

British Journal of Mathematics & Computer Science 3(3): 304-314, 2013

SCIENCEDOMAIN international

www.sciencedomain.org

The Existence and Nonexistence of Entire Positive Radial Solutions of Quasilinear Elliptic Systems with Gradient Term

Hongxia Qin and Zuodong Yang*

Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Jiangsu Nanjing 210023, China.

Research Article

Received: 03 November 2012 Accepted: 30 January 2013 Published: 29 April 2013

Abstract

We study the existence and nonexistence of entire positive solutions for quasilinear elliptic system with gradient term

$$\begin{aligned} \operatorname{div}(|\nabla u|^{p-2}\nabla u) + |\nabla u|^{p-1} &= a(|x|)f(u,v),\\ \operatorname{div}(|\nabla v|^{q-2}\nabla v) + |\nabla v|^{q-1} &= b(|x|)g(u,v) \end{aligned}$$

on $\mathbb{R}^{\mathbb{N}}(N \ge 3)$, where nonlinearities f and g are positive and continuous, the potentials a and b are continuous, c-positive and satisfy appropriate growth conditions at infinity. We have that entire large positive solutions fail to exist if f and g are sublinear and a and b have fast decay at infinity, while if f and g satisfy some growth conditions at infinity, and a, b are of slow decay or fast decay at infinity, then the system has infinitely many entire solutions, which are large or bounded.

Keywords: Quasilinear elliptic equations; Large solutions; Bounded solution; Entire radial solution. 2010 Mathematics Subject Classification: 35J65; 35J25

1 Introduction

Existence and nonexistence of a quasilinear elliptic system

$$\begin{cases} \operatorname{div}(|\nabla u|^{p-2}\nabla u) + f(x, u, v) = 0, & x \in \mathbf{R}^{N}, \\ \operatorname{div}(|\nabla v|^{q-2}\nabla v) + g(x, u, v) = 0, & x \in \mathbf{R}^{N}. \end{cases}$$
(1.1)

have been studied by several authors. See, for example, Ph.Clement, R.Manasevich and E.Mitidieri [2], P.L.Felmer, R.Manasevich and F.de Thelin [5], Z.M.Guo [6], E.Mitidieri, G.Sweers and R.vander Vorst [10], Z.D.Yang and Q.S.Lu [16, 18], A.Ben Dkhil and N. Zeddini [25], D.-P. Covei [28-29, 31] and the references therein. Problem (1) arises in the theory of quasi-regular and quasi-conformal mappings as well as in the study of non-Newtonian fluids. In the latter case, the pair (p,q) is a characteristic of the medium. Media with (p,q) > (2,2) are called dilatant fluids and those with

^{*}Corresponding author: E-mail: zdyang_jin@263.net

(p,q) < (2,2) are called pseudo-plastics. If (p,q) = (2,2), they are Newtonian fluids.

When p = q = 2, the system

$$\left\{ \begin{array}{ll} \Delta u + f(x,u,v) = 0, & \mbox{ in } \Omega, \\ \Delta v + g(x,u,v) = 0, & \mbox{ in } \Omega. \end{array} \right.$$

have received much attention recently. We list here, for example, [1,4,7-9, 21-24, 26-27, 30] and refer to the references therein.

When $p = q = 2, f = -a(|x|)v^{\alpha}, g = -b(|x|)u^{\beta}$, system (1.1) becomes

$$\left\{ \begin{array}{ll} \Delta u = a(|x|)v^{\alpha}, & x \in \mathbf{R}^{N}, \\ \Delta v = b(|x|)u^{\beta}, & x \in \mathbf{R}^{N} \end{array} \right.$$

for which existence results for boundary blow-up positive solutions can be found in a recent paper by Lair and Wood [15]. The authors established that all positive entire radial solutions of systems above are boundary blow-up provided that

$$\int_0^\infty ta(t)dt = \infty, \quad \int_0^\infty tb(t)dt = \infty.$$

On the other hand, if

$$\int_0^\infty ta(t)dt < \infty, \quad \int_0^\infty tb(t)dt < \infty.$$

then all positive entire radial solutions of this system are bounded.

F. Cirstea and V.Radulescu [4] extended the above results to a larger class of systems

$$\begin{cases} \Delta u = a(|x|)g(v), & x \in \mathbf{R}^{N} \\ \Delta v = b(|x|)f(u), & x \in \mathbf{R}^{N} \end{cases}$$

Z.D.Yang [17] extended the above results to a class of systems

$$\begin{aligned} & \operatorname{div}(|\nabla u|^{p-2}\nabla u) = a(|x|)g(v), \quad x \in \mathbf{R}^N, \\ & \operatorname{div}(|\nabla v|^{q-2}\nabla v) = b(|x|)f(u), \quad x \in \mathbf{R}^N \end{aligned}$$

Very recently, Xinguang Zhang, Lishan Liu [3] for which the existence and nonexistence results can be obtained to the elliptic system

The corresponding equation that leads us to the system (1.2) is

$$\Delta u + |\nabla u|^{\lambda} = a(|x|)f(u), \quad x \in \Omega, \quad 0 < \lambda \le 2$$

which was treated in [11-13]. Problems of this type arise in stochastic control theory and have been first studied in [14]. The corresponding parabolic equation was consider in [20].

