8πGρvac,0

3
R0t

=
1

t
(5.1)

and for the present cosmic time t0 leads to
t0 = 1/H0(t0) ≈ 1, 37 · 1010yrs with the presently
accepted Hubble parameter H0 ≈ 72km/s/Mpc
(see Bennett et al. 2003).

Furthermore, we can now try to calculate the
equivalent of the total, global vacuum energy
content of the universe, i.e. the mass content
Mvac of such an universe assuming that the
extension of the visible universe is given by the
so-called Hubble radius RH , defined as that
cosmic distance where the cosmic recession
velocity Ṙ equals the velocity of light c and given
by:

RH =
c

H(t)
= ct (5.2)

with H(t) given by Eq. (5.1). Now, in addition Eq.
(4.1) leads us to the cosmic density:

ρvac =
3H2

8πG
=

3

8πGt2
(5.3)

which is nowadays (t = t0):

ρvac,0 =
3H2

0

8πG
=

3

8πGt20
≈ 10−26 kg

m3
. (5.4)

Hence we can express the present vacuum mass
of the universe by:

Mvac =
4π

3
ρvac,0R

3
H =

4π

3

3

8πGt20
c3t30 =

c3

2G
t0 ≈ 1053kg ≈ 1080mp (5.5)
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with mp as the mass of the proton. Interestingly,
the Eqs. (5.4) and (5.5) show well-
known numbers, quite familiar to nowadays
astronomers, namely just numbers for the
presently assumed critical mass density of our
universe and the present mass content of the
visible universe, respectively. This may in first
glance appear to be completely casual and be
highly astonishing, since with the above we
calculated density and mass of a cosmic vacuum
on the basis of a R−2-scaling vacuum energy
density, while the numbers that we got are typical
for the matter content of our present universe.

These above results are, however, not judged
by the authors of this paper to be an numerical
artifact, but may have the following important
reason: We can take Eq. (3.7) to calculate the
equivalent mass density of the vacuum energy
density of the very early universe, i.e. at the
Planck time tp or the Planck length RH(tp) =
rp = ctp, thereby expressing the reference scale
R0 by the present Hubble radius RH,0 = ct0
(according to Eq. (5.2)) and get:

ρvac(rp) = ρvac(tp) = ρvac,0
R2

H,0

r2p
=

ρvac,0
ct20
ct2p

= ρvac,0
t20
t2p
. (5.6)

If we now substitute ρvac,0 by 3/8πGt20 (ref. Eq.
(5.4)) then Eq. (5.6) can be written as:

ρvac(rp) = ρvac(tp) =
3

8πGt20

t20
t2p

=
3

8πGt2p
.

(5.7)
When we replace the Planck time tp = rp/c =√

~G/c5 we finally get the following formula:

ρvac(rp) = ρvac(tp) =
3

8π

c5

~G2
= ρp (5.8)

which is identical to the Planck density ρp
defined by the ratio of a half Planck mass
1
2
mp = 1

2

√
~c/G and the Planck volume 4π

3
r3p

with the Planck length rp =
√

~G/c3. This means
that the equivalent vacuum mass density which
scales according to R−2 in our model can be
described as a scaling Planck density ρp. In fact,
we can re-write Eq. (5.3) by replacing the factor
3/8πG using Eq. (5.8) and get:

ρvac(t) =
3

8πGt2
= ρp

~G/c5

t2
= ρp

t2p
t2

(5.9)

where the Planck time tp =
√

~G/c5 is now the
reference time. The ratio ρvac,0/ρp is then simply
given by:

ρvac,0
ρp

=
t2p
t20

≈ ·10−122 (5.10)

and would provide an explanation for the well-
known discrepancy factor with respect to the ratio
of the present vacuum mass density on one
hand and the theoretical value of the vacuum
mass density that follows from field-theoretical
calculations on the other hand ([14], [25]).

6 Conclusions
Our thermodynamical calculations for a pure
vacuum energy dominated universe have shown
that the 10122 discrepancy between theory and
observation vanishes for a vacuum energy
density that scales according to R−2. At this
point we would like to emphasize that this result
and all our discussions above are not in contrast
to modern observational cosmological findings.
These findings namely, highlighted e.g. by [2]
or [3], are not observational facts by themselves,
but are derivations carried out on the basis of the
conventional standard cosmological model which
assumes constant vacuum energy density and a
decrease of matter densities with 1/R3.
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