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ABSTRACT

In this paper, we examine noncooperative games with both of the collection of strategies
and the ranges of the utilities for the players are lattices, which are said to be
nonmonetized. Then we extend the concept of Nash equilibria of noncooperative games
to generalized Nash equilibria of nhonmonetized noncooperative games. By applying
some fixed point theorems in posets and by using the order preserving property of
mappings, we prove an existence theorem of generalized Nash equilibria for
nonmonetized noncooperative games.

Keywords: Lattice; Banach lattice; nonmonetized noncooperative game; generalized Nash
equilibrium.

1. INTRODUCTION

In 1980, Giannessi [1] studied the optimization problems of mappings with ranges in a finite
dimensional vector space equipped with a partial order induced by a cone. As significant
consequences in this work, the concepts of vector optimization problems and vector
variational inequalities were introduced in finite dimensional vector spaces. Since then, many
authors have made many contributions on the vector optimization problems and their
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applications. As a generalization, the vector optimization concepts have been extended to
Banach spaces by Huang and Fang [2], in 2005.

For most games in game theory, all utilities of the players are real valued functions; that is,
the range of the utilities is a subset of real numbers (For example, see [3-10]). We think that
there are a lot of literatures in game theory and in its related fields where the utilities of the
players are not real valued functions as in social choice theory, voting games,
implementation theory, ..., the outcomes of some games may not be monetized; that is, the
utilities of the players may not be represented by real valued functions. So the Nash
equilibrium problems of such games, as optimization problems, turn to be vector optimization
problems. Based on this motivation, Carl and Heikkilad [11], and Li [12-13] examined some
noncooperative games with strategies as subsets of Banach spaces and with the ranges of
the utility functions in some Banach lattices. Such games are said to be nonmonetized
noncooperative. Since every Banach lattice is a set of objects equipped with some metric
topology and algebraic structure, so the proofs of the existence of the generalized Nash
equilibria of nonmonetized noncooperative games in [9] are under the same idea in the
traditional games theory and by applying similar fixed point theorems in topological vector
spaces.

More generally in the set of all possible outcomes of a game, there may be neither a
topological structure nor an algebraic structure. But there is a special partial order on it-a
lattice order. This lattice order in the outcome space describes the players’ preference levels
about the outcomes. So, for some pairs of outcomes in such a game (It may not for every
pair of outcomes), through this lattice order, the players can determine which one is more
preferable than other one. Similarly to the set of outcomes, for every player, in the set of his
or her strategies, there is neither a topological structure nor an algebraic structure. But there
is a lattice order.

The above revealed characteristics of some games lead us, in this paper, to examine the
extensions of the concepts of games and Nash equilibrium. In Section 3, we introduce the
nonmonetized noncooperative games in which both of the strategy sets and the outcome
space are lattices. We also define the generalized Nash equilibrium for such extended
games. Since the lack of the topological structures on the sets of strategies and on the
outcome space, for the considered games, we cannot apply the fixed point theorems and the
traditional techniques for the proof of the existence of Nash equilibria as in the topological
vector spaces. To overcome this difficulty, in Section 2, we recall some fixed point theorems
on partially ordered sets (posets), which will be applied to prove the existence of generalized
Nash equilibria of nonmonetized noncooperative games in Section 3.

2. PRELIMINARIES

In this section, we recall some concepts and properties of posets and lattices. For the
details, the readers are referred to [11], [14-15].

Let P = (P, >) be a poset; and let A be a subset of P. An element u of P is called an upper
bound of the subset A if x<u for each xeA. If ueA, then u is called the greatest element of A,
and denote u = maxA. A lower bound of A and the smallest element minA of Aare defined
similarly, replacing x<u above by u<x. If the set of all upper bounds of A has the smallest
element, we call it a supremum of A and denote it by supA or A. An infimum of A, infA = AA,
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is defined similarly. An element y is called a maximal element of A if yeA, and if zeA, and
y<zimply that y = z. Similarly, a minimal element of A can be defined.

A poset P = (P, =) is called a /attice if inf{x, y} and sup{x, y} exist for all x, yeP. Denote inf{x,
y} = xay and sup{x, y}=xvy. A subset C of a posetP = (P, ) is called a chain if x<y or y<x for
all x, yeC.