In this paper, we consider the following quasilinear elliptic system

$$\begin{cases} \operatorname{div}(|\nabla u|^{p-2}\nabla u) + |\nabla u|^{p-1} = a(|x|)f(u,v), & x \in \mathbf{R}^N, \\ \operatorname{div}(|\nabla v|^{q-2}\nabla v) + |\nabla v|^{q-1} = b(|x|)g(u,v), & x \in \mathbf{R}^N \end{cases}$$
(1.3)

where $N \ge 3$. Throughout this paper we always assume a, b are *c*-positive $C(\mathbf{R}^N)$ functions, $f, g : [0, \infty) \times [0, \infty) \to [0, \infty)$ are nonnegative, continuous and nondecreasing functions for f or g.

For convenience we use the following convention:

• A function p is c-positive in a domain $\Omega \subseteq \mathbf{R}^N$ ig p is nonnegative on Ω and satisfies the following: if $x_0 \in \Omega$ and $p(x_0) = 0$, then there exists a domain Ω_0 such that $x_0 \in \Omega_0 \subset \Omega$ and p(x) > 0 for all $x \in \partial \Omega_0$.

 \cdot A solution (u,v) of system

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f(x, u, v), \quad \operatorname{div}(|\nabla v|^{p-2}\nabla v) = g(x, u, v) \tag{(*)}$$

is call an entire large solution (or explosive solution) if it is a classical solution of (*) on \mathbf{R}^N and $u(x) \to \infty$ and $v(x) \to \infty$ as $|x| \to \infty$.

Our purpose is to generalize part results in [3]. The main results of the present paper are complement and extend part results in [3,17,19]. Using an argument inspired by Xinguang Zhang, Lishan Liu [3] and Hong Li, Pei Zhang, Zhijun Zhang [19], we obtain the following main results.

Theorem 1. Suppose f and g satisfy

$$\max\left\{\sup_{s+t\geq 1}\frac{f(s,t)}{(s+t)^{m-1}},\sup_{s+t\geq 1}\frac{g(s,t)}{(s+t)^{m-1}}\right\}<+\infty,$$
(1.4)

and a, b satisfy the decay conditions

$$\int_{0}^{\infty} \left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) ds \right)^{1/(p-1)} dt < \infty, \quad \int_{0}^{\infty} \left(t^{1-N} \int_{0}^{t} s^{N-1} b(s) ds \right)^{1/(q-1)} dt < \infty$$
(1.5)

where $m = \min\{p, q\}$, then problem (1.3) has no positive entire radial large solution.

Remark 1. If $N \ge 3$, N > p, then condition (1.5) of Theorem 1 is replaced by

$$0 < \int_{1}^{\infty} r^{\frac{1}{p-1}} a(r)^{\frac{1}{p-1}} dr < \infty, \quad \text{if } 1 < p \le 2, \tag{A}$$

$$0 < \int_{1}^{\infty} r^{\frac{(p-2)N+1}{p-1}} a(r) dr < \infty, \quad \text{if } p \ge 2;$$
 (B)

and

$$0 < \int_{1}^{\infty} r^{\frac{1}{q-1}} b(r)^{\frac{1}{q-1}} dr < \infty, \quad \text{if } 1 < q \le 2, \tag{C}$$

$$0 < \int_{1}^{\infty} r^{\frac{(q-2)N+1}{q-1}} b(r) dr < \infty, \quad \text{if } q \ge 2. \tag{D}$$

Let

$$J(r) = \int_0^r (t^{1-N} \int_0^t s^{N-1} \psi(s) ds)^{\frac{1}{p-1}} dt$$

If fact, if 1 , by estimating above the integral

$$J(r) \le C_1 + \int_1^r t^{\frac{1-N}{p-1}} \left[\int_0^t s^{N-1} \psi(s) ds \right]^{1/(p-1)} dt.$$

Using the assumption $N \ge 3$ in the computation of the first integral above and Jensen's inequality to estimate the last one,

$$J(r) \le C_2 + C_3 \int_1^r t^{\frac{3-N-p}{p-1}} \int_1^t s^{\frac{N-1}{p-1}} \psi(s)^{\frac{1}{p-1}} ds dt.$$

