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Abstract
The existence of at least three weak solutions is established for a class of quasilinear elliptic
systems involving the (p(x), q(x))-biharmonic operators with Navier boundary value conditions.
The technical approach is mainly based on a three critical points theorem due to Ricceri [12].
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1 Introduction
In this paper, we consider the problem of the tpye

42
p(x)u+ ep(x)|u|p(x)−2u = λFu(x, u, v) + µGu(x, u, v), x ∈ Ω,

42
q(x)v + eq(x)|v|q(x)−2v = λFv(x, u, v) + µGv(x, u, v), x ∈ Ω,

u = 4u = v = 4v = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with boundary of class C1. λ, µ ≥ 0 are real numbers.
p(x), q(x) ∈ C0(Ω) with max{2, N

2
} < p− := infx∈Ω p(x) ≤ p+ := supx∈Ω p(x), max{2, N

2
} < q− ≤

q+, 42
p(x)u := 4(|4u|p(x)−24u) is the operator of fourth order called the p(x)-biharmonic operator,

which is a natural generalization of the p-biharmonic operator(where p > 1 is a constant).
We suppose that F : Ω × R × R → R is a function such that F (·, s, t) is measurable in Ω for all

(s, t) ∈ R × R and F (x, ·, ·) is C1 in R × R for a.e.x ∈ Ω, Fs denotes the partial derivative of F with
respect to s. For G(x, s, t) and ep(x), eq(x), we assume that the following conditions hold:

(G) G : Ω × R × R → R is a Carathéodory function, G(x, ·, ·) is C1 in R × R for a.e.x ∈ Ω and
sup{|s|≤θ,|t|≤ϑ}(|Gs(·, s, t)|+ |Gt(·, s, t)|) ∈ L1(Ω) for all θ, ϑ > 0;

(E) ep(x), eq(x) ∈ L∞(Ω) and ess infΩ ep(x), ess infΩ eq(x) > 0, we denote ‖ep‖1 =
∫

Ω
ep(x)dx

and ‖eq‖1 =
∫

Ω
eq(x)dx.
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In [10], the authors studied the following super-linear p-biharmonic elliptic problem with Navier
boundary conditions: {

42
pu = g(x, u), x ∈ Ω,

u = 4u = 0 x ∈ ∂Ω.
(1.2)

By means of Morse theory, the authors proved the existence of a nontrivial solution to (1.2) having a
linking structure around the origin under the conditions: Ω ⊆ RN is bounded with smooth boundary,
N ≥ 2p + 1, g : Ω × R → R is a Carathéodory function such that for some C > 0, |g(x, t)| ≤
C(1 + |t|q−1) for a.e. x ∈ Ω and all t ∈ R, 1 ≤ q ≤ p∗ = Np

N−2p
. Moreover, in the case of both

resonance near zero and non-resonance at∞, the existence of two nontrivial solutions was obtained.
In [8,9], the authors considered the following problem:{

42
pu = λf(x, u) + µg(x, u), x ∈ Ω,

u = 4u = 0 x ∈ ∂Ω,
(1.3)

and 
42
pu = λFu(x, u, v) + µGu(x, u, v), x ∈ Ω,
42
qv = λFv(x, u, v) + µGv(x, u, v), x ∈ Ω,

u = 4u = v = 4v = 0 x ∈ ∂Ω,
(1.4)

By the three critical points theorem obtained by Ricceri [12], they established the existence of three
weak solutions to problem (1.3) and (1.4).

For more results for fourth-order elliptic equations with variable exponent, see [1-2, 18-22] and
the reference therein.

The main purpose of the present paper is to prove the existence of at least three solutions of
problem (1.1). We study problem (1) by using the three critical points theorem by B.Ricceri [12] too.
On the basis of [3], we state an equivalent formulation of the three critical points theorem in [12] as
follows.

Theorem 1. Let X be a reflexive real Banach space; Φ : X → R a continuously Gâteaux
differentiable and sequentially weakly lower semicontinuousC1 functional, bounded on each bounded
subset of X, whose Gâteaux derivative admits a continuous inverse on X∗; Ψ : X → R a C1

functional with compact Gâteaux derivative. Assume that
(i) lim‖u‖→∞(Φ(u) + λΨ(u)) =∞ for all λ > 0; and there are r ∈ R and u0, u1 ∈ X such that:
(ii) Φ(u0) < r < Φ(u1);

(iii) infu∈Φ−1((−∞,r]) Ψ(u) > (Φ(u1)−r)Ψ(u0)+(r−Φ(u0))Ψ(u1)
Φ(u1)−Φ(u0)

.