Definition 2.1.A poset P = (P, ) is said to be

1. strongly inductive whenever for every chain C in P, the supremum of C, denoted
by supC or vC, exists in P;
2. strongly inversely inductive whenever for every chain C in P, the infimum of C,

denoted by infC or AC, exists in P;
As a consequence of Zorn’s lemma, we have the following properties:

Remark 2.2. If a lattice P = (P, *) is strongly (inversely) inductive, then its greatest
(smallest) element exists.

For any z, we P, we denote the order intervals below
[z) = {xeP:x> z},(Ww] = {xeP:x < wland [z,w] = [2)N(w] = {x eP:z < x < w}

Given posets (X, >X) and (U, >U), we say that a mapping F: X— 2”\{@} is order-increasing
upward if x<'y in X and zeF(x) imply that [2)NF(y) is nonempty; that is, if x<'y in X and
zeF(x), then there is weF(y) such that z<‘w. F is order-increasing downward if x<'y in X
and weF(y) imply that (W]NF(x) is nonempty. F is said to be order-increasing whenever F is
both of order-increasing upward and downward.

As a special case, for single valued mappings, we have:

Given posets (X, >X) and (U, >U), a single valued mapping F: X—U is said to be order-
increasing whenever x<'y implies F(x) <’F(x). An order-increasing mapping F: X—U is said
to be strictly order-increasing whenever ny implies F(x) <UF(x).

A nonempty subset A of a subset Y of a posetP = (P, ) is said to be order compact upward
in Y if for every chain C of Y that has a supremum in P the intersection N{[y)NA: yeC} is
nonempty whenever [y)NA is nonempty for every yeC. If for every chain C of Y that has the
infimum in P the intersection of all the sets (y]NA, yeC is nonempty whenever (y]NA, is
nonempty for every yeC, we say that A is order compact downward in Y. If both of these
properties hold, we say that A is order compactin Y.

Let A be a subset of a posetP = (P, *). An element ceP is called a sup-center of A in P if
sup{c, x} exists in P for each xeA. If inf{c, x} exists in P for each xeA, then c is called an inf-
center of A in P. If ¢ has both of these properties it is called an order center of A in P.

Let A be a nonempty subset of a posetP = (P, ). The set ocl(A) of all possible supremums

and infimums of chains of A is called the order closure of A. If A = ocl(A), then A is order
closed.
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Now we recall a fixed point theorem on posets from [11]. It will be used in the proof of the
existence of generalized Nash equilibria of nonmonetized noncooperative games in Section
3.

Theorem 2.12 [11]. Let P = (P,*>) be a poset. Assume that a set valued mappingF: P—
2P \{} isorder-increasing, and that its values are order compact inF(P). If chains ofF(P) have
supremums and infinums, and if ocl(F(P)) has a sup-center or an inf-center inP, then F has
minimal and maximal fixed points.

3. NONMONETIZED NONCOOPERATIVE GAMES ON LATTICES

In this section, we examine the extensions of noncooperative games and the concept of
Nash equilibria to nonmonetized noncooperative games and generalized Nash equilibria.
The main theorem in this section is, by using a fixed point theorem in posets given by
Carland Heikkila [5], to prove the existence of generalized Nash equilibria of nonmonetized
noncooperative games.

Definition 3.1.Let n be a positive integer greater than 1. An n-person nonmonetized and
noncooperative game is consisting of the following elements:

1. the set of n players, which is denoted byN = {1, 2,..., n};
For player i, hisstrategy set (S;, /) is a lattice,for i= 1, 2,...,n. We write S = S;xSyx...
xS,.

3. the outcome space (U >U) that is a lattice;

4. the set of n utilities functions (payoffs) {P1, P, ..., P}, where P; is the utility function
for player i that is a mapping fromS:xS,,..., xSyto the lattice (U, >U), fori=1, 2,..., n.
We denoteP = {P;, P,,... ,P,}.

This game is denoted byl = (N, S, P, U).

In a n-person nonmonetized noncooperative game I' = (N, S, P, U), when all the n players 1,
2, ..., n simultaneously and independently choose their own strategies xi, X2, ..., Xp,
respectively, where x;e S; for i= 1, 2, 3,..., n, then player iwill receive his or her utility
(payoff) P{x4, X2, ..., X,) € U. For the convenience, for any x = (x4, Xo, ...,X,) € S, and for
every given i= 1, 2,..., n, as usual, we denote

X_i= (X1, X2y vy Xi1, Xix1s -+, Xp)  @Nd S =S1xSoX... XS 1XSi1X...XS,,.