Computing the above integral, we obtain

$$J(r) \le C_2 + C_4 \int_1^r t^{\frac{1}{p-1}} \psi(t)^{\frac{1}{p-1}} dt$$

306

Applying (A) in the integral above we infer that $H_{\infty} = \lim_{r \to \infty} J(r) < \infty$. On the other hand, if $p \ge 2$, set

$$H(t) = \int_0^t s^{N-1} \psi(s) ds$$

and note that either, $H(t) \leq 1$ for t > 0 or $H(t_0) = 1$ for some $t_0 > 0$. In the first case, $H^{\frac{1}{p-1}} \leq 1$, and hence.

$$J(r) = \int_0^r t^{\frac{1-N}{p-1}} H(t)^{\frac{1}{p-1}} dt \le C_5 + \int_1^r t^{\frac{1-N}{p-1}} dt$$

so that J(r) has a finite limit because p < N. In the second case, $H(s)^{\frac{1}{p-1}} \leq H(s)$ for $s \geq s_0$ and hence,

$$J(r) \leq C_6 + \int_1^r t^{\frac{1-N}{p-1}} \int_0^t s^{N-1} \psi(s) ds dt.$$

Estimating and integrating by parts, we obtain

$$J(r) \leq C_6 + \frac{p-1}{N-p} \int_0^1 t^{N-1} \psi(t) dt + \frac{p-1}{N-p} \left[\int_1^r t^{\frac{(p-2)N+1}{p-1}} \psi(t) dt - r^{\frac{p-N}{p-1}} \int_0^r t^{N-1} \psi(t) dt \right]$$
$$\leq C_7 + C_8 \int_1^r t^{\frac{(p-2)N+1}{p-1}} \psi(t) dt.$$

By (B), $H_{\infty} = \lim_{r \to \infty} J(r) < \infty$.

In order to state the existence results, we denote

$$A_{1}(\infty) := \lim_{r \to \infty} A_{1}(r), \quad A_{1}(r) = \int_{0}^{r} \left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) ds \right)^{1/(p-1)} dt, \quad r \ge 0,$$

$$B_{1}(\infty) := \lim_{r \to \infty} B_{1}(r), \quad B_{1}(r) = \int_{0}^{r} \left(t^{1-N} \int_{0}^{t} s^{N-1} b(s) ds \right)^{1/(q-1)} dt, \quad r \ge 0;$$

$$A_{2}(\infty) := \lim_{r \to \infty} A_{2}(r), \quad A_{2}(r) = \int_{0}^{r} \left(e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} a(s) ds \right)^{1/(p-1)} dt, \quad r \ge 0,$$

$$B_{2}(\infty) := \lim_{r \to \infty} B_{1}(r), \quad B_{2}(r) = \int_{0}^{r} \left(e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} b(s) ds \right)^{1/(q-1)} dt, \quad r \ge 0;$$

and

$$F(\infty) := \lim_{r \to \infty} F(r), \quad F(r) = \int_{\alpha}^{r} \frac{ds}{(f(s,s) + g(s,s))^{1/(m_0 - 1)}}, \quad r \ge \alpha > 0,$$

.

where m_0 satisfies

$$m_0 = \begin{cases} \min\{p,q\}, & \text{if} \quad f+g \ge 1, \\ \max\{p,q\}, & \text{if} \quad f+g < 1, \end{cases}$$

we see that

$$F'(r) = \frac{1}{(f(r,r) + g(r,r))^{1/(m_0-1)}} > 0, \forall r > \alpha$$

so, *F* has the inverse function F^{-1} on $[\alpha, \infty)$. Theorem 2. Assume

$$F(\infty) = \infty$$

Then the system (1.3) has infinitely many positive entire radial solutions $(u, v) \in C^1([0, \infty))$. Moreover, the following hold:

(i) If $A_1(\infty) < \infty$ and $B_1(\infty) < \infty$, then all positive entire radial solutions of (1.3) are bounded. (ii) If $A_2(\infty) = \infty = B_2(\infty)$, then $\lim_{r\to\infty} u(r) = \lim_{r\to\infty} v(r) = \infty$, that is all positive entire radial solutions of (1.3) are large.

Theorem 3. If

$$F(\infty) < \infty$$
, $A_1(\infty) < \infty$, $B_1(\infty) < \infty$,

and there exist $\beta > \alpha$ and $\gamma > \alpha$ such that

$$A_1(\infty) + B_1(\infty) < F(\infty) - F(\beta + \gamma), \tag{1.6}$$

the system (1.3) has a positive radial bounded solution $(u, v) \in C^1([0, \infty))$ satisfying

$$\beta + f^{1/(p-1)}(\beta, \gamma) A_1(r) \le u(r) \le F^{-1}(F(\beta + \gamma) + A_1(r) + B_1(r)), \quad \forall r \ge 0;$$

$$\gamma + g^{1/(q-1)}(\beta, \gamma) B_1(r) \le v(r) \le F^{-1}(F(\beta + \gamma) + A_1(r) + B_1(r)), \quad \forall r \ge 0.$$

