The Existence and Nonexistence of Entire Positive Radial Solutions of Quasilinear Elliptic Systems with Gradient Term

Qin, Hongxia and Yang, Zuodong (2013) The Existence and Nonexistence of Entire Positive Radial Solutions of Quasilinear Elliptic Systems with Gradient Term. British Journal of Mathematics & Computer Science, 3 (3). pp. 304-314. ISSN 2231-0851

[thumbnail of Qin332012BJMCS2498.pdf] Text
Qin332012BJMCS2498.pdf - Published Version

Download (367kB)

Abstract

We study the existence and nonexistence of entire positive solutions for quasilinear elliptic systemwith gradient termdiv(|∇u|p−2∇u) +|∇u|p−1=a(|x|)f(u,v),div(|∇v|q−2∇v) +|∇v|q−1=b(|x|)g(u,v)onRN(N≥3), where nonlinearitiesfandgare positive and continuous, the potentialsaandbare continuous, c-positive and satisfy appropriate growth conditions at infinity. We have that entirelarge positive solutions fail to exist iffandgare sublinear andaandbhave fast decay at infinity,while iffandgsatisfy some growth conditions at infinity, anda,bare of slow decay or fast decayat infinity, then the system has infinitely many entire solutions, which are large or bounded.

Item Type: Article
Subjects: Article Paper Librarian > Mathematical Science
Depositing User: Unnamed user with email support@article.paperlibrarian.com
Date Deposited: 27 Jun 2023 07:05
Last Modified: 19 Sep 2023 07:49
URI: http://editor.journal7sub.com/id/eprint/1328

Actions (login required)

View Item
View Item