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Abstract
We study the existence and nonexistence of entire positive solutions for quasilinear elliptic system
with gradient term

div(|∇u|p−2∇u) + |∇u|p−1 = a(|x|)f(u, v),

div(|∇v|q−2∇v) + |∇v|q−1 = b(|x|)g(u, v)

on RN(N ≥ 3), where nonlinearities f and g are positive and continuous, the potentials a and b
are continuous, c-positive and satisfy appropriate growth conditions at infinity. We have that entire
large positive solutions fail to exist if f and g are sublinear and a and b have fast decay at infinity,
while if f and g satisfy some growth conditions at infinity, and a, b are of slow decay or fast decay
at infinity, then the system has infinitely many entire solutions, which are large or bounded.
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1 Introduction
Existence and nonexistence of a quasilinear elliptic system{

div(|∇u|p−2∇u) + f(x, u, v) = 0, x ∈ RN ,

div(|∇v|q−2∇v) + g(x, u, v) = 0, x ∈ RN .
(1.1)

have been studied by several authors. See, for example, Ph.Clement, R.Manasevich and E.Mitidieri
[2], P.L.Felmer, R.Manasevich and F.de Thelin [5], Z.M.Guo [6], E.Mitidieri, G.Sweers and R.vander
Vorst [10], Z.D.Yang and Q.S.Lu [16, 18], A.Ben Dkhil and N. Zeddini [25], D.-P. Covei [28-29, 31]
and the references therein. Problem (1) arises in the theory of quasi-regular and quasi-conformal
mappings as well as in the study of non- Newtonian fluids. In the latter case, the pair (p, q) is a
characteristic of the medium. Media with (p, q) > (2, 2) are called dilatant fluids and those with
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(p, q) < (2, 2) are called pseudo-plastics. If (p, q) = (2, 2), they are Newtonian fluids.
When p = q = 2, the system{

∆u+ f(x, u, v) = 0, in Ω,

∆v + g(x, u, v) = 0, in Ω.

have received much attention recently. We list here, for example, [1,4,7-9, 21-24, 26-27, 30] and refer
to the references therein.

When p = q = 2, f = −a(|x|)vα, g = −b(|x|)uβ , system (1.1) becomes{
∆u = a(|x|)vα, x ∈ RN ,

∆v = b(|x|)uβ , x ∈ RN

for which existence results for boundary blow-up positive solutions can be found in a recent paper by
Lair and Wood [15]. The authors established that all positive entire radial solutions of systems above
are boundary blow-up provided that∫ ∞

0

ta(t)dt =∞,
∫ ∞
0

tb(t)dt =∞.

On the other hand, if ∫ ∞
0

ta(t)dt <∞,
∫ ∞
0

tb(t)dt <∞.

then all positive entire radial solutions of this system are bounded.
F. Cìrstea and V.Rǎdulescu [4] extended the above results to a larger class of systems{

∆u = a(|x|)g(v), x ∈ RN ,

∆v = b(|x|)f(u), x ∈ RN

Z.D.Yang [17] extended the above results to a class of systems{
div(|∇u|p−2∇u) = a(|x|)g(v), x ∈ RN ,

div(|∇v|q−2∇v) = b(|x|)f(u), x ∈ RN

Very recently, Xinguang Zhang, Lishan Liu [3] for which the existence and nonexistence results
can be obtained to the elliptic system{

∆u+ |∇u| = a(|x|)f(u, v), x ∈ RN ,

∆v + |∇v| = b(|x|)g(u, v), x ∈ RN
(1.2)

The corresponding equation that leads us to the system (1.2) is

∆u+ |∇u|λ = a(|x|)f(u), x ∈ Ω, 0 < λ ≤ 2.

which was treated in [11-13]. Problems of this type arise in stochastic control theory and have been
first studied in [14]. The corresponding parabolic equation was consider in [20].