Then x_;eS_;and x can be simply written as x = (x;, x_;). Moreover, we denote

PAS;, x.;) = {P(t; x)): tie Sj}.

Now we extend the concept of Nash equilibria of noncooperative games to generalized Nash

equilibria of nonmonetized noncooperative games.
Definition 3.2. In an n-person nonmonetized noncooperative gamel' = (N, S, P, U), a

selection of strategies ()71 ,’72 Eﬂ) €81S,... Syis called a generalized Nash equilibrium of
the game, if the following order inequality holds

Pix, 1) <V (% ),
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for allx;e S;and for everyi =1, 2, ..., n.

Lemma 3.3.Let (S;, *)) be a lattice, for everyi=1, 2, ...,n. LetS = §;S.... S,be the Cartesian
product space of Sy, S,..., S,and let=Sbe the coordinate partial order on S induced by the
lattice orders; that is, for anyx, ye Swithx = (x4, X2, ..., Xp) @andy = (y1, Y2, .-+, Xn),

x=5yif and only ifx;zy; for alli= 1, 2, ....n.

Then (S, ks) is a lattice. Furthermore, if every (S, *,) is Dedekind complete, then (S, ks) is
also Dedekind complete.

Proof. The proof is straightforward and is omitted here.

The following theorem is the main result of this paper. It provides some conditions for the
existence of generalized Nash equilibria of nonmonetizednoncooperative games.

Theorem 3.4.LetT = (N, S, P, U) be an n-person nonmonetizednoncooperative game. If,for
every player i =1, 2,..., n, his or her strategy set (S;, *) is a strongly inversely inductive
lattice and his or her utility function P; satisfies the following conditions:

1. Py S — U is (single valued) order increasing with respect to the product order =5
for any Bixed x_ie S, Pi(S;, x;) is an order bounded and Dedekind complete subset
of (U, =7);

3. forany fixed x ;e S_;, and for any u € P(S;, x;;), the inverse image{z,e S;: Pi(z;, x;) =
u} is an order bounded and Dedekind complete subset of S;;

4. if (w;, x5) <° (Wi, y1), then, for any ue P(S;, x.)N(Pi(w;, y)], there is zie S; such that
z=iw; and Pi(z;, x) = u.

Then this nonmonetizednoncooperative game T' has a generalized Nash equilibrium.
Furthermore, T' has minimal and maximal (with respect to the product lattice order ks)
generalized Nash equilibria.

Proof. Since (S, >)) is a lattice, for i= 1, 2, ...,n, then, from Lemma 3.3, (S, >S) is also a
lattice. For every fixed i =1, 2, ...,n, define a mapping T; S—2% \{D} as follows

\%

Ti(x) ={zie S;: P(z;, x_)) = fi €S P(t, x_))}, for all x = (x4, X2, ..., X,) €S. (1)
\%

Here fi€5i P(t, x_;) = VP{(S,, x_). From Condition 2 of this theorem, P{(S, x_) is an order

Vv
bounded and Dedekind complete subset of U with fixed x_,eS_. Then li€Si P(t;, x_;) exists
and is in P(S;, x_;). More precisely, it is the greatest element of the range P{(S, x_;); that is,

\%
€5 Pyt xj) = Max P(S;, x_)).

\%
So from (1), T{x) =S, which is the inverse image of the value "5 P(t, x_). Then from
condition 3 in the hypothesis, for every fixed x = (x4, Xo, ...,x,) €S and for every i =1, 2, ..., n,
we have:
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T{(x) is a nonempty order bounded and Dedekind complete subset of S, (2)
Define the product mapping T: S—>23\{®} by
T(x) = T4(x)To(x) ... Ty(x), for all x €S.

From (2) we obtain that T(x) #J, for every x €S. Then we show that T: S—>S is an order
increasing set-valued mapping, with respect to the product lattice order »5. To this end, we
need to show that T: S—>S is both of order increasing upward and order increasing
downward with respect tox=>.