Theorem 4. If m_0 is defined as before, then we have

(i) If

$$A_2(\infty) = \infty = B_2(\infty),$$

and

and

$$\lim_{s \to \infty} \frac{(f(s,s) + g(s,s))^{1/(m_0 - 1)}}{s} = 0,$$
(1.7)

then the system (1.3) has infinitely many positive entire radial large solutions;

(ii) If

$$A_1(\infty) < \infty, \quad B_1(\infty) < \infty,$$

 $\sup_{s \ge 0} (f(s,s) + g(s,s))^{1/(m_0 - 1)} < \infty,$
(1.8)

then the system (1.3) has infinitely many positive entire bounded radial solutions.

2 Proofs of Theorem 1

In this section, we consider the proof of Theorem 1 by contradictions. Assume that the system (1.3) has the positive entire radial large solution (u, v). From (1.3), we know that

$$\begin{split} (e^t t^{N-1}(u')^{p-1}(t))' &= e^t t^{N-1} a(t) f(u(t), v(t)), \quad t \geq 0, \\ (e^t t^{N-1}(v')^{q-1}(t))' &= e^t t^{N-1} b(t) g(u(t), v(t)), \quad t \geq 0. \end{split}$$

Now we set

$$U(r) = \max_{0 \le t \le r} u(t), \quad V(r) = \max_{0 \le t \le r} v(t),$$

it is easy to see that U, V are positive and nondecreasing functions. Moreover, we have $U \ge u, V \ge v$ and $U(r), V(r) \to +\infty$ as $r \to +\infty$. It follows from (1.4) that there exists C > 0 such that

$$\max\{f(s,t), g(s,t)\} \le C(s+t)^{m-1}, \quad for \ s+t \ge 1,$$
(2.1)

and

$$\max\{f(s,t), g(s,t)\} \le C, \quad for \ s+t \le 1.$$
(2.2)

308

Then by (2.1) and (2.2), we have

$$\max\{f(s,t),g(s,t)\} \le C(1+s+t)^{m-1}, \text{ for } s+t \ge 0.$$
(2.3)

Then, from (2.3) we can get

$$f(u(r), v(r)) \le C(1 + u(r) + v(r))^{m-1} \le C(1 + U(r) + V(r))^{m-1}, \text{ for } r \ge 0.$$

So, for all $r \ge r_0 \ge 0$, we obtain

$$\begin{aligned} u(r) &= u(r_0) + \int_{r_0}^r \left(e^{-t} t^{1-N} \int_0^t e^s s^{N-1} a(s) f(u(s), v(s)) ds \right)^{1/(p-1)} dt \\ &\leq u(r_0) + C \int_{r_0}^r \left(e^{-t} t^{1-N} \int_0^t e^s s^{N-1} a(s) (1+U(s)+V(s))^{m-1} ds \right)^{1/(p-1)} dt \\ &\leq u(r_0) + C(1+U(r)+V(r))^{\frac{m-1}{p-1}} \int_{r_0}^r \left(e^{-t} t^{1-N} \int_0^t e^s s^{N-1} a(s) ds \right)^{1/(p-1)} dt \\ &\leq u(r_0) + C(1+U(r)+V(r))^{\frac{m-1}{p-1}} \int_{r_0}^r \left(t^{1-N} \int_0^t s^{N-1} a(s) ds \right)^{1/(p-1)} dt \\ &\leq u(r_0) + C(1+U(r)+V(r)) \int_{r_0}^r \left(t^{1-N} \int_0^t s^{N-1} a(s) ds \right)^{1/(p-1)} dt \end{aligned}$$

where C is a positive constant. Notice that (1.5), we choose $r_0 > 0$ such that

$$\max\left\{\int_{0}^{\infty} \left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) ds\right)^{1/(p-1)} dt, \int_{0}^{\infty} \left(t^{1-N} \int_{0}^{t} s^{N-1} b(s) ds\right)^{1/(q-1)} dt\right\} < \frac{1}{4C}.$$
(2.4)

It follows that $\lim_{r\to\infty} u(r) = \lim_{r\to\infty} v(r) = \infty$, we can find $r_1 \ge r_0$ such that

$$\bar{U}(r) = \max_{r_0 \le t \le r} u(t), \quad \bar{V}(r) = \max_{r_0 \le t \le r} v(t), \quad \forall r \ge r_1.$$
 (2.5)

Thus, we have

$$\bar{U}(r) \le u(r_0) + C(1 + \bar{U}(r) + \bar{V}(r)) \int_0^\infty \left(t^{1-N} \int_0^t s^{N-1} a(s) ds \right)^{1/(p-1)} dt, \qquad \forall r \ge r_1.$$