In this paper, we consider the following quasilinear elliptic system{
div(|∇u|p−2∇u) + |∇u|p−1 = a(|x|)f(u, v), x ∈ RN ,

div(|∇v|q−2∇v) + |∇v|q−1 = b(|x|)g(u, v), x ∈ RN
(1.3)

where N ≥ 3. Throughout this paper we always assume a, b are c-positive C(RN ) functions, f, g :
[0,∞)× [0,∞)→ [0,∞) are nonnegative, continuous and nondecreasing functions for f or g.
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For convenience we use the following convention:
· A function p is c-positive in a domain Ω ⊆ RN ig p is nonnegative on Ω and satisfies the

following: if x0 ∈ Ω and p(x0) = 0, then there exists a domain Ω0 such taht x0 ∈ Ω0 ⊂ Ω and
p(x) > 0 for all x ∈ ∂Ω0.
· A solution (u, v) of system

div(|∇u|p−2∇u) = f(x, u, v), div(|∇v|p−2∇v) = g(x, u, v) (∗)

is call an entire large solution (or explosive solution) if it is a classical solution of (∗) on RN and
u(x)→∞ and v(x)→∞ as |x| → ∞.

Our purpose is to generalize part results in [3]. The main results of the present paper are
complement and extend part results in [3,17,19]. Using an argument inspired by Xinguang Zhang,
Lishan Liu [3] and Hong Li, Pei Zhang, Zhijun Zhang [19], we obtain the following main results.

Theorem 1. Suppose f and g satisfy

max

{
sup
s+t≥1

f(s, t)

(s+ t)m−1
, sup
s+t≥1

g(s, t)

(s+ t)m−1

}
< +∞, (1.4)

and a, b satisfy the decay conditions∫ ∞
0

(
t1−N

∫ t

0

sN−1a(s)ds

)1/(p−1)

dt <∞,
∫ ∞
0

(
t1−N

∫ t

0

sN−1b(s)ds

)1/(q−1)

dt <∞ (1.5)

where m = min{p, q}, then problem (1.3) has no positive entire radial large solution.
Remark 1. If N ≥ 3, N > p, then condition (1.5) of Theorem 1 is replaced by

0 <

∫ ∞
1

r
1

p−1 a(r)
1

p−1 dr <∞, if 1 < p ≤ 2, (A)

0 <

∫ ∞
1

r
(p−2)N+1

p−1 a(r)dr <∞, if p ≥ 2; (B)

and

0 <

∫ ∞
1

r
1

q−1 b(r)
1

q−1 dr <∞, if 1 < q ≤ 2, (C)

0 <

∫ ∞
1

r
(q−2)N+1

q−1 b(r)dr <∞, if q ≥ 2. (D)

Let

J(r) =

∫ r

0

(t1−N
∫ t

0

sN−1ψ(s)ds)
1

p−1 dt

If fact, if 1 < p ≤ 2, by estimating above the integral

J(r) ≤ C1 +

∫ r

1

t
1−N
p−1 [

∫ t

0

sN−1ψ(s)ds]1/(p−1)dt.

Using the assumption N ≥ 3 in the computation of the first integral above and Jensen’s inequality to
estimate the last one,

J(r) ≤ C2 + C3

∫ r

1

t
3−N−p

p−1

∫ t

1

s
N−1
p−1 ψ(s)

1
p−1 dsdt.

Computing the above integral, we obtain

J(r) ≤ C2 + C4

∫ r

1

t
1

p−1ψ(t)
1

p−1 dt.
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Applying (A) in the integral above we infer that H∞ = limr→∞ J(r) <∞. On the other hand, if p ≥ 2,
set

H(t) =

∫ t

0

sN−1ψ(s)ds

and note that either, H(t) ≤ 1 for t > 0 or H(t0) = 1 for some t0 > 0. In the first case, H
1

p−1 ≤ 1,
and hence,

J(r) =

∫ r

0

t
1−N
p−1 H(t)

1
p−1 dt ≤ C5 +

∫ r

1

t
1−N
p−1 dt

so that J(r) has a finite limit because p < N . In the second case, H(s)
1

p−1 ≤ H(s) for s ≥ s0 and
hence,

J(r) ≤ C6 +

∫ r

1

t
1−N
p−1

∫ t

0

sN−1ψ(s)dsdt.

Estimating and integrating by parts, we obtain

J(r) ≤ C6 +
p− 1

N − p

∫ 1

0

tN−1ψ(t)dt+
p− 1

N − p [

∫ r

1

t
(p−2)N+1

p−1 ψ(t)dt− r
p−N
p−1

∫ r

0

tN−1ψ(t)dt]

≤ C7 + C8

∫ r

1

t
(p−2)N+1

p−1 ψ(t)dt.