At first, we prove the order increasing upward property. For any given x, ye S with x<° y, and
for any given z T(x), we need to show that there is w eT(y) such that z<® w We write z =
(z4, 23, -..,zp). From the definition of the product order <5, the condition x< y implies X<y
for all j= 1, 2, ...,n. Then the definition of the product mapplng T and the hypothesis z € T(x)
imply z;e T(x), for every i= 1, 2, ...,n; that is,

\Y,
P,‘(Z,', X_,') = li€Si P,‘(t,', X_,'), for every i=1,2,...,n

For any fixed t,e S; the condition xssy clearly implies (£, x_)) <® (t, y_).- Then from Condition
1 of the hypothesis, we obtain

P(t, x.) <UP{t, y_)), for every tc S;.
It implies

\V; \Y
t;eS; Pi(tiy X—i) <U t;€S; Pi(tiv y_i)_

From Condition 2 of the hypothesis again, the range P(S,, y_.) is an order bounded and
Dedekind complete subset of U. Then there is a;e S;, such that

\V4
Pla, y) = "5 P(t, y.));

that is, a;e T(y), for i =1, 2, ..., n. Since z;e S;, the above equality assures that
Pz, y-) <“Pfai, y-i)-
Since (S;, *)) is a lattice, zjva; exists in S;. Let w; = zyva;eS;. Then wgsatisfies

wizizi and wpza, fori=1,2,3, ..., n. (3)
The second order inequality above implies (w;, y.;) 5 (ai, y_)- Since a;eT{(y), the order-
increasing property of P;: S—U implies

Vv
Pi(Wi! y—l) / (aI! /) = 1< (tn Y- I)
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Y,
Since w; = zjva;e S, then from the above order inequality, we have P(w; y_;) = fieSi (t, v,
which is,

wieT(y), fori=1,2, ..., n. (4)

Let w = (wy, Wa, ...,w,). By combining (3) and (4), we obtain z <°w and w eT(y). It proves
that T is an order increasing upward mapping on S.

Now we prove the order increasing downward property. For any given x, ye S,with X<Sy,

and for any w eT(y), we need to show that there is z € T(x) such that z<5w. We write w =

(wy, Wa, ...,w,). The hypothesis w €T(y) implies w,eT(y), for every i= 1, 2, ..., n; that is,
\Y

Piw,, y) = i eSi (t;, y_). Similarly to the proof of the first part, for any fixed tie S; we have (,

x.) <% (t, y.)). It implies

\V/ V
HESE P, x.) <Y S PLL, yo) = PAw, o). ©)
Notice that
vV
t;eS; Pi(tl'a X—i) EP,-(S,', X,,'). (6)

Then by combining (5) and (6), we obtain

v
B Pt x)) e PLS;, X )N(P{w;, y.)]- ")

Since (w;, x_) <5 (w;, y.;), from (7) and Condition 4 in the hypothesis, there is z;e S; such that
\Y
Z,'<,'W,' and P,(Z,‘, X_,‘) = i€Si P,(t,‘, X_,‘).

That is,

z=wand z;e T{x), fori =1, 2, ..., n.

Let z=(z, z,, ..., Z,). Then, from the above order inequalities, we get z <*wand z eT(x). It
proves that T is an order increasing downward mapping on S. And hence T is an order
increasing mapping on S.

Next we show that T: S —S has order compact values in T(S). More precisely, we have to
show that, for every xeS, T(x) is both of order compact upward and order compact
downward in T(S). At first we show the order compact upward property of the values of T.
Take any chain Cin T(S) (that has a supremum in S), which satisfies that

Y)NT(x) =, for everyyeC.

Denotey = (y1, ¥2, ---, ¥a)- Then
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WNT(x) = ()N Ti(x), [y2)NT2(X),.... [ya) N Th(x)). (8)

Since C is a chain in T(S) (Which has a supremum in S), then {y;: yeC} is a chain in T{(S)
(and it also has a supremum in S;). The hypothesis [y)N T(x) #Z and (8) imply

vdNT{(x) =2, for every i =1, 2, ..., n and for every yeC. (9)

Inequality (9) implies that, for every fixed i =1, 2, ...,n and for every fixed yeC, there is u(y;)
e S, satisfying

wy) eT{x) < S; and  y=iu(y). (10)