By (2.4), we get

$$\bar{U}(r) \le u(r_0) + \frac{(1 + \bar{U}(r) + \bar{V}(r))}{4}, \quad \forall r \ge r_1.$$

that is

$$\bar{U}(r) \le C_1 + \frac{(\bar{U}(r) + \bar{V}(r))}{4}, \qquad \forall r \ge r_1.$$

where $C_1 = \frac{1}{4} + u(r_0) > 0$. Similarly,

$$\bar{V}(r) \le C_2 + \frac{(U(r) + V(r))}{4}, \quad \forall r \ge r_1.$$

 $\bar{U}(r) + \bar{V}(r) \le 2(C_1 + C_2), \quad \forall r \ge r_1.$
(2.6)

which implies

$$\bar{U}(r) + \bar{V}(r) \le 2(C_1 + C_2), \quad \forall r \ge r_1.$$
 (2.6)
t \bar{U} and \bar{V} are bounded and so u and v are bounded which is a contradiction. If

(1.7) means that \overline{U} and \overline{V} are bounded and so u and v are bounded which is a contradiction. It follows that (1.3) has no positive entire radial large solutions and the proof is now completed.

3 Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2. We start by showing that (1.3) has positive radial solutions. On this purpose we fix $\beta > \alpha$ and $\gamma > \alpha$ and we show that the system

$$\begin{cases} (\Phi_p(u'))' + \frac{N-1}{r}(\Phi_p(u')) + \Phi_p(u') = a(r)f(u(r), v(r)), \\ (\Phi_q(v'))' + \frac{N-1}{r}(\Phi_q(v')) + \Phi_p(v') = b(r)g(u(r), v(r)), \quad r > 0, \\ u(0) = \beta > 0, \quad v(0) = \gamma > 0; \quad u', v' \ge 0, \quad \text{on } [0, \infty), \end{cases}$$

$$(3.1)$$

has solutions (u, v) (where $\Phi_p(s) = |s|^{p-2}s$). Thus U(x) = u(|x|), V(x) = v(|x|) are positive solutions of (1.3). Integrating (3.1) we have

$$\begin{split} u(r) &= \beta + \int_0^r \left(e^{-t} t^{1-N} \int_0^t e^s s^{N-1} a(s) f(u(s), v(s)) ds \right)^{1/(p-1)} dt, \quad r \ge 0, \\ v(r) &= \gamma + \int_0^r \left(e^{-t} t^{1-N} \int_0^t e^s s^{N-1} b(s) g(u(s), v(s)) ds \right)^{1/(q-1)} dt, \quad r \ge 0. \end{split}$$

Let $\{u_n\}_{n\geq 0}$ and $\{v_n\}_{n\geq 0}$ be the sequences of positive continuous functions defined on $[0,\infty)$ by

$$\begin{cases} u_0(r) = \beta, v_0(r) = \gamma, \\ u_{n+1}(r) = \beta + \int_0^r \left(e^{-t} t^{1-N} \int_0^t e^s s^{N-1} a(s) f(u_n(s), v_n(s)) ds \right)^{1/(p-1)} dt, \\ v_{n+1}(r) = \gamma + \int_0^r \left(e^{-t} t^{1-N} \int_0^t e^s s^{N-1} b(s) g(u(s), v(s)) ds \right)^{1/(q-1)} dt, \quad r \ge 0, \end{cases}$$
(3.2)

Obviously, for all $r \ge 0$, we have

$$u_n(r) \ge \beta$$
, $v_n(r) \ge \gamma$, $u_0 \le u_1$, $v_0 \le v_1$.

The monotonicity of f and g yield

$$u_1(r) \le u_2(r), \quad v_1(r) \le v_2(r), \quad r \ge 0.$$

Repeating such arguments we deduce that

$$u_n(r) \le u_{n+1}(r), \quad v_n(r) \le v_{n+1}(r), \quad r \ge 0, \ n \ge 1.$$

and we obtain that sequences $\{u_n\}_{n\geq 0}$ and $\{v_n\}_{n\geq 0}$ are nondecreasing on $[0,\infty)$. Notice

$$u_{n+1}'(r) = \left(e^{-r}r^{1-N}\int_0^r e^s s^{N-1}a(s)f(u_n(s), v_n(s))ds\right)^{1/(p-1)}$$