Then there exists a non-empty open set Λ ⊆ [0,∞) and a positive real number ρ with the following
property: for each λ ∈ Λ and every C1 functional J : X → R with compact Gâteaux derivative, there
exists σ > 0 such that for each µ ∈ [0, σ], the equation

Φ′(u) + λΨ′(u) + µJ ′(u) = 0 (1.5)

has at least three solutions in X whose norms are less than ρ.
The paper is organized as follows. In section 2, we recall some facts that will be needed in the

paper. In section 3, we establish our main result.

2 Preliminaries
For the reader’s convenience, we recall some background facts concerning the Lebesgue-Sobolev
spaces with variable exponent and introduce some notations used below. For more details, we refer
the reader to [4,7,13-14].
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Set
C+(Ω) = {h : h ∈ C(Ω) and h(x) > 1 for all x ∈ Ω}.

For p(x) ∈ C+(Ω), define the space

Lp(x)(Ω) = {u| u is a measurable real-valued funcion,
∫

Ω

|u(x)|p(x)dx <∞}.

We can introduce a norm on Lp(x)(Ω) by

|u|p(x) = inf{λ > 0|
∫

Ω

| u(x)

λ
|p(x)dx ≤ 1}.

and (Lp(x)(Ω), | · |p(x)) becomes a Banach space, and we call it variable exponent Lebesgue space.
The Wm,p(x)(Ω) is defined by

Wm,p(x)(Ω) = {u ∈ Lp(x)(Ω)| Dαu ∈ Lp(x)(Ω), |α| ≤ m},

where α is the multi-index and |α| is the order, m is a positive integer. Wm,p(x)(Ω) is a special class
of so-called generalized Orlicz-Sobolev spaces. From [5], we know that Wm,p(x)(Ω) can be equipped
with the norm ‖u‖Wm,p(x)(Ω) as Banach spaces, where

‖u‖Wm,p(x)(Ω) =
∑
|α|≤m

|Dαu|p(x).

From [4], we know that spaces Lp(x)(Ω) and Wm,p(x)(Ω) are separable, reflexive and uniform convex
Banach spaces.

When ep(x) satisfies (E), we define

L
p(x)

ep(x)(Ω) = {u| u is a measurable real-valued funcion,
∫

Ω

ep(x)|u(x)|p(x)dx <∞},

with the norm
|u|(p(x),ep(x)) = inf{λ > 0|

∫
Ω

ep(x)|u(x)

λ
|p(x)dx ≤ 1},

then Lp(x)

ep(x)(Ω) is a Banach space. Now we denoteX = Xp×Xq whereXp = W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω)

and Xq = W 2,q(x)(Ω) ∩W 1,q(x)
0 (Ω), where W 1,p(x)

0 (Ω) denotes the closure of C∞0 (Ω) in W 1,p(x)(Ω),
so does W 1,q(x)

0 (Ω). For any u ∈ Xp, define

‖u‖ep = inf{λ > 0|
∫

Ω

| 4u(x)

λ
|p(x) + ep(x)|u(x)

λ
|p(x)dx ≤ 1}.

Then it is easy to see that Xp endowed with the above norm is also a separable, reflexive Banach
space.

Remark 1. According to [17], ‖ · ‖W2,p(x)(Ω) is equivalent to |4 · |p(x) in Xp. Consequently, the
norms ‖ · ‖W2,p(x)(Ω),|4 · |p(x) and ‖u‖ep are equivalent.

In the following, we will use ‖ · ‖ep to instead of ‖ · ‖W2,p(x)(Ω) on Xp. Similarly, we use ‖ · ‖eq to
instead of ‖ · ‖W2,q(x)(Ω) on Xq.

Proposition 1.(see [4,13])The conjugate space of Lp(x)(Ω) is Lp
0(x)(Ω). For any u ∈ Lp(x)(Ω)

and v ∈ Lp
0(x)(Ω), we have∫

Ω

|uv|dx ≤ (
1

p−
+

1

(p0)−
)|u|p(x)|v|p0(x) ≤ 2|u|p(x)|v|p0(x).

Proposition 2.(see [4,13]) If we denote ρ(u) =
∫

Ω
|u|p(x)dx, ∀u ∈ Lp(x)(Ω), then
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(i) |u|p(x) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1);

(ii) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x); |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);

(iii) |u|p(x) → 0(∞)⇔ ρ(u)→ 0(∞).