By (B), H∞ = limr→∞ J(r) <∞.
In order to state the existence results, we denote

A1(∞) := lim
r→∞

A1(r), A1(r) =

∫ r

0

(
t1−N

∫ t

0

sN−1a(s)ds

)1/(p−1)

dt, r ≥ 0,

B1(∞) := lim
r→∞

B1(r), B1(r) =

∫ r

0

(
t1−N

∫ t

0

sN−1b(s)ds

)1/(q−1)

dt, r ≥ 0;

A2(∞) := lim
r→∞

A2(r), A2(r) =

∫ r

0

(
e−tt1−N

∫ t

0

essN−1a(s)ds

)1/(p−1)

dt, r ≥ 0,

B2(∞) := lim
r→∞

B1(r), B2(r) =

∫ r

0

(
e−tt1−N

∫ t

0

essN−1b(s)ds

)1/(q−1)

dt, r ≥ 0;

and

F (∞) := lim
r→∞

F (r), F (r) =

∫ r

α

ds

(f(s, s) + g(s, s))1/(m0−1)
, r ≥ α > 0,

where m0 satisfies

m0 =

{
min{p, q}, if f + g ≥ 1,

max{p, q}, if f + g < 1,

we see that

F ′(r) =
1

(f(r, r) + g(r, r))1/(m0−1)
> 0,∀r > α

so, F has the inverse function F−1 on [α,∞).
Theorem 2. Assume

F (∞) =∞.

Then the system (1.3) has infinitely many positive entire radial solutions (u, v) ∈ C1([0,∞)). Moreover,
the following hold:
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(i) If A1(∞) <∞ and B1(∞) <∞, then all positive entire radial solutions of (1.3) are bounded.
(ii) If A2(∞) = ∞ = B2(∞), then limr→∞ u(r) = limr→∞ v(r) = ∞, that is all positive entire

radial solutions of (1.3) are large.
Theorem 3. If

F (∞) <∞, A1(∞) <∞, B1(∞) <∞,

and there exist β > α and γ > α such that

A1(∞) +B1(∞) < F (∞)− F (β + γ), (1.6)

the system (1.3) has a positive radial bounded solution (u, v) ∈ C1([0,∞)) satisfying

β + f1/(p−1)(β, γ)A1(r) ≤ u(r) ≤ F−1(F (β + γ) +A1(r) +B1(r)), ∀r ≥ 0;

γ + g1/(q−1)(β, γ)B1(r) ≤ v(r) ≤ F−1(F (β + γ) +A1(r) +B1(r)), ∀r ≥ 0.

Theorem 4. If m0 is defined as before, then we have
(i) If

A2(∞) =∞ = B2(∞),

and

lim
s→∞

(f(s, s) + g(s, s))1/(m0−1)

s
= 0, (1.7)

then the system (1.3) has infinitely many positive entire radial large solutions;
(ii) If

A1(∞) <∞, B1(∞) <∞,

and
sup
s≥0

(f(s, s) + g(s, s))1/(m0−1) <∞, (1.8)

then the system (1.3) has infinitely many positive entire bounded radial solutions.

2 Proofs of Theorem 1
In this section, we consider the proof of Theorem 1 by contradictions. Assume that the system (1.3)
has the positive entire radial large solution (u, v). From (1.3), we know that

(ettN−1(u′)p−1(t))′ = ettN−1a(t)f(u(t), v(t)), t ≥ 0,

(ettN−1(v′)q−1(t))′ = ettN−1b(t)g(u(t), v(t)), t ≥ 0.

Now we set

U(r) = max
0≤t≤r

u(t), V (r) = max
0≤t≤r

v(t),

it is easy to see that U, V are positive and nondecreasing functions. Moreover, we have U ≥ u, V ≥ v
and U(r), V (r)→ +∞ as r → +∞. It follows from (1.4) that there exists C > 0 such that

max {f(s, t), g(s, t)} ≤ C(s+ t)m−1, for s+ t ≥ 1, (2.1)

and
max {f(s, t), g(s, t)} ≤ C, for s+ t ≤ 1. (2.2)
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Then by (2.1) and (2.2), we have

max {f(s, t), g(s, t)} ≤ C(1 + s+ t)m−1, for s+ t ≥ 0. (2.3)

Then, from (2.3) we can get

f(u(r), v(r)) ≤ C(1 + u(r) + v(r))m−1 ≤ C(1 + U(r) + V (r))m−1, for r ≥ 0.