(Where u, defined on CN, is a function of two variables y and i satisfying p:{y}N— S,for every
fixed yeC and u: C{i} »S;, for every fixed ie N).So for every fixed i,when y varies in the chain
C, from (10), we obtain a subset {u(y)): yeC} cT{x) <S;, which is a chain in T{x). Since T{(x)
is an order bounded Dedekind complete subset in S;, so {i(y)): yeC} is also order bounded in
Ti(x), and hence v{u(y;): ye C} exists in T{x). It is denoted by

g = V{y)): yeC} eTi(x) < S, for every giveni =1, 2, ..., n. (11)

(Note: g; only depends on i, and it does not depend on y in C). By combining (10) and (11),
for every fixed j =1, 2, ...,n, we have

y=ig; and q;eT|(x), for all yeC.
It implies

gieN{[y)NT{(x): yeC}, for every fixed j =1, 2, ..., n. (12)
Letqg=(q1, G2, ...,qn). From (8) and (12), we obtain geN{[y)NT(x): yeC}. That s,
N{[y)NT(x): yeC} #&.
Hence, T(x) is order compact upward in T(S). Very similarly to the above proof, we can show
t_rh(e‘asts.for every xe S, T(x) is order compact downward in T(S). Hence T(x) is order compact in

Then we show that every chain of T(S) has supremum and (or) infimum. Suppose that
C:{z‘:(Zfl,zz;',...,z,f):/leA}gT(S)

is a chain in T(S) with index set A. Take a fixed yeA; that is, a fixed zZ'eC. Then Z'e T(S) and

hencethere is x'e S such that z'c T(x'). Denote ® = (xly’xzy""’ x'f). From the definition of T, we

have

z7 .
i eT{x"), fori=1,2, ...,n.

That is,
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\

e e
P(Zi, Ty =S pyt, T, (13)

i A ¥ v
For any Z<C with 257, the order inequality % ;% holds, that implies (% , )5 (%1,
), fori =1, 2, ...,n. From the order increasing property of P, we have

7 ¥ V4
P(Z, Ty EUp(F, ) fori=1,2, ., n. (14)

A
Combining (13) and (14), and from % S, we obtain
24 X7 VS x7
P, ") = "% p(t, "), for every fixed i =1, 2, ..., n.
A A
Thatis, % eT{x"), for all Z:=°Z' in C. So {% : Z+°2' and Z'<C} is a subset of T(x"). Notice

A
that T(x") is an order bounded and Dedekind complete subset of S; then v{* : Z*°Z' and
Z"<C} exists in T{(x"). Denote

A

v= V{% 1 257" and Z'eC} e T(xX"). (15)

Let v = (v, Vs, ...,V,). The first part of (15) implies v = v{z*<C: z*kszy}. Since C is a chain, it
yields that

v=V{Z'eC: Z+°7} = V{Z'eC}.
Hence v is the supremum of this chain C in T(S). Furthermore, the second part of (15)
implies that v e T(x"). So the supremum of this chain C in T(S) is in T(S).

2 (.2 .2 ).
On the other hand, for the given chain C = {Z _(Zl 2225 2y )'lEA}gT(S), we recognize that {

A
Zi Z'eC} is a chain in S, Since S; is strongly inversely inductive. It guarantees the

A

existence of the infimum of the chain {Zf : Z"eC}in S;. Then

b,-:/\{zf~ : Z'eC).

It exists and is in S;. Let b = (b4, by, ...,b,). From the above definition, b is the infimum of this
chain Cin S. Hence for any arbitrary chain C in T(S), both of supCand infCexist in S.

Finally, notice that (S, =°) is a lattice, then for every given element ¢ €S, we havethat both of

cvx and cax are in S, for every x eocl(T[S]). So c is both of a sup-center and an inf-center
of ocl(T[S]) in S.
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Then the mapping T: S— Ssatisfies all conditions of the fixed point theorem 2.12 [5]. Hence T

has a fixed point X = (%, % %) with XeT(¥). It implies™ eT(¥X); that is,
— V

X.

p(Yi, Yiy=nesipli Yy fori=1,2, .. n.

It is equivalent to

t X

pli iy 2V PN Yy forall teS,

for every i =1, 2, ..., n. This shows that X = (’_‘l ,)_62, ...,_H, L _i+1, )?) is a generalized
Nash equilibrium of this game.

Furthermore, from Theorem 2.12 [11], the mappingT has minimal and maximal fixed points.
From the above argument, which are the minimal and maximal (with respect to the product
lattice order>°) generalized Nash equilibria for this game. This completes the proof of the
theorem.