From Proposition 2, the following inequalities hold:

‖u‖p
−
ep ≤

∫
Ω

| 4u(x)|p(x) + ep(x)|u(x)|p(x)dx ≤ ‖u‖p
+

ep , if ‖u‖ep ≥ 1; (2.1)

‖u‖p
+

ep ≤
∫

Ω

| 4u(x)|p(x) + ep(x)|u(x)|p(x)dx ≤ ‖u‖p
−
ep , if ‖u‖ep ≤ 1. (2.2)

Proposition 3. If Ω ⊂ RN is a bounded domain, then the imbedding Xp ↪→ C0(Ω) is compact
whenever N

2
< p−.

Proof. It is well know that Xp ↪→ W 2,p−(Ω) ∩W 1,p−

0 (Ω) is a continuous embedding, and the
embedding W 2,p−(Ω) ∩W 1,p−

0 (Ω) ↪→ C0(Ω) is compact when N
2
< p− and Ω is bounded. So we

obtain the embedding Xp ↪→ C0(Ω) is compact whenever N
2
< p−.2

From now on, the space X will be endowed with the norm

‖z‖ = ‖u‖ep + ‖v‖eq , for any z = (u, v) ∈ X.

ThenX is a separable and reflexive Banach space. Naturally, we denoteX∗ by the space (Xp×Xq)∗,
the dual space of X.

From Proposition 3, we know that when p−, q− > N
2

, the embedding X ↪→ C0(Ω) × C0(Ω) is
compact, and there exists a positive constant c such that

‖z‖∞ = ‖u‖∞ + ‖v‖∞ = sup
x∈Ω

|u(x)|+ sup
x∈Ω

|v(x)| ≤ c‖z‖. (2.3)

3 Main Result
We define Φ,Ψ, J : X → R by

Φ(z) =

∫
Ω

1

p(x)
(|4u(x)|p(x) + ep(x)|u(x)|p(x))dx

+

∫
Ω

1

q(x)
(|4v(x)|q(x) + eq(x)|v(x)|q(x))dx, (3.1)

Ψ(z) = −
∫

Ω

F (x, u, v)dx, (3.2)

J(z) = −
∫

Ω

G(x, u, v)dx. (3.3)

Then for any (ζ, η) ∈ X,

(Φ′(z), (ζ, η)) =

∫
Ω

|4u|p(x)−24u4ζ + ep(x)|u|p(x)−2uζdx

+

∫
Ω

|4v|q(x)−24v4η + eq(x)|v|q(x)−2vηdx ∀z ∈ X,

(Ψ′(z), (ζ, η)) = −
∫

Ω

Fu(x, u, v)ζdx−
∫

Ω

Fv(x, u, v)ηdx, ∀z ∈ X.
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(J ′(z), (ζ, η)) = −
∫

Ω

Gu(x, u, v)ζdx−
∫

Ω

Gv(x, u, v)ηdx, ∀z ∈ X.

We say that z = (u, v) ∈ X is a weak solution of problem (1.1) if for any (ζ, η) ∈ X

(Ψ′(z), (ζ, η)) + λ(Ψ′(z), (ζ, η)) + µ(J ′(z), (ζ, η)) = 0.

Thus, we deduce that z ∈ X is a weak solution of (1.1) if z is a solution of (1.5). It follows that we
can seek for weak solutions of (1.1) by applying Theorem 1.

We first give the following result.
Lemma 1. If Φ is defined in (3.1), then (Φ′)−1 : X∗ → X exists and it is continuous.
Proof. First, we show that Φ′ is uniformly monotone. In fact, for any ζ, η ∈ RN , we have the

following inequality (see[6]):

(|ζ|p−2ζ − |η|p−2η)(ζ − η) ≥ 1

2p
|ζ − η|p, p ≥ 2.

Thus, we deduce that

(Φ′(z1)− Φ′(z2), z1 − z2) ≥ min{ 1

2p+
,

1

2q+
}(min{‖u1 − u2‖p

+

ep , ‖u1 − u2‖p
−
ep }

+ min{‖v1 − v2‖q
+

eq , ‖v1 − v2‖q
−
eq }),

for any z1 = (u1, v1), z2 = (u2, v2) ∈ X, i.e.,Φ′ is uniformly monotone.
From (2.1),(2.2), we can see that for any z ∈ X, we have that

(Φ′(z), z)

‖z‖ ≥
min{‖u‖p

+

ep , |u‖
p−
ep }+ min{‖v‖q

+

eq , |v‖
q−
eq }

‖u‖ep + ‖v‖eq
.