So, for all r ≥ r0 ≥ 0, we obtain

u(r) = u(r0) +

∫ r

r0

(
e−tt1−N

∫ t

0

essN−1a(s)f(u(s), v(s))ds

)1/(p−1)

dt

≤ u(r0) + C

∫ r

r0

(
e−tt1−N

∫ t

0

essN−1a(s)(1 + U(s) + V (s))m−1ds

)1/(p−1)

dt

≤ u(r0) + C(1 + U(r) + V (r))
m−1
p−1

∫ r

r0

(
e−tt1−N

∫ t

0

essN−1a(s)ds

)1/(p−1)

dt

≤ u(r0) + C(1 + U(r) + V (r))
m−1
p−1

∫ r

r0

(
t1−N

∫ t

0

sN−1a(s)ds

)1/(p−1)

dt

≤ u(r0) + C(1 + U(r) + V (r))

∫ r

r0

(
t1−N

∫ t

0

sN−1a(s)ds

)1/(p−1)

dt

where C is a positive constant. Notice that (1.5), we choose r0 > 0 such that

max

{∫ ∞
0

(
t1−N

∫ t

0

sN−1a(s)ds

)1/(p−1)

dt,

∫ ∞
0

(
t1−N

∫ t

0

sN−1b(s)ds

)1/(q−1)

dt

}
<

1

4C
.

(2.4)
It follows that limr→∞ u(r) = limr→∞ v(r) =∞, we can find r1 ≥ r0 such that

Ū(r) = max
r0≤t≤r

u(t), V̄ (r) = max
r0≤t≤r

v(t), ∀r ≥ r1. (2.5)

Thus, we have

Ū(r) ≤ u(r0) + C(1 + Ū(r) + V̄ (r))

∫ ∞
0

(
t1−N

∫ t

0

sN−1a(s)ds

)1/(p−1)

dt, ∀r ≥ r1.

By (2.4), we get

Ū(r) ≤ u(r0) +
(1 + Ū(r) + V̄ (r))

4
, ∀r ≥ r1.

that is

Ū(r) ≤ C1 +
(Ū(r) + V̄ (r))

4
, ∀r ≥ r1.

where C1 = 1
4

+ u(r0) > 0. Similarly,

V̄ (r) ≤ C2 +
(Ū(r) + V̄ (r))

4
, ∀r ≥ r1.

which implies
Ū(r) + V̄ (r) ≤ 2(C1 + C2), ∀r ≥ r1. (2.6)

(1.7) means that Ū and V̄ are bounded and so u and v are bounded which is a contradiction. It
follows that (1.3) has no positive entire radial large solutions and the proof is now completed.
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3 Proofs of Theorem 2 and Theorem 3
Proof of Theorem 2. We start by showing that (1.3) has positive radial solutions. On this purpose
we fix β > α and γ > α and we show that the system

(Φp(u
′))′ + N−1

r
(Φp(u

′)) + Φp(u
′) = a(r)f(u(r), v(r)),

(Φq(v
′))′ + N−1

r
(Φq(v

′)) + Φp(v
′) = b(r)g(u(r), v(r)), r > 0,

u(0) = β > 0, v(0) = γ > 0; u′, v′ ≥ 0, on [0,∞),

(3.1)

has solutions (u, v) (where Φp(s) = |s|p−2s). Thus U(x) = u(|x|), V (x) = v(|x|) are positive solutions
of (1.3). Integrating (3.1) we have

u(r) = β +

∫ r

0

(
e−tt1−N

∫ t

0

essN−1a(s)f(u(s), v(s))ds

)1/(p−1)

dt, r ≥ 0,

v(r) = γ +

∫ r

0

(
e−tt1−N

∫ t

0

essN−1b(s)g(u(s), v(s))ds

)1/(q−1)

dt, r ≥ 0.