$$\leq (f(u_n(r), v_n(r)))^{1/(p-1)}A_1'(r)$$

$$\leq (f(u_n(r) + v_n(r), u_n(r) + v_n(r))^{1/(p-1)}A_1'(r))$$

$$\leq (f(u_{n+1}(r) + v_{n+1}(r), u_{n+1}(r) + v_{n+1}(r)))$$

$$+g(u_{n+1}(r) + v_{n+1}(r), u_{n+1}(r) + v_{n+1}(r)))^{1/(p-1)}A_1'(r)$$

and

$$\begin{aligned} v_{n+1}'(r) &= \left(e^{-r} r^{1-N} \int_0^r e^s s^{N-1} b(s) g(u_n(s), v_n(s)) ds \right)^{1/(q-1)} \\ &\leq \left(g(u_n(r), v_n(r)) \right)^{1/(q-1)} B_1'(r) \\ &\leq \left(g(u_n(r) + v_n(r), u_n(r) + v_n(r) \right)^{1/(q-1)} B_1'(r) \\ &\leq \left(f(u_{n+1}(r) + v_{n+1}(r), u_{n+1}(r) + v_{n+1}(r) \right) \\ &+ g(u_{n+1}(r) + v_{n+1}(r), u_{n+1}(r) + v_{n+1}(r)) \right)^{1/(q-1)} B_1'(r) \end{aligned}$$

which implies

$$\frac{u'_n(r) + v'_n(r)}{(f(u_n(r) + v_n(r), u_n(r) + v_n(r)) + g(u_n(r) + v_n(r), u_n(r) + v_n(r)))^{1/(m_0 - 1)}} \le A'_1(r) + B'_1(r).$$

Where m_0 has been defined before. And then integrating on (0, r) we obtain

$$\int_0^r \frac{u'_n(t) + v'_n(t)}{(f(u_n(t) + v_n(t), u_n(t) + v_n(t)) + g(u_n(t) + v_n(t), u_n(t) + v_n(t)))^{1/(m_0 - 1)}} dt \le A_1(r) + B_1(r),$$

So

$$\int_{\beta+\gamma}^{u_n(r)+v_n(r)} \frac{d\tau}{(f(\tau,\tau)+g(\tau,\tau))^{1/(m_0-1)}} \le A_1(r) + B_1(r),$$

that is

$$F(u_n(r) + v_n(r)) - F(\beta + \gamma) \le A_1(r) + B_1(r), \forall r \ge 0.$$
(3.3)

It follows from F^{-1} is increasing on $[0,\infty)$ and (3.3) that

$$u_n(r) + v_n(r) \le F^{-1}(F(\beta + \gamma) + A_1(r) + B_1(r)), \forall r \ge 0.$$
(3.4)

It follows from $F(\infty) = \infty$ that $F^{-1}(\infty) = \infty$. By (3.4), the sequences $\{u_n\}$ and $\{v_n\}$ are bounded and increasing on $[0, c_0]$ for arbitrary $c_0 > 0$. Thus, $\{u_n\}$ and $\{v_n\}$ have subsequences converging uniformly to u and v on $[0, c_0]$. By the arbitrariness of $c_0 > 0$, we see that (u, v) is a positive solution of (3.1), that is, (U, V) is an entire positive solution of (1.3). Notice $U(0) = \beta$, $V(0) = \gamma$ and $(\beta, \gamma) \in$ $(0, \infty) \times (0, \infty)$ was chosen arbitrarily, it follows that (1.3) has infinitely many positive entire solutions. (i) If $A_1(\infty) < \infty$ and $B_1(\infty) < \infty$, then

$$u(r) + v(r) \le F^{-1}(F(\beta + \gamma) + A_1(\infty) + B_1(\infty)) < \infty,$$

which imply that U, V are the positive entire bounded solutions of (1.3).

(ii) If $A_2(\infty) = \infty = B_2(\infty)$, since

$$u(r) \ge \beta + f^{1/(p-1)}(\beta, \gamma)A_2(r), \quad v(r) \ge \gamma + g^{1/(q-1)}(\beta, \gamma)B_2(r), \quad \forall r \ge 0$$

Thus we have

$$\lim_{r \to \infty} u(r) = \lim_{r \to \infty} v(r) = \infty$$

which yield U, V are the positive entire large solutions of (1.3). The proof of theorem is now completed. **Proof of Theorem 3.** If condition (1.6) holds, then we have

 $F(u_n(r) + v_n(r)) \le F(\beta + \gamma) + A_1(r) + B_1(r) \le F(\beta + \gamma) + A_1(\infty) + B_1(\infty) \le F(\infty) < \infty.$

Since F^{-1} is strictly increasing on $[0,\infty)$, we have

 $u_n(r) + v_n(r) \le F^{-1}(F(\beta + \gamma) + A_1(\infty) + B_1(\infty)) < \infty.$

The last part of the proof is clear from the proof of Theorem 2. The proof of Theorem 3 is now finished.