For p−, q− ≥ 2, that’s meaning Φ′ is coercive on X.
By a standard argument, we know that Φ′ is hemicontinuous. Therefore, the conclusion follows

immediately by applying Theorem 26.A[16].2
To obtain our main result, we assume the following conditions on F (x, s, t):
(A1) There exist d(x) ∈ L1(Ω) and 0 < ς < p−, 0 < τ < q− such that

F (x, s, t) ≤ d(x)(1 + |s|ς + |t|τ )

for a.e.x ∈ Ω and (s, t) ∈ R×R;
(A2) F (x, 0, 0) = 0 for a.e.x ∈ Ω;
(A3) There exist s1, t1 ∈ R with |s1|, |t1| ≥ 1 such that

meas(Ω) sup
(x,|s|,|t|)∈Ω×[0,ckp]×[0,ckq ]

F (x, s, t) ≤
(
‖ep‖1
p+

+
‖eq‖1
q+

)
∫

Ω
F (x, s1, t1)dx

‖ep‖1
p− |s1|p+ +

‖eq‖1
q− |t1|q

+
, (3.4)

where c is given in (2.3) and

kp = max{(‖ep‖1 +
p+‖eq‖1
q+

)
1

p+ , (‖ep‖1 +
p+‖eq‖1
q+

)
1

p− },

kq = max{(q
+‖ep‖1
p+

+ ‖eq‖1)
1

q+ , (
q+‖ep‖1
p+

+ ‖eq‖1)
1

q− }.

(A3)′ F (x, s, t) > 0 for any x ∈ Ω and |s| or |t| large enough, and there exist M,N > 0 such that

F (x, s, t) ≤ 0, x ∈ Ω, |s| ≤M, |t| ≤ N ;

Then we have the following main theorem.
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Theorem 2.Assume (A1),(A2),(A3)(or (A3)′),(G) and (E) hold. Then there exist an open interval
Λ ⊆ [0,∞) and a positive real number ρ with the following property: for each λ ∈ Λ, there exists
σ > 0 such that for each µ ∈ [0, σ] , problem (1.1) has at least three weak solutions whose norms are
less than ρ.

Proof. By the definitions of Φ,Ψ, J , we know that Ψ′ is compact, Φ is weakly lower semi-
continuous and bounded on each bounded subset of X. From lemma 1 we can see that (Φ′)−1

is well defined, from condition (G), J is well defined and continuously Gâteaux differentiable on X,
with compact derivative. Then we can use Theorem 1 to obtain the result. Now we show that the
hypotheses of Theorem 1 are fulfilled.

Thanks to (A1), for each λ ≥ 0, one has that

lim
‖z‖→∞

Φ(z) + λΨ(z) = +∞,

and so the assumption (i) of Theorem 1 holds.
Now we consider in two cases:

Case (i): (A3) holds, i.e., there exist 1 ≤ |s1|, |t1| such that (3.4) hold.
Now we set z0 = (0, 0), z1 = (s1, s1) and denote r =

‖ep‖1
p+

+
‖eq‖1
q+

> 0, then it is easy to see
that

Φ(z1) > r > 0 = Φ(z0).

Thus, (ii) of Theorem 1 is satisfied.
At last, by (A2) we know Ψ(z0) = 0, then

(Φ(z1)− r)Ψ(z0) + (r − Φ(z0))Ψ(z1)

Φ(z1)− Φ(z0)

= r
Ψ(z1)

Φ(z1)
≤ −r

∫
Ω
F (x, s1, t1)dx

|s1|p
+

p− ‖ep‖1 + |t1|q
+

q− ‖eq‖1
. (3.5)

On the other way, when Φ(z) ≤ r, we have

min{‖u‖p
+

ep , ‖u‖
p−
ep } ≤ rp

+, min{‖v‖p
+

eq , ‖v‖
p−
eq } ≤ rq

+.

We deduce that
‖u‖ep ≤ max{(rp+)

1
p+ , (rp+)

1
p− }

and
‖v‖eq ≤ max{(rq+)

1
q+ , (rq+)

1
q− }.

For r =
‖ep‖1
p+

+
‖eq‖1
q+

, then we have

‖u‖ep ≤ kp, ‖v‖eq ≤ kq.

By (8), we obtain
‖u‖∞ ≤ ckp, ‖v‖∞ ≤ ckq.