Let {un}n≥0 and {vn}n≥0 be the sequences of positive continuous functions defined on [0,∞) by

u0(r) = β, v0(r) = γ,

un+1(r) = β +
∫ r
0

(
e−tt1−N

∫ t
0
essN−1a(s)f(un(s), vn(s))ds

)1/(p−1)

dt,

vn+1(r) = γ +
∫ r
0

(
e−tt1−N

∫ t
0
essN−1b(s)g(u(s), v(s))ds

)1/(q−1)

dt, r ≥ 0,

(3.2)

Obviously, for all r ≥ 0, we have

un(r) ≥ β, vn(r) ≥ γ, u0 ≤ u1, v0 ≤ v1.

The monotonicity of f and g yield

u1(r) ≤ u2(r), v1(r) ≤ v2(r), r ≥ 0.

Repeating such arguments we deduce that

un(r) ≤ un+1(r), vn(r) ≤ vn+1(r), r ≥ 0, n ≥ 1.

and we obtain that sequences {un}n≥0 and {vn}n≥0 are nondecreasing on [0,∞). Notice

u′n+1(r) =

(
e−rr1−N

∫ r

0

essN−1a(s)f(un(s), vn(s))ds

)1/(p−1)

≤ (f(un(r), vn(r)))1/(p−1)A′1(r)

≤ (f(un(r) + vn(r), un(r) + vn(r))1/(p−1)A′1(r)

≤ (f(un+1(r) + vn+1(r), un+1(r) + vn+1(r))

+g(un+1(r) + vn+1(r), un+1(r) + vn+1(r)))1/(p−1)A′1(r)

and

v′n+1(r) =

(
e−rr1−N

∫ r

0

essN−1b(s)g(un(s), vn(s))ds

)1/(q−1)

≤ (g(un(r), vn(r)))1/(q−1)B′1(r)

≤ (g(un(r) + vn(r), un(r) + vn(r))1/(q−1)B′1(r)

≤ (f(un+1(r) + vn+1(r), un+1(r) + vn+1(r))

+g(un+1(r) + vn+1(r), un+1(r) + vn+1(r)))1/(q−1)B′1(r)
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which implies

u′n(r) + v′n(r)

(f(un(r) + vn(r), un(r) + vn(r)) + g(un(r) + vn(r), un(r) + vn(r)))1/(m0−1)
≤ A′1(r) +B′1(r).

Where m0 has been defined before. And then integrating on (0, r) we obtain

∫ r

0

u′n(t) + v′n(t)

(f(un(t) + vn(t), un(t) + vn(t)) + g(un(t) + vn(t), un(t) + vn(t)))1/(m0−1)
dt ≤ A1(r) +B1(r),

So ∫ un(r)+vn(r)

β+γ

dτ

(f(τ, τ) + g(τ, τ))1/(m0−1)
≤ A1(r) +B1(r),

that is
F (un(r) + vn(r))− F (β + γ) ≤ A1(r) +B1(r), ∀r ≥ 0. (3.3)

It follows from F−1 is increasing on [0,∞) and (3.3) that

un(r) + vn(r) ≤ F−1(F (β + γ) +A1(r) +B1(r)), ∀r ≥ 0. (3.4)

It follows from F (∞) = ∞ that F−1(∞) = ∞. By (3.4), the sequences {un} and {vn} are bounded
and increasing on [0, c0] for arbitrary c0 > 0. Thus, {un} and {vn} have subsequences converging
uniformly to u and v on [0, c0]. By the arbitrariness of c0 > 0, we see that (u, v) is a positive solution
of (3.1), that is, (U, V ) is an entire positive solution of (1.3). Notice U(0) = β, V (0) = γ and (β, γ) ∈
(0,∞)× (0,∞) was chosen arbitrarily, it follows that (1.3) has infinitely many positive entire solutions.

(i) If A1(∞) <∞ and B1(∞) <∞, then

u(r) + v(r) ≤ F−1(F (β + γ) +A1(∞) +B1(∞)) <∞,

which imply that U, V are the positive entire bounded solutions of (1.3).
(ii) If A2(∞) =∞ = B2(∞), since

u(r) ≥ β + f1/(p−1)(β, γ)A2(r), v(r) ≥ γ + g1/(q−1)(β, γ)B2(r), ∀r ≥ 0.