4 Proofs of Theorem 4

(i) It follows from the proof of Theorem 3, we have

$$u_n(r) \le u_{n+1}(r) \le f^{1/(p-1)}(u_n(r), v_n(r))A_1(r) \le f^{1/(p-1)}(u_n(r) + v_n(r), u_n(r) + v_n(r))A_1(r),$$
(4.1)

and

$$v_n(r) \le v_{n+1}(r) \le g^{1/(q-1)}(u_n(r), v_n(r))B_1(r) \le g^{1/(q-1)}(u_n(r) + v_n(r), u_n(r) + v_n(r))B_1(r).$$
 (4.2)

Let R > 0 be arbitrary. From (4.1) and (4.2) we get

$$\begin{aligned} u_n(R) + v_n(R) &\leq \beta + \gamma + f^{1/(p-1)}(u_n(R) + v_n(R), u_n(R) + v_n(R))A_1(R) \\ &+ g^{1/(q-1)}(u_n(R) + v_n(R), u_n(R) + v_n(R))B_1(R) \\ &\leq \beta + \gamma + [f(u_n(R) + v_n(R), u_n(R) + v_n(R)) \\ &+ g(u_n(R) + v_n(R), u_n(R) + v_n(R))]^{1/(m_0 - 1)}(A_1(R) + B_1(R)), \quad n \geq 1. \end{aligned}$$

This implies

$$1 \leq \frac{\beta + \gamma}{u_n(R) + v_n(R)} + \frac{[f(u_n(R) + v_n(R), u_n(R) + v_n(R)) + g(u_n(R) + v_n(R), u_n(R) + v_n(R))]^{1/(m_0 - 1)}}{u_n(R) + v_n(R)} \times (A_1(R) + B_1(R)), \quad n \geq 1.$$

Taking into account the monotonicity of $(u_n(R) + v_n(R))_{n \ge 1}$, there exists

$$L(R) := \lim_{n \to \infty} (u_n(R) + v_n(R)).$$

We claim that L(R) is finite. Indeed, if not, we let $n \to \infty$ and the assumption (1.7) leads us to a contradiction. Thus L(R) is finite. since u_n, v_n are increasing functions, it follows that the map $L: (0, \infty) \to (0, \infty)$ is nondecreasing and

$$u_n(r) + v_n(r) \le u_n(R) + v_n(R) \le L(R), \quad \forall r \in [0, R], \quad n \ge 1$$

Thus the sequences $(u_n)_{n\geq 1}, (v_n)_{n\geq 1}$ are bounded from above on bounded sets. Let

$$u(r) := \lim_{n \to \infty} u_n(r), \quad v(r) := \lim_{n \to \infty} v_n(r), \quad for \quad r \ge 0.$$

Then (u, v) is a positive solution of (3.1).

In order to conclude the proof, it is enough to show that (u, v) is a large solution of (3.1). We see

$$u(r) \ge \beta + f^{1/(p-1)}(\beta,\gamma)A_2(r), \ v(r) \ge \gamma + g^{1/(q-1)}(\beta,\gamma)B_2(r), \ \forall r \ge 0$$

Since f and g are positive functions and

$$A_2(\infty) = \infty = B_2(\infty) = \infty,$$

we can conclude that (u, v) is a large solution of (3.1) and so (U, V) is a positive entire large solution of (1.3). Thus any large solution of (3.1) provide a positive entire large solution (U, V) of (1.3) with $U(0) = \beta, V(0) = \gamma$. Since $(\beta, \gamma) \in (0, \infty) \times (0, \infty)$ was chosen arbitrarily, it follows that (1.3) has infinitely many positive entire large solutions.

(ii)If

$$\sup_{s \ge 0} (f(s,s) + g(s,s))^{1/(m_0 - 1)} < \infty$$

holds, then we have

$$L(R) := \lim_{n \to \infty} (u_n(R) + v_n(R)) < \infty$$

312

Thus

 $u_n(r) + v_n(r) \le u_n(R) + v_n(R) \le L(R), \quad \forall r \in [0, R], \quad n \ge 1.$

So the sequences $(u_n)_{n\geq 1}, (v_n)_{n\geq 1}$ are bounded from above on bounded sets. Let

$$u(r):=\lim_{n\to\infty}u_n(r), \ \ v(r):=\lim_{n\to\infty}v_n(r), \ \ \text{for} \ \ r\geq 0.$$

Then (u, v) is a positive solution of (3.1).

It follows from (4.1) and (4.2) that (u, v) is bounded, which implies that (1.3) has infinitely many positive entire bounded solutions. The proof is end.

Acknowledgment

Project Supported by the National Natural Science Foundation of China(No.11171092); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.08KJB110005)

Competing Interests

The authors declare that no competing interests exist.