Thus, from (3.2), we have

− inf
z∈Φ−1((−∞,r])

Ψ(z) = sup
z∈Φ−1((−∞,r])

−Ψ(z)

≤
∫

Ω

sup
(|u|,|v|)∈[0,ckp]×[0,ckq ]

F (x, u, v)dx

≤ meas(Ω) sup
(x,|u|,|v|)∈Ω×[0,ckp]×[0,ckq ]

F (x, u, v) (3.6)

From (3.4)-(3.6) and the definition of r, we can see (iii) of Theorem 1 is hold.

286



British Journal of Mathematics and Computer Science 3(3), 281-290, 2013

Case (ii): (A3)′ holds. Then there exist |s2|, |t2| > 1 such that F (x, s2, t2) > 0 for any x ∈ Ω and
|s2|p

−
‖ep‖1 ≥ 1, |t2|q

−
‖eq‖1 ≥ 1. Set a = min{c,M}, b = min{c,N} then we have∫

Ω

sup
(|s|,|t|)∈[0,a]×[0,b]

F (x, s, t)dx ≤ 0 <

∫
Ω

F (x, s2, t2)dx. (3.7)

We denote z2 = (s2, t2) and r = min{ 1
p+

(a
c
)p

+

, 1
q+

( b
c
)q

+

}. Then it is easy to see that

Φ(z2) > r > Φ(z0).

So, (ii) of Theorem 1 is satisfied.
When Φ(z) ≤ r, similar to the above arguments, we obtain that

‖u‖∞ ≤ a, ‖v‖∞ ≤ b. (3.8)

At last, we see that

(Φ(z2)− r)Ψ(z0) + (r − Φ(z0))Ψ(z2)

Φ(z2)− Φ(z0)

= r
Ψ(z2)

Φ(z2)
≤ −r

∫
Ω
F (x, s2, t2)dx

|s2|p
+

p− ‖ep‖1 + |t2|q
+

q− ‖eq‖1
< 0. (3.9)

From (3.2) and (3.7), we have

− inf
z∈Φ−1((−∞,r])

Ψ(z) = sup
z∈Φ−1((−∞,r])

−Ψ(z)

≤
∫

Ω

sup
(|u|,|v|)∈[0,a]×[0,b]

F (x, u, v)dx ≤ 0. (3.10)

From (3.9) and (3.10), we can see (iii) of Theorem 1 is still hold.
Then all the hypotheses of Theorem 1 are fulfilled. By Theorem 1, we know that there exist an

open interval Λ ⊆ [0,∞) and a positive constant ρ such that for any λ ∈ Λ, there exists σ > 0 and for
each µ ∈ [0, σ], problem (1.1) has at least three weak solutions whose norms are less than ρ.2

By using Theorem 2, we have the following result.
Corollary 1. Let f, g : Ω × R → R be Carathéodory functions, sup|ζ|≤s |g(·, ζ)| ∈ L1(Ω) for all

s > 0, and define F (x, t) :=
∫ t

0
f(x, y)dy for any (x, t) ∈ Ω×R, e(x) ∈ L∞(Ω) and ess infΩ e(x) > 0.

Assume the following conditions hold.
(B1) There exist d(x) ∈ L1(Ω) and 0 < ς < p− such that

F (x, t) ≤ d(x)(1 + |t|ς)

for a.e.x ∈ Ω and t ∈ R;
(B2) There exists t3 ∈ R with |t3| ≥ 1 such that

meas(Ω) sup
(x,|s|)∈Ω×[0,ck]

F (x, s) ≤ p−

p+

∫
Ω
F (x, t3)dx

|t3|p+
, (3.11)

where c = supu∈Xp\{0}
‖u‖∞
‖u‖e < +∞ and

k = max{(‖e‖1)
1

p+ , (‖e‖1)
1

p− };

or
(B2)′ F (x, t) > 0 for any x ∈ Ω and |t| large enough, and there exist M > 0 such that

F (x, t) ≤ 0, x ∈ Ω, |t| ≤M.
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Then there exist an open interval Λ ⊆ [0,∞) and a positive constant ρ such that for any λ ∈ Λ,
there exists σ > 0 and for each µ ∈ [0, σ], the problem{

42
p(x)u+ e(x)|u|p(x)−2u = λf(x, u) + µg(x, u), x ∈ Ω,

u = 4u = 0, x ∈ ∂Ω,
(3.12)

has at least three weak solutions whose norms are less than ρ.
Remark 2. If we take e(x) ≡ 1 in Ω, µ ≡ 0, and replace p(x)-biharmonic operator by p(x)-

Laplace operator, Corollary 1 becomes a version of Theorem 1 in [15], if we still have f(x, t) =
|t|γ(x)−2t − t with γ(x) ∈ C0(Ω) satisfies 2 < γ− ≤ γ+ < p−, the problem was studied in [11] with
Neumann conditions. Hence our Corollary 1 unifies and generalizes the main results in [8,11,15]
to p(x)-biharmonic with Navier boundary value and our Theorem 2 generalizes the main result of
[8,9,11,15] to the system (1).