Thus we have

lim
r→∞

u(r) = lim
r→∞

v(r) =∞

which yield U, V are the positive entire large solutions of (1.3). The proof of theorem is now completed.
Proof of Theorem 3. If condition (1.6) holds, then we have

F (un(r) + vn(r)) ≤ F (β + γ) +A1(r) +B1(r) ≤ F (β + γ) +A1(∞) +B1(∞) ≤ F (∞) <∞.

Since F−1 is strictly increasing on [0,∞), we have

un(r) + vn(r) ≤ F−1(F (β + γ) +A1(∞) +B1(∞)) <∞.

The last part of the proof is clear from the proof of Theorem 2. The proof of Theorem 3 is now finished.

4 Proofs of Theorem 4
(i) It follows from the proof of Theorem 3, we have

un(r) ≤ un+1(r) ≤ f1/(p−1)(un(r), vn(r))A1(r) ≤ f1/(p−1)(un(r)+vn(r), un(r)+vn(r))A1(r), (4.1)
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and

vn(r) ≤ vn+1(r) ≤ g1/(q−1)(un(r), vn(r))B1(r) ≤ g1/(q−1)(un(r)+vn(r), un(r)+vn(r))B1(r). (4.2)

Let R > 0 be arbitrary. From (4.1) and (4.2) we get

un(R) + vn(R) ≤ β + γ + f1/(p−1)(un(R) + vn(R), un(R) + vn(R))A1(R)

+g1/(q−1)(un(R) + vn(R), un(R) + vn(R))B1(R)

≤ β + γ + [f(un(R) + vn(R), un(R) + vn(R))

+g(un(R) + vn(R), un(R) + vn(R))]1/(m0−1)(A1(R) +B1(R)), n ≥ 1.

This implies

1 ≤ β + γ

un(R) + vn(R)

+
[f(un(R) + vn(R), un(R) + vn(R)) + g(un(R) + vn(R), un(R) + vn(R))]1/(m0−1)

un(R) + vn(R)

×(A1(R) +B1(R)), n ≥ 1.

Taking into account the monotonicity of (un(R) + vn(R))n≥1, there exists

L(R) := lim
n→∞

(un(R) + vn(R)).

We claim that L(R) is finite. Indeed, if not, we let n → ∞ and the assumption (1.7) leads us to
a contradiction. Thus L(R) is finite. since un, vn are increasing functions, it follows that the map
L : (0,∞)→ (0,∞) is nondecreasing and

un(r) + vn(r) ≤ un(R) + vn(R) ≤ L(R), ∀r ∈ [0, R], n ≥ 1.

Thus the sequences (un)n≥1, (vn)n≥1 are bounded from above on bounded sets. Let

u(r) := lim
n→∞

un(r), v(r) := lim
n→∞

vn(r), for r ≥ 0.

Then (u, v) is a positive solution of (3.1).
In order to conclude the proof, it is enough to show that (u, v) is a large solution of (3.1). We see

u(r) ≥ β + f1/(p−1)(β, γ)A2(r), v(r) ≥ γ + g1/(q−1)(β, γ)B2(r), ∀r ≥ 0.

Since f and g are positive functions and

A2(∞) =∞ = B2(∞) =∞,

we can conclude that (u, v) is a large solution of (3.1) and so (U, V ) is a positive entire large solution
of (1.3). Thus any large solution of (3.1) provide a positive entire large solution (U, V ) of (1.3) with
U(0) = β, V (0) = γ. Since (β, γ) ∈ (0,∞) × (0,∞) was chosen arbitrarily, it follows that (1.3) has
infinitely many positive entire large solutions.

(ii)If

sup
s≥0

(f(s, s) + g(s, s))1/(m0−1) <∞

holds, then we have

L(R) := lim
n→∞

(un(R) + vn(R)) <∞.
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Thus

un(r) + vn(r) ≤ un(R) + vn(R) ≤ L(R), ∀r ∈ [0, R], n ≥ 1.

So the sequences (un)n≥1, (vn)n≥1 are bounded from above on bounded sets. Let

u(r) := lim
n→∞

un(r), v(r) := lim
n→∞

vn(r), for r ≥ 0.

Then (u, v) is a positive solution of (3.1).
It follows from (4.1) and (4.2) that (u, v) is bounded, which implies that (1.3) has infinitely many

positive entire bounded solutions. The proof is end.
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