References

- [1] Chen S, Lu G. Existence and nonexistence of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal. 1999;38:919-932.
- [2] Clement Ph, Manasevich R, Mitidieri E. Positive solutions for a quasilinear system via blow up, Comm. in Partial Diff. Eqns. 1993;18(12):2071-2106.
- [3] Zhang XG, Liu LS. The existence and nonexistence of entire positive solutions of semilinear elliptic systems with gradient term. J. Math. Anal. Appl. 2010;371(1):300-308.
- [4] Cirstea F, Radulescu V. Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl. 2002;81:827-846.
- [5] Felmer PL, Manasevich R, de Thelin F. Existence and uniqueness of positive solutions for certain quasilinear elliptic system, Comm. in P.D.E. 1992;17:2013-2029.
- [6] Guo ZM. Existence of positive radial solutions for a class of quasilinear elliptic systems in annular domains, Chinese Journal of Contemporary Math. 1996;17(4):337-350.
- [7] De Figueiredo G, Yang J. Decay symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal. 1998;33:211-234.
- [8] Yarur C. Existence of continuous and singular ground states for semilinear elliptic systems, Electron. J. Differential Equations. 1998;1:1-27.
- [9] Dalmasso R. Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 2000;39:559C568. [10] Mitidieri E, Sweers G, Vorst R. vander. Nonexistence theorems for systems of quasilinear partial
- differential equations, Diff. Int. Eqns. 1995;8:1331-1354.
- [11] Bandle C, Giarrusso E. Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Adv. Differential Equations. 1996;1:133-150.
- [12] Giarrusso E. On blow up solutions of a quasilinear elliptic equation, Math. Nachr. 2000;213:89-104.
- [13] Ghergu M, Niculescu C, Rădulescu V. Explosive solutions of elliptic equations with absorption and nonlinear gradient term, Proc. Indian Acad. Sci. Math. Sci. 2002;112:441-451.
- [14] Lasry JM, Lions PL. Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. The model problem, Math. Ann. 1989;283:583-630.

British Journal of Mathematics and Computer Science 3(3), 304-314, 2013

- [15] Lair AV, Wood AW. Existence of entire large positive solutions of semilinear elliptic systems, J. Diff. Eqns. 2000;164(2):380-394.
- [16] Yang ZD, Lu QS. Nonexistence of positive radial solutions for a class of quasilinear elliptic system, Comm. Nonlinear Sci. Numer. Simul. 2000;5(4);184-187.
- [17] Yang ZD. Existence of entire explosive positive radial solutions for a class of quasilinear elliptic systems, J. Math. Anal Appl. 2003;288:768-783.
- [18] Yang ZD, Lu QS. Blow-up estimates for a quasilinear reaction-diffusion system, Math. Methods in the Appl. Sci. 2003;26:1005-1023.
- [19] Li H, Zhang P, Zhang ZJ. A remark on the existence of entire positive solutions for semilinear elliptic systems, J. Math. Anal. Appl. 2010;365:338-341.
- [20] Quittner P. Blow-up for semilinear parabolic equations with a gradient term, Math. Methods Appl. Sci. 1991;14:413-417.
- [21] Ye D, Zhou F. Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dyn. Syst. 2005;12:4213-424.
- [22] Zhang Z. Existence of entire positive solutions for a class of semilinear elliptic systems, Electronic J. Diff. Equations. 2010;2010(16):1-5.
- [23] Zhang Z, Shi Y, Xue Y. Existence of entire solutions for semilinear elliptic systems under the Keller-Osserman condition, Electronic J. Diff. Equations. 2011;2011(39):1-9.
- [24] Peterson JD, Wood AW. Large solutions to non-monotone semilinear elliptic systems, J. Math. Anal. Appl., 2011;384:284-292.
- [25] Ben Dkhil A, Zeddini N. Bounded and large radially symmetric solutions for some (*p*, *q*)-Laplacian stationary systems, Electronic J. Diff. Equations. 2012;2012(71):1-9.
- [26] X. Zhang. A necessary and sufficient condition for the existence of large solutions to 'mixed' type elliptic systems, Applied Mathematics Letters, 2012;25:2359-2364.
- [27] Yang Y, Zhang X. Entire Blow-Up Solutions of Semilinear Elliptic Systems with Quadratic Gradient Terms, Abstract and Applied Analysis, Article ID 697565. 2012;1-15.
- [28] Covei DP. Large and Entire Large Solution for a Quasilinear Problem, Nonlinear Analysis, 2009;70(5):1738-1745.
- [29] Covei DP. Existence of entire radially symmetric solutions for a quasilinear system with d-equations, Hacettepe Journal of Mathematics and Statistics. 2011; 40(3):433-439.
- [30] Covei DP. Radial and nonradial solutions for a semilinear elliptic system of Schrodinger type, Funkcialaj Ekvacioj - Serio Internacia. 2011;54:439-449.
- [31] Covei DP. Schrodinger systems with a convection term for the (p1, ..., pd)-Laplacian in \mathbb{R}^N , Electronic Journal of Differential Equations. 2012;2012(67):1-13.

©2013 Qin & Yang; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=225&id=6&aid=1305