At last, we give two examples.
Example 1. Let Ω = B(0, 1) be the unit ball of RN with N ≥ 3, set p(x) = N

2
+ e|x|, q(x) =

N
2

+ 1 + ln(1 + x2), ep(x) = (1 + x2) = eq(x), G(x, u, v) = x2(u2 + v2) and

F (x, u, v) =

{
ex

2

(eu + uv − 1), x ∈ Ω, u ≤M, v ∈ R,
ex

2

(ueM + uv + 1
2
u2 −Mu− (M − 1)eM + 1

2
M2), x ∈ Ω, u > M, v ∈ R,

(3.13)

where M is a positive constant, i.e., we consider the following problem
42
p(x)u+ (1 + x2)|u|p(x)−2u = λf(x, u, v) + µ2x2u, x ∈ Ω,

42
q(x)v + (1 + x2)|v|q(x)−2v = λu+ µ2x2v, x ∈ Ω,

u = 4u = v = 4v = 0, x ∈ ∂Ω.

(3.14)

where

f(x, u, v) = Fu(x, u, v) =

{
ex

2

(eu + v), x ∈ Ω, u ≤M, v ∈ R,
ex

2

(eM + v + u−M), x ∈ Ω, u > M, v ∈ R.
(3.15)

We can see that p+ = N
2

+ e, p− = N
2

+ 1, q+ = N
2

+ 1 + ln 2, q− = N
2

+ 1, ‖e‖1 = 4
3
, and it is easy

to see that for any t1 > 1, there exists s1 > 1 such that

(es1 + s1t1 − 1)(N
2

+ 1)

s
N
2

+e

1 + t
N
2

+1+ln 2

1

≥ e(eckp + c2kpkq − 1)
1

N
2

+e
+ 1

N
2

+1+ln 2

, (3.16)

where kp = ( 4
3

+
4( N

2
+1+ln 2)

3( N
2

+e)
)

1
N
2

+1 , kq = ( 4
3

+
4( N

2
+e)

3( N
2

+1+ln 2)
)

1
N
2

+1 are positive constants and c is

given by (2.3). Then when M ≥ s1, F (x, u, v) defined in (3.13) satisfies (A1)-(A3) of Theorem 2, and
G(x, u, v), e(x) satisfy (G) and (E) respectively, by Theorem 2, there exist an open interval Λ ⊆ [0,∞)
and a positive constant ρ such that for any λ ∈ Λ, there exists σ > 0 and for each µ ∈ [0, σ], system
(3.14) has at least three weak solutions whose norms are less than ρ.

Example 2. Assume Ω,p(x), q(x), ep(x), eq(x), G(x, u, v) are the same as in example 1, and
suppose N ≥ 4. Let

F (x, u, v) = (1 + 2x2)(u4v2 + v4u2 − 2u2v2), x ∈ Ω, u, v ∈ R. (3.17)

Obviously, F (x, u, v) satisfies (A1) and (A2). By simple computation, we can see that

F (x, u, v) > 0, when |u| >
√

2 or |v| >
√

2

and
F (x, u, v) < 0, when |u| < 1 and |v| < 1,
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i.e., (A3)′ holds for F (x, u, v) defined in (3.17).
Thus, there exist an open interval Λ ⊆ [0,∞) and a positive constant ρ such that for any λ ∈ Λ,

there exists σ > 0 and for each µ ∈ [0, σ], the system
42
p(x)u+ (1 + x2)|u|p(x)−2u = λ(4u3v2 + 2v4u− 4uv2) + µ2x2u, x ∈ Ω,

42
q(x)v + (1 + x2)|v|q(x)−2v = λ(4v3u2 + 2u4v − 4vu2) + µ2x2v, x ∈ Ω,

u = 4u = v = 4v = 0, x ∈ ∂Ω.

(3.18)

has at least three weak solutions whose norms are less than ρ.
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