Remarks on Theorem 3.4:

1. The order increasing property (condition 1) describes that at higher order selection
of strategies, every player will receive better utility.

2. Condition 2 indicates that for any given player, with any fixed strategies for other
players, the set of his or her possible payoffs is an order bounded and Dedekind
complete subset of(U, ="), which has both of the greatest (max) and the smallest
(min) elements.

3. The order increasing property (condition 1) also implies that if X = ()?l ’)?2’ ) s
a generalized Nash equilibrium of this game, then for any given player J, as other

players select their strategies i then the following stability of the utility for player i
holds:

t

Pl Yy = p%i M0 for all e S; with £,

4. In the proof of the order compactness, the conditions that the chain C in T(S) has a
supremum or has an infmum in S are not used.

5. If all strategy sets S;, S,,...,S, are complete lattices with the total or linear order,
then Condition 4 in Theorem 3.4can be reduced by Condition 1; and therefore, it can
be removed from the hypothesis.

6. If the outcome space (U, >U) is the real number set (o, >) with the ordinal order, then
the Condition 2 can be replaced by:

For any fixed x,eS; P(S;, x))is a bounded and closed subset ofo.
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7. If the outcome space (U, >U) is the real number set (o, >) with the ordinal order, then
this game automatically turns to be a quantum game. Hence the
nonmonetizednoncooperative games are immediately generalized quantum
noncooperative games, and the generalized Nash equilibria extended the Nash
equilibria in quantum noncooperative games.

4. NONMONETIZED NONCOOPERATIVE GAMES ON BANACH LATTICES

In game theory, there are some very popular cases where the strategy sets are Banach
lattices on which except the lattice orders, there are complete norms and algebraic
structures. These can be considered as special cases of Definition 3.1. Based on the
popularity and the importance of such games, it is worth to examine their properties in this
section. For the reader’s convenience, we recall some concepts and properties of Banach
lattices here (For more details, see [13]).

A Banach space X equipped with a lattice order X'is called a Banach lattice, which is
X
)

written as (X; , if the following properties hold:

1. x “yimpliesx+z *y+zforallx,y,zeX.
2. x *yimplies ax “ay, forall x, y € X andoz 0.
3. |x X|y| implies [|x]|>||yl|, for every x, yeX.

Where, as usual, the origin of X is denoted by 0 and x* = xv0, x” = (-x)v0 and |x| = x"vx, for
all xeX, and ||{| denotes the norm of the Banach space X.

Theorem 1.10 [11].Let P be a closed and bounded ball in a reflexive lattice ordered Banach
spaceX, and assume that||x’|| = |sup{0, x}||<|[x||holds for allxeX. Then every increasing
mappingF: P— 2° whose values are nonempty and weakly sequentially closed, has a fixed
point.

Let (X: *) be a Banach lattice. It is known that ||[x||| = |||, for every xeX. So from Property

3 of Banach lattices, it implies that, for all xeX, ||x"|[<||Ix||| = ||x||. Then the following theorem is
an immediately consequence of Theorem 1.10 [11], which will be used in this section.

Theorem 4.1.Let P be a closed and bounded ball in a reflexive Banach lattice (X; X). Then

every increasing mapping F. P— 2P {2}, whose values are nonempty and weakly
sequentially closed, has a fixed point.

Similarly tothe results in Lemma 3.3,we have

Lemma 4.2.Let n be a fixed positive integer greater than 1. For everyi= 1, 2, ...,n, let (X,
>/) be a reflexive Banach lattice equipped with the lattice orderzand with norm||-||. LetX =
XiX,... X,be the Cartesian product space ofX;, Xo,..., X,and let="be the coordinate partial
order on X induced by the lattice orders =;. Define the maximum normi|-||xonX as follows:

[IXllx = Max{|[X4]|1, [IXall2, ---, [[Xnlln}, for anyxeXwithx = (x1, X2, ..., Xn).
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Then (X, >X) is also a reflexive Banach lattice equipped with the lattice orderz"and with
norm|-||x.

Furthermore, for everyi= 1, 2, ...,n, letSibe a closed ball inXwith center at its origin and with
radius d, for some positive numberd. Then S= S;S,... S,is the closed ball in X with center at
the origin of X and with the same radiusd.

Proof. The proof is straight forward and is omitted here.

Theorem 4.3. Foreveryi=1,2, .., n, let (X, *) be a reflexive Banach lattice. Suppose
that, in an n-person nonmonetizednoncooperative game I' = (N, S, P, U), for every player i,
his or her strategy set is a closed ball in (X;, >): Si={x;eX: ||x|i< d}, for some fixed d > 0. If,
for every player i =1, 2, ..., n, his or her utility fuction P; satisfies conditions 1, 2, 4 in
Theorem 3.4 and the

following condition:

3. For any fixed x_ie S, and for any u € Pi(S;, x;), the inverse image{z;e S;: Pi(z;, x.i)
= u} is (topologically) closed, order bounded and Dedekind complete subset of S;.

Then this nonmonetizednoncooperative game I' has a generalized Nash equilibrium.

Proof. In fact, let Tbe the mapping defined in the proof of Theorem 3.4, where it has been
proved that T is order increasing. Since every bounded closed subset of a reflexive Banach
space is weakly compact, the topological closedness in Condition 3" of this theorem implies
that T has weakly sequentially closed values. Then this theorem immediately follows from
Theorem 4.1.

5. CONCLUSION

We believe that the equilibrium problems with non-real valued utilities are important. That is
because if the preference relation on an alternative set U for a gameis just a partial orders
on U, which may not be a totally ordering, then, under such a preference relation, two
elements in the alternative set U may not be comparable to tell which one is better than
other one; and therefore, the preference relation cannot be represented by a real utility
function. We consider the following example.

Apple-Pear Example (See [13]). Suppose that in a box there are 100 apples and 100 pears.
Let U be the collection of all possible selections (subsets) of fruits from this box. Suppose
that the taste of apples and the taste of pears for a decision maker are not comparable.
Denote an arbitrary element in U by (x, y), where x, y are the numbers of apples and pears
in this outcome, respectively. Then the non-comparable tastes preference relation > on U is
defined by

(X1, y1) (x2, y2) if and only if x1>X, and yi>y,, for all (x4, y1), (X2, y2) €U.
This preference relation on U is not rational (complete). It is a partial order on U. Therefore,

it is worth to investigating some games with the range of utilities equipped with a partially
rational preference relation ordering.
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For deeply understanding the concept of generalized Nash equilibrium,we provide a concrete
example of nonmonetizednoncooperative gamesbelow.

Example 5.1 [12].(the extended prisoner’s dilemma — complicated version). Two suspects,
designated Suspect 1 and Suspect 2, are held in separate cells without any means of
communicating with each other. There are two crimes (I and Il) for which these suspects are
being held. There is enough evidence to convict each of them of minor offenses related to
crimes | and Il, but not enough evidence to convict either of them of the principal crimes | or
Il unless one of them acts as an informant against the other (“finks”) for major crime | or II.

If they both stay quiet for both crime | and crime Il, then each will be convicted of both minor
offenses, and will spend one year in prison for crime | and fined $10 for crime Il. If only one
finks for crime | and both stay quiet for crime Il, then the informant will not be charged for
crime | but will be fined $10 for crime Il, and the informant will testify against the other
suspect, who will be convicted of the principal offense for crime | resulting in a three-year
prison sentence and also be fined $20 for crime II. If they both stay quiet for crime | and only
one of them finks for crime II, then the informant will not be charged for crime Il but will
spend one year in prison for crime I, and the informant will testify against the other suspect,
who will be convicted of the principal offense for crime Il resulting in a $30 fine and also
sentenced to two years in prison for crime |. If both suspects fink for both crimes | and I,
then each will spend two years in prison for crime | and be fined $20 for crime II.
Every suspect has the following four possible strategies:

QQ, QF, FQ, FF.
The possible outcomes (payoffs) for this game can be described by the following table:

QQ QF FQ FF
QQ (_1! _10)! (_1! -1 0) (_2! _30)! (_1! 0) (_3! _20)1 (01 -1 0) (_31 _30)1 (0! 0)
QF (_11 0)1 (_21 _30) (_21 _20)1 (_21 _20) (_3! _1 0)1 (_11 _30) (_31 _20)! (_11 _20)
FQ (01 _1 O)! (_3! _20) (_1! _30)! (_3! _10) (_21 _20)! (_2! _20) (_3! _30)! (_21 _1 0)

We see that the action (strategy) profile (FF, FF) is a generalized Nash equilibrium of this
game.
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